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Abstract

D-branes have a world-volume U(1) gauge field A whose field strength F = dA gives rise to a Born–
Infeld term in the D-brane action. Supersymmetry and kappa symmetry transformations of A are tradition-
ally inferred by the requirement that the Born–Infeld term is consistent with both supersymmetry and kappa 
symmetry of the D-brane action. In this paper, we show that integrability of the assigned supersymmetry 
transformations leads to an extension of the standard supersymmetry algebra that includes a fermionic cen-
tral charge. We construct a superspace one-form on an enlarged superspace related by a coset construction 
to this centrally extended algebra whose supersymmetry and kappa symmetry transformations are derived, 
rather than inferred. It is shown that under pullback, these transformations are of the form expected for the 
D-brane U(1) gauge field. We relate these results to manifestly supersymmetric approaches to construction 
of D-brane actions.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the Green–Schwarz formulation [1–4], p-branes are embeddings of a (p + 1)-dimensional 
bosonic world-volume into a superspace,

σ i → (
xa(σ ), θα(σ )

)
, (1.1)

where σ i are coordinates on the world-volume, and (xa, θα) are superspace coordinates. Here 
we consider flat D-dimensional N = 1 superspace. The supersymmetry algebra
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{Qα,Qβ} = −2 (C�a)αβ Pa (1.2)

is realised via the transformations of superspace coordinates1

δε xa = i (ε̄�aθ) (1.3)

δε θα = εα. (1.4)

The one-forms

πa = dxa − i(θ̄�adθ), dθα (1.5)

are invariant under supersymmetry transformations. p-brane actions exist only in spacetime di-
mensions for which the supersymmetry invariant (p + 2) form

h(p+2) = πa1 ∧ · · · ∧ πap (dθ̄ �a1 · · ·�ap dθ) (1.6)

is closed, requiring the gamma matrix identities

0 = (C�a)α(β (C�a)γ δ), p = 1; (1.7)

0 = (C�a1)(αβ (C�a1···ap )γ δ), p > 1. (1.8)

Here, �a1···ap is the anti-symmetrized product of gamma matrices, and the round brackets on 
spinor indices denote symmetrisation. The resulting restrictions on p and D give rise to the 
“brane-scan” [5]. Closure of h(p+2) implies

h(p+2) = d b(p+1). (1.9)

The p-brane action is

S = S0 + SWZ, (1.10)

where the “kinetic” term

S0 =
∫

d(p+1)σ
√

det Gij (1.11)

is constructed from the pulled back world-volume metric

Gij = πi
aηabπj

b, (1.12)

with πi
a = ∂xa

∂σ i − i(θ̄�a ∂θ
∂σ i ). The Wess–Zumino term is given by the integral over the (p +

1)-dimensional world-volume of the pullback of the superspace form b(p+1),

SWZ =
∫

σ ∗b(p+1). (1.13)

The fact that b(p+1) is not invariant under supersymmetry transformations, but varies by a total 
derivative, leads to a central extension to the supersymmetry algebra of the form [6]

{Qα,Qβ} = −2 (C�a)αβ Pa + (C�a1···ap )αβ Za1···ap , (1.14)

where Za1···ap are bosonic central charges.

1 Unless otherwise stated, spinors are Majorana, and ε̄ = εT C, where C is the charge conjugation matrix. Also, the 
spacetime dimension must be such that (C�a)αβ is symmetric.



I.N. McArthur / Nuclear Physics B 905 (2016) 231–241 233
It is possible to construct Wess–Zumino Lagrangians that are manifestly invariant under su-
persymmetry transformations as forms on enlarged superspaces related by the standard coset 
construction of superspaces to centrally extended supersymmetry algebras [7–10]. We will come 
back to this point later.

The p-brane action admits a local fermionic symmetry called κ-symmetry. For the action con-
structed in standard superspace (as opposed to the enlarged superspaces associated with central 
extensions of the supersymmetry algebra) with the Wess–Zumino term (1.13), the κ-symmetry 
transformations take the form

δκθα = κα (1.15)

δκxa = −i(κ̄�aθ), (1.16)

where κα involves a projection operator onto half of the fermionic degrees of freedom. This 
allows these degrees of freedom to be gauged away, achieving a matching of numbers of physical 
bosonic and fermionic degrees of freedom on the world-volume, as required for world-volume 
supersymmetry [11–13]. In terms of the coset construction of standard superspace, κ-symmetry 
has a natural interpretation as a right group action, thus being equivalent to an enlargement of the 
isotropy group [14,15].

