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The observed enhancement of pp̄-production near the threshold in radiative decays of J/ψ and e+e−-
annihilations can be explained with final state interactions among the produced N N̄ system, where
the enhancement is essentially determined by NN̄ elastic scattering amplitudes. We propose to use an
effective theory for interactions in an N N̄ system near its threshold. The effective theory is similar to
the well-known one for interactions in an N N system but with distinctions. It is interesting to note
that in the effective theory some corrections to scattering amplitudes at tree-level can systematically
be summed into a simple form. These corrections are from rescattering processes. With these corrected
amplitudes we are able to describe the enhancement near the threshold in radiative decays of J/ψ and
e+e−-annihilations, and the pp̄ elastic scattering near the threshold.

© 2010 Elsevier B.V. Open access under CC BY license. 
It has been observed the enhancement of the pp̄-production
near the threshold in various experiments. The enhancement has
been observed near the threshold of the pp̄ system in the decay
J/ψ → γ pp̄ by BES [1] and in the decay of B+ → K + pp̄ and
B̄0 → D0 pp̄ by Belle [2]. The enhancement also has appeared in
the process e+e− → pp̄ measured by BaBar [3]. The enhancement
of other baryonic system has been also seen [4,5]. In this work we
focus on the enhancement of pp̄ system.

Because BES was the first to publish the result about the en-
hancement with rather high statistical accuracy and precise infor-
mation about the spectrum, many explanations for the observed
enhancement at BES exist. A class of explanations is that the en-
hancement is interpreted as the existence of a baryonium bound
state [6] or a glueball below the threshold [7]. Another class of
explanations is to take the effect of final state interactions into
account. There are different ways to take final state interactions
into account. One can use a complex S-wave pp̄ scattering length
[8] or use a K -matrix formalism to include one pion exchange
[11]. A more realistic way is by using potential models of N N̄ in-
teractions [9,10]. The observed enhancement in e+e− → pp̄ has
also motivated theoretical studies [10–16]. It is interesting to note
that by taking final state interactions into account through poten-
tial models of N N̄ interactions, the enhancement in J/ψ → γ pp̄
and e+e− → pp̄ can be explained simultaneously [10,15]. How-
ever, these models are in general complicated and contain several
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or more parameters which need to be fixed. It should be noted that
with final state interactions the enhancement is predicted with the
energy dependence of pp̄-elastic scattering amplitudes, where one
employs Watson–Migdal approximation [17].

A rather simple approach with final state interactions for ex-
plaining the enhancement has been give in [18]. The pp̄-elastic
scattering amplitude there is determined through the rescattering
mechanism similar to Watson–Migdal approximation, where one
re-sums the multi-pion exchange or multi-rescattering of an N N̄
system. Because the coupling of π N N is well known, the am-
plitude is completely fixed in this approach. It has been shown
in [18] that the observed enhancement in the J/ψ → γ pp̄ and
e+e− → pp̄ can be well explained. But, with the fixed amplitude
one cannot explain the pp̄ elastic scattering near the threshold. In
this work we make an attempt in the framework of effective field
theories to give a unified explanation for the enhancement in the
J/ψ decay and e+e− annihilation, and for the pp̄ elastic scattering
near the threshold.

An effective theory of N N̄ interactions can be developed in
analogy to the effective theory of N N interactions. The effective
theory of N N interactions has been proposed in [19–21] and stud-
ied extensively in [20–22]. With the effective theory the experi-
mental data of N N scattering of low partial waves near the thresh-
old can be well described. In constructing such effective theories
one makes a power expansion in the momentum near the thresh-
old. The coefficients in the expansion characterize the properties
of the N N- or N N̄ system, like scattering length a0, interaction
range r0, etc.

