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onal model to explore the hypothesis that regulatory instructions are context
dependent and conveyed through specific ‘codes’ in human genomic DNA. We provide examples of
correlation of computational predictions to reported mapped DNase I hypersensitive segments in the HOXA
locus in human chromosome 7. The examples show that statistically significant 9-mers from promoter
regions may occur in sequences near and upstream of transcription initiation sites, in intronic regions, and
within intergenic regions. Additionally, a subset of 9-mers from coding sequences appears frequently, as
clusters, in regulatory regions dispersed in noncoding regions in genomic DNA. The results suggest that the
computational model has the potential of decoding regulatory instructions to discover candidate
transcription factor binding sites and to discover candidate epigenetic signals that appear in both coding
and regulatory regions of genes.

© 2008 Elsevier Inc. All rights reserved.
Introduction

A relatively long history supports the idea that genomic DNA
represents a text, or a language, and that the order and the location of
‘words’ in that text would define the genetic information [1–3]. In fact,
the determination of the genomic DNA sequences has brought
linguistic metaphors to new heights: referring to DNA as a language
and to the human genome as the ‘book of life’ [1,2]. Support for
description of information in DNA as a text has emerged from the
formulation of codons (words) for specifying the amino acid sequence
of proteins [4,5].

Regulatory signals are generally assumed to not occur in the coding
regions of genes. However, a theoretical model proposes that in
addition to coding for proteins, the exons of genes may include
information for other biologically meaningful signals such as binding
sites for regulators of transcription [6,7].

A priori one could expect that regardless of their position in
genomic DNA, regulatory signals may share common characteristics.
For example, functional transcription factor binding sites have been
localized not only near the beginning of genes but also in control
I, Deoxyribonuclease I; HS,
scription factor binding sites;
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regions within intronic sequences and in regulatory regions localized
far upstream and far downstream of transcription start sites [8]. In
addition to binding sites for transcription factors, regulatory segments
might also include underlying signals for controlling other aspects of
gene expression. For example, the arrangement of A-tracts in
regulatory regions might provide signals for bending DNA to influence
the three-dimensional architecture of the sequences in these regions
of chromosomes [9]. Occurrences of CpG containing elements may
provide epigenetic information and signals for methylation of DNA
[10,11].

Several high-throughput procedures have been developed for
mapping the position of regulatory regions of genes. Localization of
DNase I hypersensitive (HS) sites in chromatin has emerged as a
powerful experimental tool for mapping the regulatory regions that
are poised for activation of gene expression [12–15]. Thismethod has a
long history and haswithstood the test of extensive validations [14,15].

Computational models have also aimed at predicting the position
of regulatory regions in genomic DNA. These models are often based
on specific hypotheses. Examples include the hypothesis that
clustering of transcription factor binding sites in a given region of
genomic DNA reflects the presence of a regulatory segment: for
example see [16,17], reviewed in [18]. Another model is based on the
hypothesis that functional regulatory sequences could be subject to
evolutionary selection, leaving a signature that could be detected in
alignments of genomic DNA sequences from several species: for
example see [19–21].
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Our hypothesis is that the human genome has evolved to produce a
well-defined “language” for conveying regulatory information in the
DNA. To explore this idea, previously we examined characteristics of
9-mers collected from proximal-promoters of protein-coding genes
[22,23]. Based on experimental data, we assumed that regulatory
signals should occur frequently in regions preceding the TSSs. We
chose 9-mers because they seemed to be a relatively “good” length for
discovering the genomic context of regulatory signals including
transcription factor binding sites [22]. We chose constant length
DNA in order to reduce computational burden due to short sequences
that appeared frequently in genomic DNA [22,24]. The computational
model assumes that complementary 9-mers are equivalent. This
assumption is based on studies showing that TFBSs can exert control
on gene expression irrespective of their orientation in DNA: for
example see [25–27].

In this report, we present a computational model (weighted
density plots) for identifying the genomic DNA regions that include
statistically significant occurrences of 9-mers collected from promoter
and coding regions of human genes. We find that, in these plots,
specific peaks often correlate with experimentally mapped regulatory
regions in genomic DNA.

Results

Sampling of characteristics of 9-mers from human promoter and coding
sequences

We determined the frequency of occurrences of complementary 9-
mers in three groups of human DNA: a set of promoters, defined with
respect to the 5′ end of ESTs [22]; coding regions in cDNAs obtained
from GenBank [28]; and sequences corresponding to a draft of total
genomic DNA [22]. The initial goal was to use 9-mers from CDSs as a
control for 9-mers derived from the promoter regions. However, as
detailed in subsequent sections, unexpectedly we found that a subset
of 9-mers from CDSs also appeared frequently in regulatory regions of
genes.