As originally formulated, D-branes2 include a world-volume U(1) gauge field A whose field 
strength F = dA gives rise to a Born–Infeld term in the action [18–20,17]; specifically,

S =
∫

d(p+1)σ

√
det (Gij +Fij ) + SWZ. (1.17)

As with p-branes, Gij is the pullback to the world-volume of the spacetime metric. F is the 
world-volume two-form F = F −σ ∗b(2), where db(2) = h(3) is a supersymmetry invariant closed 
superspace three-form given by (1.6) with p = 1. The Wess–Zumino term is again of the form

SWZ =
∫

σ ∗b(p+1), (1.18)

with h(p+2) = db(p+1) also supersymmetry invariant and closed as in (1.6). Explicit details of 
the construction depend on the nature of the superspace into which the D-brane is embedded; 
however, a worldvolume U(1) gauge field A is required in all cases. D-branes also possess a 
κ-symmetry, which again allows half of the fermionic degrees of freedom to be gauged away.

In this formulation of D-brane actions, the supersymmetry transformations and κ-symmetry 
transformations of the world-volume one-form A are inferred on the basis of the requirement that 
F = F −σ ∗b(2) is invariant under supersymmetry transformations and that F has a κ-symmetry 
transformation of the form

δκF ∼ (κ̄�adθ) ∧ πa (1.19)

(appropriately pulled back). The former ensures the D-brane action is invariant under spacetime 
supersymmetry transformations, and the latter is needed to allow the action including the Born–
Infeld term to be made κ-symmetric in order to ensure equal numbers of world-volume bosonic 
and fermionic degrees of freedom – as required for world-volume supersymmetry. Inclusion of 
the bosonic degrees of freedom associated with the world-volume gauge field A gives rise to a 

2 The “D” in this context refers to “Dirichlet,” a choice of boundary conditions for open superstrings, and has nothing 
to do with the spacetime dimension.
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revised “brane scan” for D-branes [16]. It is also required that supersymmetry transformations 
and κ-symmetry transformations commute [17]. The precise details of the construction depend 
on the nature of the superspace into which the D-brane is embedded – see [18–20,17] for the 
case of 10-dimensional flat superspace. However, these constructions require an assignment of 
spacetime supersymmetry and κ-symmetry transformations to the world-volume gauge field A
rather than a derivation of these transformations. Assigning spacetime transformations to a purely 
world-volume degree of freedom seems somewhat unnatural.

Subsequent to the original formulation of D-brane actions, an alternative approach based on 
enlarged superspaces associated with central extensions of the standard supersymmetry algebra 
was developed [21–28]. These constructions relied only on pull-backs of superspace geometry, 
and in particular did not require the existence of a purely world-volume gauge field A.

The outcomes of this paper are two-fold. Starting with the original formulation of D-brane 
actions involving a world-volume gauge field, we provide a natural motivation for a construction 
of the Born–Infeld term based on an enlarged superspace. Specifically, we show that integrability 
of transformations conventionally assigned to the world-volume gauge field to ensure spacetime 
supersymmetry leads to the requirement for a realisation of a fermionic central extension of the 
supersymmetry algebra [29] first introduced by Green in the context of superstring theory. We 
are led to introduce an enlarged superspace with coordinates (xa, θα, χα) related by a coset con-
struction to the Green algebra. In the case of a flat supersymmetric N = 1 superspace for which 
the gamma matrix identity (1.7) is true, we show this allows construction of a superspace one-
form which upon pullback yields a world-volume one-form with the spacetime supersymmetry 
transformations imposed somewhat arbitrarily in the original construction of D-brane actions. 
We relate these results to later approaches to constructing D-brane actions which take as their 
starting point an enlarged superspace as a means to ensure manifest spacetime supersymmetry of 
Born–Infeld terms.

We also provide an explicit construction of kappa symmetry transformations of the world-
volume gauge field (considered as a pullback of a one-form defined in an enlarged superspace) 
in terms of a right group action, extending the interpretation provided in [14,15] for κ-symmetry 
transformations for p-brane actions. Again, we can relate this to previous work on manifestly 
supersymmetry invariant formulations of D-brane Lagrangians based on enlarged superspace.