There are distinct differences between the effective theory of
N N̄ interactions and that of N N interactions. As for an effective
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field theory, one does not only need to construct the effective La-
grangian which gives tree-level amplitudes directly, but also one
should be able to estimate relative importance of higher-order cor-
rections and to systematically calculate these corrections. In other
word, one needs a power counting for the estimation of loop
corrections. If the interaction of a system is characterized by a
momentum scale Λ and the quantities like a0, r0, . . . have the nat-
ural size, i.e., a0 ∼ Λ−1, a simple power counting like that for the
well-known chiral perturbation theory can be used. However, for
N N systems it is not the case. It is well known from experiment
that N N-systems have large scattering lengths. This fact makes
the simple power counting invalid. An important idea has been
suggested in [21], where one can use the power divergence sub-
traction scheme instead of the minimal subtraction scheme which
is commonly used, implemented to the effective theory. With the
power divergence subtraction scheme a power counting can be
established. This makes the effective theory well defined for N N
system with large scattering lengths. In the case of N N̄ systems,
the scattering lengths, according LEAR experiment [8] and model
results [9], are around 1 fm or smaller. They are much smaller than
those of N N systems. Therefore one can use the minimal subtrac-
tion scheme and hence the simple power counting for the effective
theory of N N̄ systems.

Another difference is that an N N̄ system can be annihilated
in to a multiple pion system and the pions can be real, while
an N N system cannot be annihilated. The annihilation of an N N̄
system into virtual- or real pions results in that the dispersive-
and absorptive part of the N N̄ scattering amplitudes are of the
same importance. In order to incorporate this fact some coupling
constants in the effective theory of an N N̄ system are complex
numbers. In the effective theory of an N N system the coupling
constants are real. In this work we will first discuss the effective
theory of an N N̄ system and the N N elastic scattering. Then we
study the rescattering mechanism for the enhancement in the de-
cay J/ψ → γ pp̄ and the annihilation e+e− → pp̄. We will show
that with our effective theory approach the enhancement in the
decay J/ψ → γ pp̄ and the annihilation e+e− → pp̄ and the pp̄
elastic scattering near the threshold can be well described.

We consider the N N̄ scattering near the threshold:

N(�p, s1) + N̄(−�p, s2) → N
(�k, s′

1

) + N̄
(−�k, s′

2

)
,

|�p| = p = β

√
m2 + p2, (1)

where �p and �k are three-momenta. The spins are denoted with
s’s. β is the velocity. Near the threshold, the momentum p or β

approaches to zero. We are interested in the momentum region
p � mπ . An effective Lagrangian can be obtained by an expansion
in p or β . For this it is natural to use nonrelativistic fields to de-
scribe the nucleon N . The nonrelativistic fields are given as

ψ =
(

ψp

ψn

)
, χ =

(
χp

χn

)
. (2)

The two-component field ψp(χ
†
p) annihilates a proton (an anti-

proton) and the field ψ
†
p(χp) creates a proton (an anti-proton).

We denote the Pauli matrix acting in the SU(2) isospin space as
τ i (i = 1,2,3). The π fields are given as π = τ iπ i with π3 = π0.
At leading order the interacting part can be written as:

δL = c0

4
ψ†χχ †ψ + c1

4
ψ†τ iχχ †τ iψ + d0

4
ψ†σ iχχ †σ iψ

+ d1

4
ψ†τ iσ jχχ †σ jτ iψ

+ g A
ψ† �σ · (�∂π)ψ + g A

χ † �σ · (�∂π)χ + O
(

p2), (3)

2Fπ 2Fπ
with g A ≈ 1.25 and Fπ ≈ 93 MeV. cI with I = 0,1 is the coupling
constant in the 1 S0 channel, while dI with I = 0,1 is the coupling
constant in the 3 S1 channel. As discussed before, these coupling
constants are in general complex because an N N̄ can annihilate
into π ’s. One should keep in mind that the complex coupling con-
stants here do not mean the violation of time-reversal symmetry.
The complex coupling constants can be understood as the follow-
ing: One can imagine that the effective theory is obtained from a
perturbative matching of a more fundamental theory. In the more
fundamental theory with the time-reversal symmetry amplitudes
at tree-level are real, but they receive imaginary parts beyond tree-
level because absorptive parts are nonzero at one- or more loop
level. The imaginary parts of the coupling constants are from these
absorptive parts in the matching.