Furthermore, previous methods for identifying over-represented
n-mers for de novo pattern detection [29] have not addressed the
problem of sequences that appear frequently in genomic DNA. To
resolve this problem, we normalized the frequency of the 9-mers in
promoter regions and in coding sequences with respect to their
corresponding occurrences in total genomic DNA [22].

Ranking of frequencies provides a statistical measure of the
relative abundance of 9-mers in promoters or CDSs, with respect to
their corresponding occurrences in total genomic DNA. For example,
in the statistical scheme, ranking of 1 corresponds to those 9-mers
that appear equally in promoters and total genomic DNA. Thus,
rankings greater than 1 statistically could be significant: a ranking of
3.08 had a p (or β) value of about 10−27; a ranking of 7 had a β value of
about 10−50 [22].

The computational model uses the collected 9-mers to produce
weighted density plots to predict the position of potential regulatory
signals in human genomic DNA. The program employs a specified
window to scan the human genomic DNA. The program examines all
possible 9-mers in each window and then finds their computed ranks.
The program uses the ranks to determine a weighted sum. As the
window slides along a genomic DNA, the weighted sums would
produce intensity values at each nucleotide position.

In addition to ranks, we wished to apply specific criteria to
distinguish the 9-mers that occurred preferentially in non-coding
regions from those that appeared frequently in CDSs. Towards this
goal, we created three types of density plots (Fig. 1). We constructed a
plot (CDS_Hits) to view the weighted density of matched of genomic
DNA sequences with 9-mers collected from coding sequences. The
ranking procedure excluded 9-mers that appeared frequently in
genomic DNA. We imposed specific criteria (see discussion and
methods) to construct a plot (Reg_Signal Pred1) to display the
weighted density of matches of genomic DNA sequences with 9-
mers collected from the promoter regions of genes. Additional criteria
(see methods) were imposed to construct a plot (Reg_Signal Pred2) to
distinguish the 9-mers with “high” non-coding context from those
with a relatively high coding context. In that plot, intensities greater
than one reflect normalized values of 9-mers that appear more
frequently in promoters than in coding regions of genes.

Analysis of the HOXA locus on human chromosome 7

To evaluate the computational model, we analyzed several
relatively long genomic DNA segments selected to include many
genes. As an example, we highlight the results obtained for the HOXA
cluster of genes on human chromosome 7. The cluster is relatively long
and includes HOXA1, HOXA2, HOXA3, HOXA4, HOXA5, HOXA6,
HOXA7, HOXA9, HOXA11, HOXA13, and EVX1 (Supplemental Fig. 1).
We evaluate the intensities of predicted signals in the context of
genomic positions of mapped DNase I HS segments [15,30,31].

Hypersensitivity to DNase I provides a relatively robust measure of
the chromosomal regions that have an “open” chromatin structure
[13]. A relatively large body of experimental data indicates that the
DNase I HS segments in genomic DNA are either nucleosome-free or
containmodified nucleosomal structures [10,14]. Accessibility of these
segments is thought to expose the control signals in the DNA, for
recognition by the regulators of gene expression [14]. Evidence
indicates that the results of high-throughput methods are likely to
be accurate since the methods have correctly identified the HS
segments mapped by conventional techniques [30].

To compare the position of DNase I HS segments to the predictions of
the computational model, we display the results in custom tracks in the
genome browser at UCSC. Initially, we will qualitatively compare the
position of the peaks in the density plots to the mapped HS segments:
Fig.1, tracks appearing under Duke/NHGRI DNase I-hypersensitivity and
under UW/RegulomeQCP DNase I Sensitivity [15]. A subsequent section
provides statistical evidence for the correlations.

Supplemental Fig. 1 gives an overview of the position of HS
segments and the organization of the genes in the HOXA locus. We
analyzed the entire locus, using a sliding window of 30 bp. Results
show that peaks in the weighted density plots are primarily localized
within the gene-rich segments (Supplemental Fig. 1). In the custom
tracks, intensity of peaks is displayed as pixilated bars, in order to
produce condensed plots (for example, see Fig. 1). Fig. 2 shows an
example of full-display of density plots with respect to landmarks
including potential TFBSs.

Fig. 1 shows an expanded view of the genomic DNA region that
includes HOXA1. Three custom tracks display the predictions. The
displayed predictions provide typical results showing that statistically
ranked 9-mers from promoter regions may appear as clusters in the
vicinity of transcription start sites and in sequences further upstream
(Fig. 1, track labeled Reg_Signal Pred1). Predictions also provide
typical results showing that statistically ranked 9-mers from CDSs
appear to cluster not only in exonic regions but also in non-coding
sequences: in that example, upstream of TSSs of HOXA1 (Fig. 1, track
labeled CDS_Hits).