2. Integrability of the supersymmetry transformation of the world-volume gauge field

We begin with the supersymmetry invariant and closed three-form

h(3) = πa ∧ (dθ̄�adθ) (2.1)

in flat N = 1 superspace – closure relies on the gamma matrix identity (1.7). In fact, using this 
identity,

h(3) = dxa ∧ (dθ̄�adθ). (2.2)

Since h(3) is closed and invariant under supersymmetry transformations, locally

h(3) = db(2) (2.3)

with

δεb
(2) = da(1)(ε), (2.4)
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where δε denotes a supersymmetry transformation with parameter εα . We introduce a one-form 
A whose supersymmetry transformation is determined by the requirement that F = dA − b(2) is 
invariant. Then

δεA = a(1)(ε). (2.5)

In the case h(3) = dxa ∧ (dθ̄�adθ), one can see by inspection that a candidate for b(2) is

b(2) = α xa(dθ̄�adθ) − (1 − α)dxa ∧ (θ̄�adθ), (2.6)

where α is a real parameter. Varying α changes b(2) by an exterior derivative, so it is an “inte-
gration constant” in solving h(3) = db(2). Conventionally α is set to zero in the literature. It is 
straightforward to show that δεb

(2) = da(1)(ε) with

a(1)(ε) = (1 −α)β dxa(ε̄�aθ)− i

3
(1 − 3α) (ε̄�aθ)(θ̄�adθ)− (1 −α)(1 −β)xa(ε̄�adθ),

(2.7)

with β again an “integration constant” appearing in the cohomology (conventionally set to 1); 
the only nontrivial step is use of the gamma matrix identity (1.7) to show

(ε̄�aθ)(dθ̄�adθ) = 2(ε̄�adθ)(θ̄�adθ). (2.8)

So we arrive at the proposed supersymmetry transformation for the one-form A,

δεA = (1 − α)β dxa(ε̄�aθ) − i

3
(1 − 3α) (ε̄�aθ)(θ̄�adθ) − (1 − α)(1 − β)xa(ε̄�adθ).

(2.9)

We can check the integrability of this transformation by computing the commutator of two 
supersymmetry transformations:

(δε2δε1 − δε1δε2)A = 2(ε̄1�aε2)
(
(1 − α)β dxa + iα (θ̄�adθ)

)
. (2.10)

The only nontrivial step again involves the identity (1.7) to show

(ε̄1�
aθ)(ε̄2�adθ) − (ε̄2�

aθ)(ε̄1�adθ) = (ε̄1�
aε2)(θ̄�adθ). (2.11)

If we use δε = εαQα , and require consistency of (2.10) with the anticommutator {Qα, Qβ} =
−2(C�a)αβPa , then we infer that as an operator relation in “(x, θ, A) space”,3

PaA = −(1 − α)βdxa − iα(θ̄�adθ). (2.12)

We can then compute that

[Pa, δε]A = i(ε̄�adθ). (2.13)

Note that the result turns out to be independent of the choices of the “integration constants” α and 
β introduced in solving the cohomology equations, showing the result is inherent to the initial 
cohomological problem. With δε = εαQα , this means

[Pa,Qα]A = i(C�adθ)α, (2.14)

3 Compatibility of (δε δε − δε δε )xa = 2i(ε̄1�aε2) with the algebra requires Paxb = −iδa
b .
2 1 1 2
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which is not consistent with the standard supersymmetry algebra which has [Pa, Qa] = 0. In-
stead, we have a realisation of a central extension of the standard supersymmetry algebra. In 
particular, since [Pa, Qa] is fermionic, we require a fermionic central charge.4

It is interesting to note that the expression for δεb
(2) computed from (2.6) using the trans-

formation rules (1.4) is integrable, in that it yields a representation of the standard supersym-
metry algebra without central extension. The central extension enters only when we try to solve 
δεb

(2) = d δεA, with b(2) determined by 0 = δεh
(3) = d δεb

(2).