To clearly discuss the mentioned simple power counting for the
above effective theory we first ignore the interactions of pion ex-
changes. Then in this case, the scattering amplitude at tree level
is expanded in p, the leading orders are determined by the con-
tact interactions given in Eq. (3) and are at O(p0) if we take c0,1
and d0,1 as constants. The tree-level contributions at higher orders
of p starting at O(p2) are given by operators with derivatives in
the effective theory. Therefore, at tree-level the amplitude is sim-
ply expanded in power of p and the power of p of each term
is determined by the corresponding contact terms in the effective
theory. However, this can be changed if we take loop-effects into
account, i.e., the effects of scale-dependence of coupling constants.
E.g., in the effective theory for an N N system of large scatter-
ing lengths the coupling constants corresponding to c0,1 and d0,1
should be taken as at order of p−1 after including loop effects
with power subtraction scheme, where one reasonably takes the
renormalization scale as μ ∼ p. In this way, a consistent power
counting is established for an N N system with large scattering
lengths [21].

As discuss before, it is expected that quantities characterizing
interactions of an N N̄ system have the nature size Λ. With this
expectation the coefficients c0,1 and d0,1 in the effective theory
scale like Λ−2 or (mΛ)−1 with m as the nucleon mass. They are
at order of O(p0) with the minimal subtraction scheme in dimen-
sional regularization as shown in [21]. The scale-dependence of
these coupling constants are suppressed by certain power of p.
The loop contributions formed only by the contact interactions can
be then estimated as the following: Each loop contributes a factor
(mp/4π). Hence, the leading contribution is at p0 and comes from
c0,1 and d0,1 at tree-level. The next to-leading order is at p1 and
comes from c0,1 and d0,1 at one-loop level. The contribution at p2

comes from c0,1 and d0,1 at two-loop level and from dimension-8
operators in δL at tree-level, etc. In the above we discuss the
simple power counting without interactions with pions. Since we
consider the momentum region of p � mπ , the interaction with π
is taken at the order of O(p0). In Eq. (3) the leading interactions
are given explicitly. At higher order of p operators with deriva-
tives and operators for emission of more than one pion will appear.
We notice that the power counting of loop-contributions through
exchange of pions is slightly different because some loop contribu-
tions can be more strongly suppressed than the estimated by the
simple power counting.

With the interactions given in the above and also for our pur-
pose, it is convenient to work with partial waves of the scatter-
ing. The scattering amplitude of Eq. (1), denoted as T I (�p, �k, s1, s2,

s′
1, s′

2) with the isospin I = 0,1, can be decomposed with CG coef-
ficients and harmonic oscillators into partial waves T[ j��′s,I](E):

T I
(�p, �k, s1, s2, s′

1, s′
2

)
=

∑
Y ∗

�� (�p/p)Y�′�′ (�k/k)(1/2, s1;1/2, s2|s, s3)
3 3
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(a)

(b)

Fig. 1. The loop diagrams with the vertex of c0. The black dots denote vertices of the contact term.
× (
1/2, s′

1;1/2, s′
2|s′, s′

3

)
(�, �3, s, s3| j, j3)

× (
�′, �′

3, s′, s′
3| j′, j′3

)
δ j j′δ j3 j′3δss′ T[ j��′s,I](E). (4)

In the above the repeated indexes are summed and E is the total
kinetic energy E = p2/m of the system. With the effective La-
grangian it is clear that the term with cI will only contribute to
T[0000,I](E) with I = 0,1, respectively.

With the effective theory it is straightforward to work out
the scattering amplitude and various partial waves at tree-level
to compare with experimental results of pp̄-scattering and en-
hancement near the threshold. In the comparison we perform a
combined fit to fit the cross-section of pp̄-scattering and the en-
hancement in J/ψ → γ p̄ and e+e− → pp̄, where the coupling
constants c0,1 and d0,1 are taken as free parameters. However, as
we will mention and show later, the theoretical results at tree-
level can only fit the experimental data in a small region with
E � 20 MeV. Although the χ2/d.o.f. of the fit is close to 1, but
the coupling constants can only be determined with the error from
40% to 100% or even more. In this work we will improve the situa-
tion by adding some corrections beyond tree-level. In the perturba-
tion expansion of the effective theory some corrections appearing
in n-loop level can be summed into a compact form. We will add
these corrections to our tree-level results at tree-level and show
that the improvement is significant. In the below we will study
these corrections. This also illustrates some aspects of the effective
theory.