A comparison of the tracks shown in Fig. 1 reveals correspondence
of the positions of predicted regulatory signals to the experimentally
determined DNase I HS segments that include the 5′ end of HOXA1.
Also, there is a correspondence between predicted regulatory signals
in a region upstream of the transcription start site (∼3700 bp) and HS
segments in chromatin isolated from several cell lines (Fig. 1, tracks
labeled GM069, CD4, HeLa, and CaCO2). Fig. 1 shows that the mapped
DNase I HS segments may include the transcribed untranslated region
and the coding region of a gene.

Supporting information gives additional examples of correlation of
predicted regulatory signals within DNase I HS segments in both



Fig. 1. Predictions obtained for the HOXA1 region (human chr7:26,904,901-26,910,680, built hg_17). The top three tracks display condensed views of the weighed density plots. From
the options at the UCSC browser [48], we selected the following keys as landmarks: a track providing the genomic position of known genes [49]; a track (5× Reg Potential) displaying
regulatory potential scores, computed from alignments of human, chimpanzee, mouse, rat, and dog genomic DNA sequences [20]; a track (TFBS conserved) displaying the inferred
location and score of potential transcription factor binding sites conserved in the human/mouse/rat sequence alignments; a track (conservation) providing a measure of evolutionary
conservation in 17 vertebrates, including mammalian, amphibian, bird, and fish species, based on a phylogenetic hidden Markovmodel, phastCons [50]; and tracks corresponding to
experimentally determined DNase I HSSs and HS segments [15].
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coding and noncoding regions of genes in the HOXA locus: HOXA2
(Supplemental Fig. 2); HOXA3 (Supplemental Fig. 3); HOXA4 (Supple-
mental Fig. 4); HOXA5 (Supplemental Fig. 5); HOXA6 (Supplemental
Fig. 6); HOXA7 (Supplemental Fig. 7); HOXA9 (Supplemental Fig. 8);
HOXA10 (Supplemental Fig. 9); HOXA11 (Supplemental Fig. 10);
HOXA13 (Supplemental Fig. 11); and EVX1 (Supplemental Fig. 12).

For example, the plot of the HOXA5 region shows that a cluster of
9-mers from promoter regions occurs downstream of the gene
(∼2000 bp), in a region that includes several mapped DNase I HSSs
(Supplemental Fig. 5). This noncoding segment also encompasses
many clusters of 9-mers from coding sequences (Supplemental Fig. 5,
compare the track-labeled CDS_Hits with the tracks labeled DNase
GM069 and DNase CD4). The plot of a region that includes HOXA7
provides another example of occurrences of 9-mers collected from
coding sequences in a DNase I HS segment localized upstream of a
gene (Supplemental Fig. 7).

Inspection of the plots also provides examples of regions that do
not include sequences with potential regulatory and/or CDS char-
acteristics. This can be seen in the overview plot that includes the
predictions for the entire HOXA locus. The plot shows that predicted
regulatory signals occur very sporadically in segments beyond the
gene-rich regions in the locus (Supplemental Fig. 1).

Examples of complete “words” and “sentences” with complex lexical
features

We imagined that 9-mers collected from promoter regions may
include the symbolic features that impart the characteristics as well as
the context of the regulatory signals in genomic DNA [22]. Natural-
language and transcribed speech are prime examples of sequential
symbolic data that are context dependent [32]. Emerging linguistic
models also support important roles that sequence context could play
in the selection of transcription factors that regulate gene expression
[23,33]. Furthermore, linguistic paradigms imply that a comprehen-
sive vocabulary could help with capturing syntactic and contextual
features of clauses and sentences that describe the regulatory
information in genomic DNA, for examples see [22,32].

To detect syntactic and contextual features, the algorithm for the
density plots was designed to reflect two parameters: the computed
statistical rank of each 9-mer in the sliding window and occurrences
that map to overlapping positions. Consequently, both the rank and
overlapping occurrences of 9-mers contribute to the intensity of the
signal observed at each nucleotide position in the genomic DNA.

A priori, we expected three scenarios: (1) statistically significant 9-
mers might include a complete “word”; (2) a short segment contain-
ing several overlapping 9-mers might correspond to composite
“words” or “words” that were longer than 9 base-pairs; and (3)
extensive overlapping occurrences might define “clause” and “sen-
tences”; i.e. regulatory modules and possibly regulatory regions [22].

Since TFBSs are the most notable examples of regulatory words in
genomic DNA, a previous study has examined whether isolated 9-
mers include binding sites for known transcription factors [22].
Within a subset of the highly ranked 9-mers, the study identified
binding sites for several known transcription factor families including
CREB, ETS, EGR-1, SP1, KLF, MAZ, HIF-1, and STATs [22].