3. The “Green” algebra and coset construction

A central extension of the supersymmetry algebra in the context of superstring theory with a 
fermionic central charge Zα was considered by Green [29]:

{Qα,Qβ} = −2(C�a)αβPa (3.1)

[Pa,Qα] = i(C�a)αβ Zβ. (3.2)

The Jacobi identity [Q(α, {Qβ, Qγ)}] = 0 (with round brackets denoting symmetrisation of 
spinor indices) is satisfied as a result of the gamma matrix identity (1.7). In order for the re-
sult (2.14) to reflect this centrally extended algebra, we require that

ZαA = dθα. (3.3)

We will assume that the superspace coordinates xa and θα are inert under the charge Zα .
There is a natural way to achieve this result. If χα is a Goldstone boson for breaking of the 

symmetry generated by Zα , then

Zαχβ = δα
β (3.4)

(meaning that χα shifts by a constant spinor under transformations generated by Zα). In this 
case,

A = (χ̄dθ) + · · · (3.5)

would fulfil the condition (3.3) (the dots represent potential contributions to the one-form involv-
ing x, θ, dx and dθ , which are assumed inert under the action of Zα).

This suggests seeking a nonlinear realisation of the Green algebra using standard techniques 
based on a coset construction. This corresponding enlarged superspace has been considered pre-
viously [7,8]. We introduce the group element

g(x, θ,χ) = ei(xaPa+θaQα−χαZα). (3.6)

A supersymmetry transformation with parameter ε is then achieved by left action of eiεαQα on 
g(x, θ, χ). Using the Baker–Campbell–Hausdorff formula, we find that in infinitesimal form,

δεθ
α = εα (3.7)

δεx
a = i(ε̄�aθ) (3.8)

δεχα = −1

2
xa(ε̄�a)α + i

6
(ε̄�aθ)(θ̄�a)α. (3.9)

4 In inferring the form of (2.12) of PaA, we assumed no central extension to {Qα, Qβ } = −2(C�a)αβPa . By in-
troducing a new bosonic generator P ′

a (under which the superspace coordinates are inert) in the form {Qα, Qβ } =
−2(C�a)αβ(Pa + P ′

a), it is possible to ensure [Pa, Qα]A = 0. However, [P ′
a, Qα]A = i(C�adθ)α , and a fermionic 

central charge still emerges in the algebra.
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It is then straightforward to check that if we set

A = χαdθα − i(1 − α)β xadxa + (α − 1

2
) xa(θ̄�adθ), (3.10)

we reproduce the supersymmetry transformation law (2.9), which, we recall, was initially in-
ferred based on the requirement that F = dA − b(2) be invariant under supersymmetry transfor-
mations.

The supersymmetry transformations (3.9) can be reproduced by the action of a differential 
operator εαQα on an enlarged superspace with coordinates (xa, θα, χα), with

Qα = ∂

∂θα
+ i(C�aθ)α

∂

∂xa
− 1

2
xa(C�a)αβ

∂

∂χβ

+ i

6
(C�aθ)α(θ̄�a)β

∂

∂χβ

. (3.11)

Then the anticommutator of two supersymmetry generators takes the form (using the gamma 
matrix identity (1.7))

{Qα,Qβ} = −2(C�a)αβPa, (3.12)

with

Pa = −i
∂

∂xa
− i

2
(θ̄�a)α

∂

∂χα

. (3.13)

The reason for the presence of a χ derivative in the spacetime translation operator is that χα

transforms nontrivially due to the central extension in the supersymmetry algebra. If we consider

eiaaPa g(x, θ,χ), (3.14)

we find spacetime transformations

δax
a = aa (3.15)

δaθ
α = 0 (3.16)

δaχα = 1

2
aa(θ̄�a)α, (3.17)

which are reproduced by the action of the differential operator δa = iaaPa on the enlarged 
(xa, θα, χα) superspace. Indeed, if we use expression (3.10) for the one-form A, we find

PaA = −(1 − α)βdxa − iα(θ̄�adθ), (3.18)

which reproduces the earlier result (2.12).
Finally, using the differential operators Pa and Qα above, we compute that

[Pa,Qα] = i(C�a)αβ

∂

∂χβ

, (3.19)

which is consistent with the Green algebra (3.2) providing the central charge Zα is represented 
by the action of the differential operator

Zα = ∂

∂χα

(3.20)

on the enlarged superspace. This is consistent with the earlier speculation (3.4).
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4. Deriving the κ-symmetry transformation of A