We focus at moment on the contribution only from c0 by ig-
noring the contribution from π -exchange. It is straightforward to
obtain the contributions from tree-, one-loop, etc. as given from
the diagrams in Fig. 1a. The tree-level amplitude is just 4πc0. The
one-loop contribution is proportional to the loop integral regular-
ized in d-dimension [21]:

I0 = iμ4−d
∫

ddq

(2π)d

[
q0 − |�q|2

2m
+ iε

]−1[
E − q0 − |�q|2

2m
+ iε

]−1

= −m(−mE − iε)
d−3

2 Γ

(
3 − d

2

)
μ4−d

(4π)(d−1)/2
. (5)

An interesting observation can be made for the above result. The
integral is finite with d = 4. It has a pole at d = 3 corresponding to
a power divergence of the integral. The power divergence subtrac-
tion scheme is to subtract from the above contribution the pole
contribution at d = 3. The subtraction introduces the renormal-
ization scale μ, hence a μ-dependence of the coupling constant.
With this scheme one can show that for N N-interactions with
large scattering lengths a consistent power counting can be estab-
lished [21] by setting μ ∼ p ∼ mπ . As discussed before, for N N̄-
interactions scattering lengths are much smaller than those from
N N-interactions. Therefore we can employ the minimal subtraction
scheme in which one subtracts the pole terms at d = 4. Because
the above one-loop integral is finite at d = 4, no subtraction is
needed. With d = 4 we have 4π I0 = −imp = −im2β . Inspecting
the contribution from n-loop, one will find that the contribution is
proportional to In

0. In fact the sum of n-loop contributions forms a
sum of a geometric series. The sum can easily be performed. We
have then the exact the amplitude without π -exchange as:

T[0000,0](E)|c0 = 4πc0

1 − i m2β
4π c0

. (6)

Expanding the above expression in c0 one can identify that the
term with c1+n

0 comes from the n-loop diagram. Through the ex-
pansion one also sees that each loop brings a suppression factor p
or β as indicated by the discussed simple power counting. The
tree-level amplitudes obtained from the effective Lagrangian in
Eq. (3) are at order of O(p0). The corrections to them start at or-
der of O(p). By considering corrections from higher orders in p,
the coupling constants in our effective theory will be generally de-
pend on the renormalization scale μ. With the power counting the
μ-dependence is suppressed at least by O(p).

Observing the above result one can realize that the loops in
Fig. 1a calculated with the minimal subtraction scheme are the
same in Fig. 1b calculated only by taking the absorptive part of the
loop integral I0, i.e., calculated by putting the N N̄ in the loop on-
shell indicated by the cuts in Fig. 1b. Now we consider to include
the contributions from π -exchanges. The tree-level contribution
can be represented by the first diagram of Fig. 2a where the bub-
ble contains the vertex of c0 and one-π -exchange as indicated in
Fig. 2b. The contribution of Fig. 2b is straightforward to obtain:

T (0)
[0000,0](E) = 4π

[
c0 − 3

2
g2

0(2 − yL y)

]
, (7)

with the notations:

g2
0 =

(
g A

2Fπ

)2

, y = m2
π

2p2
, L y = ln

(
1 + 2

y

)
. (8)

It is easy to find that the sum of bubble diagrams with cuts in
Fig. 2a can be performed. It is a geometric series. We have then
the summed amplitude:

T[0000,0](E) = T (0)
[0000,0](E)

[
1 − i

m2β

(4π)2
T (0)

[0000,0](E)

]−1

+ · · · , (9)

where · · · stand for other corrections, like the dispersive part of
one-loop contributions formed with π -exchanges. In the work we
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(a)

(b)

Fig. 2. (a) represents the sum of rescattering amplitudes, where the nucleon- and antinucleon lines going through the cuts are on-shell. The narrow and long bubble represents
the tree-level amplitude with the contact interactions and pion-exchange as indicated by (b).
will neglect these corrections for our predictions. These corrections
can be systematically studied. We will come back to the dispersive
part in a future work, where a complete one-loop calculation will
be performed. Physically the interpretation of Fig. 2a and the am-
plitude in Eq. (9) is the following: The N N̄ undergoes a multiple
scattering process N N̄ → N N̄ → ·· · → N N̄ . Each scattering is due
to the vertex with c0 or exchange of one pion. Each pair of N N̄ is
on-shell in Fig. 2. We will call amplitudes for such a multiple scat-
tering process as rescattering amplitudes. Similarly one can work
out the tree-level and rescattering amplitude with I = 1:

T (0)
[0000,1](E) = 4π

[
c1 + 1

2
g2

0(2 − yL y)

]
,

T[0000,1](E) = T (0)
[0000,1](E)

[
1 − i

m2β

(4π)2
T (0)

[0000,1](E)

]−1

+ · · · . (10)

Now we turn to the amplitudes with j = 1 and s = 1. In this
case it is little complicated because the π N N-interaction mixes
amplitudes with difference �. The difference caused by exchang-
ing one π can only be ±2. The summed or rescattering amplitude
has to be expressed in a matrix form. We define the following ma-
trix amplitude:

M[I](E) =
( T[1001,I](E), T[1201,I](E)

T[1021,I](E), T[1221,I](E)

)
. (11)

The tree-level results for M[0](E) reads:

M(0)
[0] (E)

= π

(
4d0 + 2g2

0(2 − yL y),
√

2g2
0(2 − 6y + (2y + 3y2)L y)√

2g2
0(2 − 6y + (2y + 3y2)L y), g2

0[2 + 6y − (4y + 3y2)L y]

)
,

(12)

for I = 1 the matrix M(0)
[1] (E) is obtained by replacing d0 with d1

and g2
0 with −g2

0/3. The summed or rescattering amplitude matrix
from Fig. 2 can be found as:

M[I](E) = M(0)
[I] (E)

[
I − i

m2β

2
M(0)

[I] (E)

]−1

. (13)

(4π)
(a)

(b)

Fig. 3. The diagrammatic explanation of our approach. The dash line in (a) is the
cut.

It should be noted that the contact terms in the Lagrangian are in-
volved only in the above discussed amplitudes. Later we will use
these amplitudes and those of other partial waves at tree-level to
compare with experimental results of the cross section of pp̄ scat-
tering near the threshold.

Now we turn to the enhancement observed in J/ψ → γ pp̄
and e+e− → pp̄. In [18] we assumed that in these processes an
N N̄ system is produced first, then the N N̄ system undergoes a
scattering before observed. This can be explained with Fig. 3. As
illustrated in Fig. 3, the production of a pp̄ system can be thought
that at first step an nn̄ system or a pp̄ system is produced and
then the N N̄ system through a rescattering is converted into the
observed pp̄ system. We assume that the production of an N N̄
system is a short distance process, i.e., the energy scale character-
izing the production is much large than mπ and the momentum
near the threshold. Hence we can expand the vertex for the pro-
duction in Fig. 3a in the momentum p or β . At the leading order
we can approximate the black vertex for the production in Fig. 1a
with constant form factors. We denote the form factors as A pp̄,nn̄ ,
respectively. At the leading order the N N̄ – hence the final pp̄ sys-
tem can only be in the 1 S0 state. Then the decay amplitude can be
written as:
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Fig. 4. The fitting results for the enhancement observed in J/ψ → γ pp̄ observed by BES (left plot) and in e+e− → pp̄ by BaBar (right plot). W is the total energy of the pp̄
system.
T J/ψ→γ pp̄

≈ εμνσρ Pμ
J/ψkν

γ εσ
J/ψε

ρ
γ

{ A pp̄ + Ann̄

2

[
1 + i

m2β

(4π)2
T[0000,0](E)

]

+ A pp̄ − Ann̄

2

[
1 + i

m2β

(4π)2
T[0000,1](E)

]}
+ · · · . (14)

The · · · stand for those partial wave amplitudes with � � 1 and
the corrections proportional to β . With the approximation of the
rescattering as discussed before, the pp̄ amplitudes can be ob-
tained from Eqs. (9), (10). We have then for the decay amplitude
near the threshold as

T J/ψ→γ pp̄ ≈ εμνσρ Pμ
J/ψkν

γ εσ
J/ψε

ρ
γ

{ A pp̄ + Ann̄

2

×
[

1 − i
m2β

(4π)2
T (0)

[0000,0](E)

]−1

+ A pp̄ − Ann̄

2

[
1 − i

m2β

(4π)2
T (0)

[0000,1](E)

]−1}
. (15)

Setting c0,1 = 0 we recover our early results in [18] where in the
corresponding amplitude the factor i should be replaced with −i
because the absorptive part has been identified with a wrong sign.
The physical results in [18] will be not changed with this replace-
ment. In our approach the intermediate state can only be N N̄
systems according to our effective theory. It is possible to add
contributions from mesons as intermediate states in some phe-
nomenological models as shown in [23].