Similarly, we find that in some cases, peaks in the density plots
correspond to potential TFBSs. For example, Fig. 2 provides an expanded
view of density plots obtained for a 630 bp segment localized
downstream of HOXA13 and far upstream of HOXA11 (the boxed region
in Supplemental Fig. 11). The shown segment includes four potential



Fig. 2. Predictions obtained for a 630 bp intergenic region downstream of HOXA13 and far upstream of HOXA11 (chr7:27,005,601-27,006,230). The figure shows an expanded view of
the density plots. The track above the blue plot shows the position of potential TFBSs. The track labeled TFBS conserved was created at UCSC by M. Weirauch and B. Raney, to provide
computed matrices and scores for binding sites selected from TRANSFAC, using conservation as a criterion. Three tracks, at the bottom of the figure, display consensus elements
generated by the ENCODEMulti-Species Analysis group using three sequence alignment methods (TBA, MLAGAN, andMAVID) and nine different combinations of three conservation
algorithms (phastCons, binCons, and GERP).
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TFBs: a site for members of the ETS family, a site for the SP1 family,
a site for the NF-κB/Rel family, and a site for the CREB/ATF family
(Fig. 2). We find a good correspondence of the position of the
CREB/ATF site to a peak in the plot of 9-mers derived from promoter
regions (Supplemental Fig. 13, the blue plot). This site falls within a
conserved TFBS (Supplemental Fig. 13, the tracks labeled TFBS
conserved and conservation). We also find a good correspondence
of the position of the SP1 site to a peak in the plot of 9-mers derived
from promoter regions (Supplemental Fig. 14, the blue and the red
plots). The SP1 site is not within but near a relatively conserved
region. The ETS site falls between the tail-end of a broad peak in the
density plot and a region that is conserved in human, chimp, rhesus,
rabbit, dog, and cow DNA but not in the sequences of other species
(Supplemental Fig. 15).
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Supplemental Fig. 16 provides another example of density plots
that include frequent occurrences of high-ranking 9-mers from
promoter regions (Reg_Signal Pred 1, the blue plot) and numerous
occurrences of high-ranking 9-mers from coding sequences
(CDS_Hits, the green plot). The figure displays a region that includes
the TSS of HOXA1 and sequences further upstream. Within the
expanded density plot of Reg_Signal Pred 1 and Reg_Signal Pred 2, we
observe several well-resolved peaks (labeled 1–11).

The position of three peaks correlates with potential TFBSs: MAZ
(peaks 3 and 11); AP2 (peak 7). Three peaks fall within highly
conserved sequences (peaks 1, 9, and 11). There are also peaks that
correlate with sequences that are loosely conserved (examine peaks 2,
3, 4, 6, 10 with respect to the tracks that appear underMSA, Consensus
Constrained Elements, created by the ENCODE project). Overall, the
plots include many examples of predicted signals that correlate with
sequences conserved in primates but not in other species. For
example, Supplemental Fig. 17 shows two predicted regulatory signals
in a region far downstream of HOXA1. The sequence in this region
appears to be conserved in human, chimp, and rhesus DNA but not in
other species. One of the predicted signals encompasses a potential
site for binding E2F and related proteins.

Generally, it is difficult to create a non-redundant, complete, and
accurate list of known transcription factor binding sites for testing
computational models. The TRANSFAC database is not suitable for that
purpose because it includes numerous redundant entries. To resolve
this problem, we compiled a non-redundant list. However, we found
that as expected, short or poorly defined binding sites appeared
frequently in genomic DNA. Removing these sites from the list would
create datasets producing false-negatives. The challenge represents a
recurrent and unresolved problem for localization of TFBSs [29].
Nonetheless, positive correlations validate the predictive potential of
our approach. Furthermore, predictions that do not include a known
binding site may reflect regulatory signals currently unknown.

If statistically significant 9-mers represent words describing
regulatory signals (i.e. TFBSs), we could expect to find instances in
which overlapping 9-mers would produce sentences and clauses
consisting of regulatory instructions in the genomic DNA. To explore
this idea, we scanned the density plots of HOXA locus to find high
intensity peaks that spanned a stretch of DNA sequence. To enhance
the statistical significance of the findings, we imposed the criterion
that the signal intensity should be greater than 2 (Supplemental
Tables 1–3). For 9-mers derived from promoter regions (Reg_Predict
Table 1
A listing of genes whose promoter contains the 9-mers in the intron of HOXA13 (chr7:27,01