On the basis of the construction (3.10) for the one-form A, we can go further – we can deter-
mine the κ-symmetry transformation of A from first principles. The κ-symmetry transformations 
of xa and θα look like supersymmetry transformations, except that the sign of the transforma-
tion of xa is reversed [30]. In [14], it was shown that this has a natural interpretation in terms 
of the right action of the super-Poincaré group on superspace coset representatives. In particu-
lar, since supersymmetry transformations relate to the left action of the group, and left and right 
actions commute, this automatically ensures supersymmetry transformations and κ-symmetry 
transformations commute. Applying the same philosophy here, we postulate that the κ-symmetry 
transformations are generated by a right action

g(x, θ,χ) → g(x, θ,χ) eiκαQα . (4.1)

Using the Baker–Campbell–Hausdorff formula, this yields the following infinitesimal κ-sym-
metry transformations:

δκθα = κα (4.2)

δκxa = −i (κ̄�aθ) (4.3)

δκχα = 1

2
xa(κ̄�a)α + i

6
(κ̄�aθ)(θ̄�a)α. (4.4)

Applying these to the one-form A as defined in (3.10), we find

δκA = (α −β +αβ)xa(κ̄�adθ)− (1 −α)β dxa(κ̄�aθ)+ i(
2

3
−α)(κ̄�aθ)(θ̄�adθ). (4.5)

From this it follows that for F = dA,

δκF = −α(κ̄�adθ) ∧ dxa + i(2 − 3α) (κ̄�adθ) ∧ (θ̄�adθ), (4.6)

involving use of the identity (2.8). On the other hand, applying the κ-symmetry transformations 
to (2.6), we find

δκb(2) = (1 − α)(κ̄�adθ) ∧ dxa + i(1 − 3α)(κ̄�adθ) ∧ (θ̄�adθ). (4.7)

Combining these results, we find that for F = F − b(2),

δκF = −(κ̄�adθ) ∧ (dxa − i(θ̄�adθ)) = −(κ̄�adθ) ∧ πa, (4.8)

exactly as required in (1.19) in order to engineer κ-symmetry of the D-brane action.

5. Relationship to manifestly spacetime supersymmetric constructions

In this section, we show how the results obtained above based on the original formulation 
of D-brane actions [18–20,17] are related to a subsequent approaches based on embedding of 
the world-volume in an enlarged superspace which does not require the introduction of an ex-
plicit world-volume gauge degree of freedom and in which spacetime supersymmetry is manifest 
[21–27,15,28]. The latter approaches extended earlier work on manifestly supersymmetric Wess–
Zumino terms for p-branes [7–10].

Using the coset parameterisation (3.6) of the enlarged superspace related to the Green algebra,

g(x, θ,χ) = ei(xaPa+θaQα−χαZα), (5.1)



I.N. McArthur / Nuclear Physics B 905 (2016) 231–241 239
the corresponding Maurer–Cartan form is

g(x, θ,χ)−1dg(x, θ,χ) = i
(
EaPa + EαQα + ẼαZα

)
, (5.2)

with

Ea = dxa − i(θ̄�adθ) (5.3)

Eα = dθα (5.4)

Ẽα = dχα − 1

2
xa(dθ̄�a)α + 1

2
dxa(θ̄�a)α − i

3
(θ̄�adθ)(θ̄�a)α. (5.5)

It is easy to show that the Born–Infeld contribution to the D-brane action F = dA − b(2), with 
A and b(2) defined in (3.10) and (2.6), can be expressed in terms of the Maurer–Cartan forms for 
the extended Green superspace as

F = ẼαEα. (5.6)

This is manifestly spacetime supersymmetry invariant as the Maurer–Cartan form (5.2) is invari-
ant under the global left action g(x, θ, χ) → eiε̄Q g(x, θ, χ).

A manifestly supersymmetric construction of the Born–Infeld contribution to a D-brane was 
first by provided Sakaguchi [21], based on a dimensional reduction of the “M-algebra” of Sez-
gin [31]. The algebra considered by Sakaguchi is much larger than the Green algebra. In this 
paper, we provide a rationale for the appearance of an enlarged algebra – the integrability of the 
spacetime supersymmetry transformations (2.9) assigned to A – and realise this with a minimal 
extension of the standard supersymmetry algebra, namely the Green algebra.