For the enhancement observed at BaBar the form factors of pro-
ton are involved. These form factors are defined as:

〈p(p1)p̄(p2)| Jμ|0〉
= ū(p1)

[
γ μF1

(
q2) + i

σμα

2mp
qα F2

(
q2)]v(p2). (16)

It should be noted that near the threshold only the combination of
the two form factors is involved. Near the threshold we have:

〈p(p1)p̄(p2)| J|0〉
= −2mp

(
F1

(
q2) + F2

(
q2))ξ †ση + O

(
β2). (17)

Similarly, we introduce the mechanism as in Fig. 3. We characterize
the vertex of the N N̄ production at the first step with constant
form factors, denoted as G̃(p)
M and G̃(n)

M . Then the form factor with
our approach is given as:

F1
(
q2) + F2

(
q2) = G̃(p)

M + G̃(n)
M

2
A11(0)

+ G̃(p)
M − G̃(n)

M

2
A11(1) (18)

with A11(I) as one matrix element of the matrix for the summed
amplitudes as given in Eq. (13):

A(I) =
[

I − i
m2β

(4π)2
M(0)

[I] (E)

]−1

. (19)

We will use the above formula for F1(q2) + F2(q2) to describe
BaBar results.

We will use our theoretical results to perform a fit by com-
bining the BES data, BaBar data in [3] and the data of the cross
section of pp̄ elastic scattering in [24]. For the BES data we use
the measured results with BES3 experiment [25]. In the fit we are
able to determine the coupling constants in the effective theory,
i.e., c0,1 and d0,1. These constants are complex as discussed be-
fore. We make two fits with different theoretical results in our
approach. One fit is done with tree-level results, another is per-
formed with N N̄ scattering amplitudes in which part of partial
wave amplitudes includes summed high-order corrections as indi-
cated in Eqs. (9)–(13) and in Eqs. (15), (18). The tree-level results
for pp̄ elastic scattering can be obtained from the effective theory
in Eq. (3). In the fits we start to gradually add more data points
to those nearest to the threshold until the χ2/d.o.f. larger than 1.
We do not take these data points below the nn̄-threshold into ac-
count because we assume the isospin symmetry. Our fitting results
are shown in Fig. 4 for BES and BaBar and in Fig. 5 for the cross
section.

For the fit with tree-level results we are only able to describe
the experimental data in the region with E < ∼20 MeV. This can
be seen from Figs. 4 and 5. Although the χ2/d.o.f. of the fit for
experimental data in this region is around 1, but the coupling
constants are determined with errors from 40% to 100% or even
more. With the results containing the summed or rescattering par-
tial waves the regions of data which can be fitted become larger
as shown in Figs. 4 and 5. For BES data and BaBar data the region
is with E � 150 MeV. For the cross section of the pp̄ elastic scat-
tering the region is with E � 70 MeV. The results of the fit for the
coupling constants in unit of GeV−2 are:
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Fig. 5. The fitting result for the cross-section of the elastic pp̄-scattering near the threshold.
c0 = 123(15) − 22(11)i, c1 = −177(55) − 57(27)i,

d0 = 32(31) + 17(60)i, d1 = 73(28) − 13(19)i. (20)

The other constants appearing in J/ψ → γ pp̄ and e+e− → pp̄ and
χ2/d.o.f. from the fit are:

A pp̄ + Ann̄ = 0.23(37), A pp̄ − Ann̄ = 2.22(72),

G̃(p)
M + G̃(n)

M = 1.18(47), G̃(p)
M − G̃(n)

M = −0.11(20),

χ2/d.o.f. = 50/63. (21)

In the above the coefficients A pp̄,nn̄ are arbitrarily normalized.
From the fitting results the coupling d0 is not well determined.
From Fig. 5 one can also see that without these contact terms in
the effective theory the pp̄ elastic scattering cannot be described
with pion exchanges. This is also true if we include rescatter-
ing effects in S-waves. This is expected as discussed at beginning
because without these contact terms in our effective theory the
effects of an N N̄ annihilation into virtual- and real pions are not
included. These effects are important for N N̄ scattering and should
be not neglected. In our effective theory, the annihilation near
threshold is described with these contact terms.