9-mer Rank Gene

GGGCTGGGG 4.00 PITX1, MXD4, HIF1A, HDAC3, SIRT3,
GGCTGGGGA 2.49 CITED1, PITX1, NFKBIA, SIRT1, MED2
GCTGGGGAG 2.67 TBPL1, GRLF1
CTGGGGAGG 1.62 MED27, GATA1
TGGGGAGGG 2.02 PITX3, SOX9
GGGGAGGGC 4.27 MEF2B, NR1H3, NFE2L2, TRIP6, ELF3,
GGGAGGGCG 15.99 MEF2B, HDAC1
GGAGGGCGG 14.20 CITED2, MEF2B, HDAC1, NAP1L1, MY
GAGGGCGGG 24.36 CITED2, MEF2B, OTX1, ATF4, RARA, T
AGGGCGGGG 17.87 CITED2, MEF2B, OTX1, ATF4, RARA, T
GGGCGGGGC 49.86 CITED2, MEF2B, PITX3, HES2, HOXC1
GGCGGGGCG 61.13 CITED2, HDAC1, MXD4, HES2, HOXC1
GCGGGGCGC 63.24 MXD4, XBP1, SIRT3, NR2F1
CGGGGCGCA 44.20 NR2F1, NFIB
GGGGCGCAG 23.01 NR2F1, SUV39H2, BTF3, TFAP4
GGGCGCAGA 18.67 RARA, NRBF2, NCOA4, ETV5, HIF1A
GGCGCAGAG 19.69 RARA, NRBF2, NCOA4, ETV5, HIF1A
GCGCAGAGG 17.17 MEIS2
CGCAGAGGG 10.27 GATA3, MDFI
GCAGAGGGA 2.20 NFKBIA, MYC, STAT1

Column1: the sequence of 9-mers. Column2: their corresponding statistical ranks. Column
chromatin remodeling. The sequence of overlapping run is GGGCTGGGGAGGGCGGGGCGCAGA
from GenBank.
1), we found nearly 275 instances of peaks produced from overlapping
9-mers (Supplemental Table 1). A number of the overlaps created
segments consisting of 30 or more nucleotides. The longest over-
lapping run (44 bp) appeared in the genomic region corresponding to
an intron in the long transcript of HOXA13.

The number of overlapping runs increased when we reduced the
threshold intensity to 1. Three histograms display the frequency of
length distributions for that threshold. For Reg_Pred1, the length of
overlaps reached nearly 75 base pairs. The most frequent runs were
about 23 base pairs and appeared bothwithin and outside themapped
HS segments (Supplemental Fig. 18). For Reg_Pred2, promoter 9-mers
that were ranked with respect to both genomic DNA and CDSs, we
obtained a somewhat skewed distribution for runs that appeared
outside and within HS segments (Supplemental Fig. 19). As expected,
for CDS_Hits, we obtained relatively long segments produced from
overlapping 9-mers in the exonic regions (Supplemental Fig. 20). The
histogram indicates that a small fraction of coding sequences appear
in HS segments in chromatin (Supplemental Fig. 20).

We have attempted to examine whether we could extract
contextual features, from regions that contain runs of overlapping
9-mers. Supplemental Fig. 21 provides an example. This example
displays a close-up view of density plots of a region within an intron
of HOXA13. To determine contextual features of that segment, we
interrogated our database [34] to identify the promoter sequences
that included the 9-mers that appeared in HOXA13 intron. From the
output of the queries, we selected genes that exert control on gene
expression. Table 1 summarizes the results. Close inspection of the
list reveals that a significant fraction of the genes falls into two
categories: genes that function in chromatin remodeling and
epigenetic control (i.e. HDAC1, HDAC3, HDAC6, HDAC11, EZH2,
SIRT1, SIRT3, SUV39H2, CITED1, CITED2, SMARCD3, and DNMT3L);
and genes for transcription factors that regulate gene expression
during development (i.e. PAX6, PITX1, PITX3, OTX1, HOXC13, POU2F2,
LHX4, MEIS2, GATA1, GATA3, HES2, HES6, HEYL, SOX9, SOX10, MEF2B,
KLF5, NEUROD3, RARA, NR1H3, and NR2F1). From that listing, we
predict that the segment in the intron of HOXA13 includes over-
lapping regulatory words (cis-elements) that function in the net-
works that exert control on both development and chromatin
remodeling. Note that listings of this type are often created to
identify genes that might be co-regulated through specific cis-
elements in promoter regions of genes, for example see [35]. We
propose that such elements also occur in regions distal to TSSs and
1,750-27,011,777)

NRBP1, DNMT3L, SMARCD3, NFKB2, SPIB, HES6
7, SOX10, RARA, IRF1, TRIP4

MED6, OTX1, TAF6L, MYCL1, NFX1, NFIB

CN, MED6, TAF6L
AF6L, PITX3, MYCL1, MYCN
AF6L, PITX3, MYCL1, NFE2L2, CREB3, HDAC11, TRIP13, NCOA4, SOX10, NFKB2, TAF9
3, NFYB, NFKBIE, EZH2, NFE2L2, NFATC3, NRBP1, HEYL, MYBL2, KLF5, IRF1, LHX4, PAX6
3, NFYB, NFKBIE, EZH2, SUV39H2, HDAC6, POU2F2, MYBL2, NEUROD3, LHX4, TAF10

3: promoter of genes that contain the 9-mer. Shown in bold are genes that function in
GGGA. See Supplemental Table 4 for a listing of definitions for the gene names obtained
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represent components of a genetic vocabulary that is context
dependent.