Similarly, κ-symmetry of the Born–Infeld term has previously been considered in the con-
text of a local right action on an enlarged superspace, [28], building on this interpretation of 
κ-symmetry for p-branes in [14,15]. Again, this paper provides a bridge between the original 
formulations of κ-symmetry for the gauge field in the D-brane action and this later work via a 
rationale for consideration of an enlarged superspace related to the Green algebra. Further, we 
realise the κ-symmetry on a minimal enlargement of superspace based on the Green algebra, 
rather than more general algebras considered in [28].

6. Conclusion

In this paper, we have analysed the spacetime supersymmetry transformations somewhat arbi-
trarily assigned to the world-volume gauge field in the original formulation of D-brane actions. 
We showed that integrability of these transformations automatically leads to a fermionic central 
extension of the standard supersymmetry algebra, the Green algebra. This provides a rationale 
for the consideration of an enlarged coset superspace based on the Green algebra. We have con-
structed a one-form in this enlarged superspace, which, when pulled back to the world-volume, 
has the supersymmetry and κ-symmetry transformations required to construct the Born–Infeld 
terms in D-brane actions. We have also shown how this “bottom up” construction of forms 
in an expanded superspace relates to earlier approaches to D-brane actions based on mani-
festly spacetime supersymmetric Wess–Zumino terms, which also involve enlarged superspaces, 
though based on algebras larger than the Green algebra.

In [32], Freed and Witten show that the world-volume gauge field incorporated in the con-
ventional construction of D-brane actions is not a normal U(1) gauge field. Rather, it defines a 
“Spinc structure” on the world-volume, and is also intimately involved in cancellation of certain 
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anomalies. It would be of interest to see if the superspace one-form constructed in this paper is 
still able to fulfil these requirements by pullback.

Another crucial issue is that a D-brane should admit a world-volume supersymmetry (as op-
posed to that of the superspace into which the world-volume is embedded). This requires equal 
numbers of world-volume bosonic and fermionic degrees of freedom (giving rise a “D-brane 
scan” [16] determining allowed relationships between world-volume and spacetime dimensions 
for various extended supersymmetries). In the conventional approach to construction of D-brane 
actions, the gauge field lives on the (p + 1)-dimensional world-volume and appears in the ac-
tion only via the corresponding curvature, giving rise to p − 1 world-volume bosonic degrees of 
freedom (complementing the D − p − 1 bosonic Goldstone degrees of freedom arising from the 
embedding of a (p + 1)-dimensional world-volume into a D-dimensional spacetime). However, 
this world-volume gauge field is attributed the spacetime supersymmetry transformation (2.9)
and κ-symmetry transformation (1.19), which is somewhat artificial for a world-volume degree 
of freedom. In this paper, we have provided a construction of a superspace one-form which natu-
rally yields the transformations (2.9) and (1.19), and which upon pullback furnishes a one-form 
degree of freedom on the world-volume which appears in the action only via the corresponding 
curvature. This one-form lives in an enlarged superspace, and there are gauge symmetries associ-
ated with local right actions on the coset representatives of points in this superspace (κ-symmetry 
is one such symmetry). It remains to be investigate whether the gauge symmetry associated with 
the additional fermionic generator in the Green algebra gives rise to a balance between the world-
volume bosonic and fermionic degrees of freedom required for worldvolume supersymmetry. 
Note that this issue has been touched upon in [26], though in superspaces larger than that based 
on the Green algebra.

We have only considered D-branes propagating in a flat superspace. A central extension of 
the standard flat superspace algebra, the Green algebra [29], has been used to provide a coset 
construction for the supersymmetry and κ-symmetry transformations of the U(1) gauge field 
necessary for construction of D-brane actions. It is natural to enquire how this construction might 
be extended to D-branes propagating in curved superspaces. Detailed analysis has been under-
taken for D-branes propagating in curved superspaces constructed as cosets for superconformal 
extensions of the flat superspace algebra [33–36]; and indeed, the formulation of κ-symmetry as 
a right group action in [14] was for general coset superspaces. It would be of interest to consider 
whether “Green-type” central extensions of these superconformal algebras exist and whether 
they can be used to construct from first principles the supersymmetry and κ-symmetry trans-
formations of the U(1) gauge field in the action for D-branes propagating in the corresponding 
curved coset superspace.
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