From Fig. 5 we can see that in our approach for the pp̄ elastic
scattering near the threshold the S-wave amplitudes are dominant.
We can determine the scattering lengths of S-waves. In our nota-
tion the phase-shift and scattering length of a partial wave is given
as:

exp
(
2iδ[ j��′s,I](E)

) − 1 = i
mp

8π2
T[ j��′s,I](E),

p cot
(
δ[ j��′s,I](E)

) = − 1

a[ j��′s,I]
+ O

(
p2). (22)

From our fitting results we have the S-wave scattering lengths in
unit of fm

a[0000,0] = −1.80(19) + 0.32(17)i,

a[0000,1] = 2.61(81) + 0.84(41)i,

a[1001,0] = −0.48(46) − 0.25(89)i,

a[1001,1] = −1.07(41) + 0.19(29)i. (23)

These results are comparable with LEAR experiment [8] and model
results [9]. The scattering lengths are determined by the coupling
constants in Eqs. (3), (9). We notice here that our numerical results
of c0,1 in Eq. (20) are roughly twice larger than the corresponding
coupling constants in the effective theory of an N N system [21].
But the determined scattering lengths here are much smaller than
the corresponding scattering lengths of the N N systems, because
the relation between scattering lengths and coupling constants is
different in the two different effective theories.

Before summarizing our study we briefly discuss our predic-
tion relevant for the enhancement in J/ψ → γ pp̄. The measured
spectrum can be fitted with the decay amplitude as an S-wave
Breit–Wigner resonance form. The fitting done by BES gives the
resonance mass around 1861 MeV and the width Γ < 38 MeV.
The mass is near and below the threshold. We have observed that
our formula in Eq. (15) can re-produce the shape of the S-wave
Breit–Wigner resonance form above the threshold only by tuning
the parameters A pp̄,nn̄ . If there is a resonance or structure below
and near the threshold, one should also have roughly the same
shape of the S-wave Breit–Wigner resonance below the threshold.
But, our amplitude in Eq. (15) below the threshold through ana-
lytical continuation has a cut near the threshold because of the
L y-function in Eq. (8) appearing in the amplitude. Therefore, we
cannot conclude from our result that there exists a resonance or
structure below the threshold, although our result agrees with ex-
perimental data above the threshold.

To summarize: We have proposed an effective theory to study
N N̄ scattering near the threshold. Because scattering lengths of N N̄
system are rather small, we have implemented the standard mini-
mal subtraction scheme to the effective theory to establish a power
counting. The power counting is used to determine the relative
importance of higher-order corrections. We have found that cer-
tain higher-order corrections represented as multiple rescattering
can be simply summed. Using these rescattering amplitudes and
assuming that the enhancement in J/ψ → γ pp̄ and e+e− → pp̄
near the threshold of the pp̄ system is due to final state inter-
actions, we can simultaneously explain the experimental data of
the enhancement and of the cross section of pp̄ elastic scattering
near the threshold. The S-wave scattering lengths are determined
which are comparable with existing results. Given the fact of the
successful description of experimental data, the proposed effective
theory needs to be studied in more detail. In the future we will
study higher-order corrections from loops formed through pion ex-
changes and the renormalization group of coupling constants in
the effective theory. In this Letter we have ignored the one-loop
corrections to dispersive parts of scattering amplitudes, especially,
the one-loop dispersive parts formed through pion exchanges. It
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has been found in N N-scattering that these parts can receive large
corrections in [22]. It will be interesting to see if this also happens
in N N̄ scattering. This question can only be answered after our un-
dergoing study of the complete one-loop correction has been done.
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