Statistical evaluation

To evaluate the hypothesis that the predicted regulatory signals
occur preferentially in DNase I HS segments, we tested a null
hypothesis proposing that the predictions are distributed randomly
in genomic DNA. The null-hypothesis can be rejected if the evaluations
reveal an improbable number of predicted signals in the HS segments,
with a significance level of 0.01. The p-values for all tests were less
than 10−24.

In the evaluations, we defined the number of hits as the number
of genomic positions at which signal intensity is greater than a
specified value (threshold or cutoff). From a total number of observed
hits (h), in a human genomic DNA of length N, we calculated the
probability that k hits from the population would randomly occur in
HS segments without replacement. We determined the number of
hits, in the HOXA locus, as a function of cutoff values chosen with
respect to the baselines (zero) in the density plots. The goal is to
determine whether we observe a trend in the statistical evaluations.
In the density plots, signal intensities are in arbitrary units and are
obtained from the displayed predictions. In plots of the HOXA locus,
the intensities vary: between 0 and 7, for Reg_pred1; between 0 and
10, for CDS_Hits; and between 0 and 7, for Reg_pred2. We noted that
the HS segments (obtained for various cell types [30]) mapped to
overlapping positions. To eliminate redundancy, we removed the
overlaps computationally to create the data set used for statistical
evaluations.

At a relatively low cutoff intensity (0.5 above the baseline), we
found that 56% of the hits obtained for Reg_Pred1 are localized in the
mapped HS segments (Fig. 3). The percentage increases at cutoff
values greater than 2 and reaches a plateau at about 75%. Statistical
evaluations reject the null hypothesis when the number of hits in HS
segments exceeds 20–25% (Fig. 3).

Similarly, at a relatively low cutoff (0.5), a significant fraction
(about 53%) of the hits obtained for Reg_Pred2 occurred in the
mapped HS segments (Fig. 3). This fraction steadily increased at
higher cutoff values. Statistical evaluations reject the null hypothesis
when the number of hits in HS segments exceeds 19–26% (Fig. 3).

If we choose 0.5 for cutoff intensity, we find that 26.3% of the
CDS_Hits occur in theHS segments. The null hypothesis can be rejected
if the number is greater than 19.3%. If we choose 2 for cutoff intensity,
selecting for 9-mers that occur relatively infrequently in total genomic
DNA, we find that nearly 67% of the hits occur in HS segments; 19.7%
Fig. 3. Trends in statistical tests. The X-axis displays the intensity cutoffs selected with
respect to the baselines, in the density plots. Hits (on the Y axis) represent the number
of nucleotide positions that have intensity values above the cutoff. The upper three
curves show the trend obtained for the %Hits that fall within the HS segments. The
lower three plots show the computed limits (for %Hits) that would reject the null
hypothesis, with a significance level of 0.01.
would reject the null hypothesis. The fraction of CDS_Hits in HS
segments reaches nearly 75% at intensity cutoffs greater than 3.

Discussion

While protein coding sequences account for a relatively small
fraction of human genomic DNA [3], as much as a third of the genome,
a remarkable one billion base pairs, might correspond to regions that
control chromosome replication, condensation, pairing, and segrega-
tion, and gene expression [8]. Furthermore, the prediction is that the
human genome must contain vast amounts of cis-regulatory elements
to direct the developmental, spatial, and temporal patterns of gene
expression [36]. However, the context and the characteristics of
sequences that regulate expression of human genes remain largely
unknown.

We hypothesized that as the coding information, specific vocabu-
lary might encode the regulatory information in genomic DNA. This
idea is supported by studies showing that 9-mers and 8-mers from
promoter regions of human genes are enriched in recognition sites for
transcription factors that play central roles in various aspects of
regulatory mechanisms [22,37,38]. Furthermore, in exploratory
experiments, we noted that the occurrences of 9-mers collected
from promoter regions created a regulatory module in a region far
upstream of the transcription start site of the human NF-IL6 gene [23].
This module was conserved in human and chimp DNA but
corresponded to a deletion in rat DNA [23].

Weighted density plots revealed that in relatively long genomic
DNA segments, 9-mers from promoter regions occurred not only near
TSSs but also upstream of transcription start sites, in intronic regions,
and within intergenic regions (see for example Fig. 1, Fig. 2, and
Supplemental Figs. 3–12). An earlier study imposed very stringent
filtering criteria to detect signals superimposed on relatively noisy
background [22]. Additional data evaluations showed that the back-
ground noise was, in part, due to CpG-rich 9-mers that occurred both
in promoter and in coding regions of genes.

Therefore, we closely inspected the occurrences of 9-mers
collected from CDSs in relatively long genomic DNA segments.
Weighted density plots of CDS 9-mers (CDS_Hits) unraveled a
complex and unexpected picture. Initially, as expected, we found
that statistically significant 9-mers collected from CDSs occurred in
exons. However, we found that these 9-mers also frequently appeared
as clusters, in noncoding regions: near promoter regions; upstream of
transcription start sites; in intronic regions; and within intergenic
regions (see for example Fig. 1, and Supplemental Figs. 2–12). The
results imply that DNA-sequence-based regulatory mechanisms are
more complex than currently presumed.

In attempts to uncouple overlapping regulatory signals, we
examined the occurrences of various 9-mers in genomic DNA in
context of three types of density plots: Reg_Signal Pred1, CDS_Hits,
and Reg_Signal Pred2. To construct Reg_Signal Pred1, we imposed
the following constraints: the rank of 9-mers from promoter regions
should be greater than 2; the corresponding rank of these 9-mers in
CDSs should be less than 5; and the ratio of the rank of a promoter
9-mer with respect to its corresponding rank in CDS should be
greater than 2. Using these criteria, in the density plots we obtained
relatively well-defined signals that were distinguishable from the
signals observed in CDS_Hits (for example compare the blue plot
and the green plot in Fig. 2 and Supplemental Figs. 13–17). To take
the filtering criteria a step further, we created another set of plots
(named Reg_Signal Pred2). The signal intensity in these plots
reflected whether the 9-mers were found more frequently in
promoters or in CDSs (for example see the red plot in Fig. 2 and
Supplemental Figs. 13–17). In Reg_Signal Pred2, signal intensities
greater than one defined genomic regions that were enriched in
9-mers found more frequently in promoters than in coding regions of
genes.
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Importantly, the filtering criteria facilitated investigating whether
the peaks in the regulatory signal predictions corresponded to TFBSs.
In some cases, we observed clear correspondence to potential TFBSs
(see for example Fig. 2, and Supplemental Figs. 13 and 14). We
speculate that in the other cases, the peaks define TFBSs that currently
might be unknown.

We inspected the sequences within several mapped regulatory
segments to determine whether our predictions correlated with
highly conserved regions in genomic DNA. There is ample evidence
that supports the hypothesis that conserved noncoding regions may
include transcription factor binding sites, see for example [20,23,39].
Furthermore, multi-species analyses have discovered numerous
regulator regions and enhancers of gene expression (see for example
[21]. However, while powerful, conservation-based predictions
might miss regulatory information that could be species-specific.
In fact, accelerated evolution of conserved non-coding sequences
may produce traits that distinguish humans from other species
[40,41].

We find that while the predicted regulatory signals occasionally
appear in conserved sequences (see for example Supplemental Figs.13
and 16), in most cases the signals primarily correlate with sequences
conserved in primates. In predicted regulatory signals, we found one
example of a sequence that appeared in chimp and rhesus but not in
human DNA (Supplemental Fig. 14, the underlined G near the
potential SP1 site). The finding appeared intriguing, in light of
intensive efforts directed at identifying differences in the genomic
sequences of primates to obtain clues about the molecular basis of
speciation [41,42].

The idea of context dependence of regulatory signals can be
extended to include overlapping sequences that might create
composite and complex regulatory instructions. We imagine that
long runs of sequences, produced from overlapping 9-mers, might
correspond to combination of regulatory “vocabulary” with which
complex instructions are written in genomic DNA. For examples, in
intron of HOXA13, overlapping 9-mers produced a relatively broad
peak in plots of regulatory signal predictions (Supplemental Fig. 21).
Analyses of these 9-mers revealed that they were derived, in part,
from promoter regions of genes with functions ranging from
modulation of gene expression to chromatin remodeling and
epigenetic gene silencing (Table 1 and Supplemental Table 4).

From the results of the analyses, we deduce that superimposed on
signals defining TFBSs, the regulatory segments of human genes
contain specific CpG-containing sequences that also occur in the
coding regions of genes. The results indicate that the phenomenon is
widespread and includes not only sequences in promoter regions but
also regulatory regions that are distal to TSSs (see for example Fig. 2).
The finding that specific CpG-rich sequences appear in both CDSs and
non-coding regulatory regions suggests that there is an interconnec-
tion among the epigenetic signals that regulate the expression of
human genes. Overall, we are tempted to conclude that our
computational model has the potential of decoding regulatory
instructions to discover sequences that interact with transcription
factors and to discover epigenetic signals in both coding and
regulatory regions of genes.

Materials and methods

Sequences

The sequence of HOXA locus was from GenBank (built hg_17). It
was retrieved from the genome browser at UCSC. For testing the
null hypothesis, we obtained the coordinates of HS segments from
Xi et al. [30].

For human promoters (−500 to +50), we retrieved the sequences
derived from alignments of full-length cDNAswith respect to a draft of
human genomic DNA [43]. From the retrieved promoter sequences,
we removed those thatwere incomplete: i.e. sequences that contained
N and other IUPAC ambiguity codes, instead of specific nucleotides.
From the set, we also removed sequences that appeared to be
redundant. For coding sequences, we extracted the region annotated
as CDS in RefSeq files from GenBank [28]. We obtained total genomic
DNA from the genome browser at UCSC [22]. For data collection, we
created a database in MySQL [44].

Determination of rankings

We computed the ranking of the 9-mers in the datasets with
respect to their frequencies in promoter sequences (Ei), coding regions
(Di), and total human genomic DNA (Gi). Subsequently, the frequen-
cies were normalized to obtain:

Ei=E;Di=D;Gi=G where; E =∑Ei; D =∑Di; G =∑Gið Þ:

For promoter context, the ranking of the 9-mer of type i is:

R pcð Þi = GEi=EGi:

For CDS context, the ranking of the 9-mer of type i is:

R dð Þi = GDi=DGi:

The rankings provided probability thresholds (β values) using the
principle of large deviations, as previously described [22]. Briefly, in a
typical case, probability achieves its largest value around the mean.
Probability decays with a Gaussian tail within a square root distance
from themean, and finally decays exponentially further away from the
mean. When estimating probability of rare events, one resorts to large
deviations. Large deviations deal with events of exponentially small
probability, far away from the mean [45].

Density plots

The program scanned genomic DNA with a user defined window
(w) to calculate weighted sums. At each nucleotide position,
CDS Hits = ∑w

1 R dð Þi
� �

=w.
To calculate Reg_Signal Pred1 and Reg_Signal Pred2, we imposed

several constraints:

R pcð ÞiN2
R dð Þib5
R pcð Þi
� �

=R dð Þi
� �

N2

Based on the filtering criteria, at each nucleotide position:

Reg Signal Pred1 =∑w
1 R pcð Þi
� �

=w
Reg Signal Pred2 =∑w

1 R pcð Þi
� �

=R dð Þi
� �

=w:

Custom tracks and TFBSs

We converted the computational predictions to “bed” files for
display at the genome browser at UCSC. The home page of the
browser provides detailed instructions for creating bed files and
custom tracks. To create a listing of TFBSs, whenever possible, we
reduced redundancy by grouping the transcription factors accord-
ing to the structure of their DNA binding domains [16,46]. To
eliminate redundancy, we also identified the various names given
to transcription factors. To reduce the number of false positives,
from the listing we removed sites that occurred frequently in
genomic DNA. These included the site for GATA, CRX, and members
of the C/EBP family.

Test of null-hypothesis

In a genomic DNA with N nucleotide positions, we have a
population of h observed hits and N–h non-hits. If we randomly fill
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the HS segments of size R, with this population without replacement,
the probability of exactly k hits in the segments follow the well-
known hypergeometric distribution with the discrete probability
function:

Pr X = kð Þ =
h
k

� �
N−h
R−k

� �
N
R

� � :

The sample space for the probabilistic model ranges from max
[0,R−(N−h)] (onemust use some hits if there are not enough non-hits
in the population to fill the region) to min[R,h] (one cannot have more
hits than the size of the region nor can have more hits than the size of
the population). To determine R, we eliminated fromHS segments [30]
those that were redundant. The output produced a single non-
redundant union of the mapped HS segments.

To test the null hypothesis, we computed a rejection limit L (the
minimum number of hits in HS segments) that would disprove the
hypothesis at a selected significance, S. That is, L is the minimum over
K such that

∑
K

k = 0
Pr X = kð Þz1−S:

We estimated the p-values by computing an upper bound of the
sum over the upper tail of the hypergeometric distribution, as
previously described [47]:

Pr Xzobservedhitsjh;N;Rð Þ = ∑
R

k = observed hits
Pr X = kjh;N;Rð Þ

V
p

p + t

� �p + t 1−p
1−p−t

� �1−p−t
 !R

where p = h
N and t = k

R −p, with the condition that t≥0.
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