Note

On the Roman domination number of a graph

O. Favaron ${ }^{\text {a,b }}$, H. Karami $^{\text {c }}$, R. Khoeilar ${ }^{\text {c }}$, S.M. Sheikholeslami ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Univ Paris-Sud, LRI, UMR 8623, Orsay, F-91405, France
${ }^{\mathrm{b}}$ CNRS, Orsay, F-91405, France
${ }^{\text {c }}$ Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, Islamic Republic of Iran

ARTICLE INFO

Article history:

Received 3 December 2007
Received in revised form 5 July 2008
Accepted 22 September 2008
Available online 4 November 2008

Keywords:

Roman domination number

Abstract

A Roman dominating function of a graph G is a labeling $f: V(G) \longrightarrow\{0,1,2\}$ such that every vertex with label 0 has a neighbor with label 2 . The Roman domination number $\gamma_{R}(G)$ of G is the minimum of $\sum_{v \in V(G)} f(v)$ over such functions. A Roman dominating function of G of weight $\gamma_{R}(G)$ is called a $\gamma_{R}(G)$-function. A Roman dominating function $f: V \longrightarrow\{0,1,2\}$ can be represented by the ordered partition $\left(V_{0}, V_{1}, V_{2}\right)$ of V, where $V_{i}=\{v \in V \mid f(v)=i\}$. Cockayne et al. [E.]. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22] posed the following question: What can we say about the minimum and maximum values of $\left|V_{0}\right|,\left|V_{1}\right|,\left|V_{2}\right|$ for a γ_{R}-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ of a graph G ? In this paper we first show that for any connected graph G of order $n \geq 3, \gamma_{R}(G)+\frac{\gamma(G)}{2} \leq n$, where $\gamma(G)$ is the domination number of G. Also we prove that for any $\gamma_{\text {R }}$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ of a connected graph G of order $n \geq 3,\left|V_{0}\right| \geq \frac{n}{5}+1,\left|V_{1}\right| \leq \frac{4 n}{5}-2$ and $\left|V_{2}\right| \leq \frac{2 n}{5}$. © 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, G is a simple graph with vertex set $V(G)$ and edge set $E(G)$ (briefly V and E). The order $|V|$ of G is denoted by n. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of v is $d(v)=|N(v)|$. The minimum degree of G is denoted by $\delta(G)$ (briefly δ). The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\bigcup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S]=N(S) \cup S$. The S-private neighbors of a vertex v of S are the vertices of $N[v] \backslash N[S \backslash\{v\}]$. The vertex v is its own private neighbor if it is isolated in S. The other private neighbors are external, i.e., belong to $V \backslash S$. We call k-path (k-cycle, respectively) a path (cycle) of G of order k and $P_{k}\left(C_{k}\right)$ an induced k-path (k-cycle). The corona $H o K_{1}$ of a graph H is obtained by attaching one pendent edge at each vertex of H.

A subset S of vertices of G is a dominating set if $N[S]=V$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set of minimum cardinality of G is called a $\gamma(G)$-set. Ore proved that every graph of minimum degree $\delta \geq 1$ satisfies $\gamma(G) \leq n / 2$ and the following theorem gives the characterization of the extremal graphs.

Theorem A ([3]). For a connected graph G with order $n \geq 2, \gamma(G)=n / 2$ if and only if G is the cycle C_{4} or the corona HoK_{1} of a connected graph H.

A Roman dominating function (RDF) on a graph $G=(V, E)$ is defined in $[6,7]$ as a function $f: V \longrightarrow\{0,1,2\}$ satisfying the condition that every vertex v for which $f(v)=0$ is adjacent to at least one vertex u for which $f(u)=2$. The weight of a RDF is the value $\omega(f)=\sum_{v \in V} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, equals the minimum weight

[^0]of a RDF on G. A $\gamma_{R}(G)$-function is a Roman dominating function of G with weight $\gamma_{R}(G)$. A Roman dominating function $f: V \longrightarrow\{0,1,2\}$ can be represented by the ordered partition $\left(V_{0}, V_{1}, V_{2}\right)$ of V, where $V_{i}=\{v \in V \mid f(v)=i\}$. In this representation, its weight is $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|$. For a more thorough treatment of domination parameters and for terminology not presented here see $[4,8]$.

It is known that $\gamma_{R}(G) \leq 2 \gamma(G)$ for every graph $G[2]$. If $\delta(G) \geq 2$ and $n \geq 8$, then $\gamma(G) \leq 2 n / 5$ [5], thus implying $\gamma_{R}(G)+\frac{\gamma(G)}{2} \leq \frac{5 \gamma(G)}{2} \leq n$. But if $\delta(G)=1$, then $\gamma(G)$ can be as large as $n / 2$ and we can only deduce from $\gamma_{R}(G) \leq 2 \gamma(G)$ that $\gamma_{R}(G)+\frac{\gamma(G)}{2} \leq 5 n / 4$. The main purpose of this paper is to prove in Section 2 that the inequality $\gamma_{R}(G)+\frac{\gamma(G)}{2} \leq n$ also holds in graphs with minimum degree 1. The technique we use in Theorem 2 also gives another proof of the following result, already obtained by Chambers, Kinnersley, Prince and West.

Theorem B ([1]). If G is a connected n-vertex graph, then $\gamma_{R}(G) \leq 4 n / 5$, with equality if and only if G is C_{5} or is the union of $\frac{n}{5} P_{5}$ with a connected subgraph whose vertex set is the set of centers of the components of $\frac{n}{5} P_{5}$.

Section 3 is related to a problem posed by Cockayne et al. in [2]:
Problem 1. What can we say about the minimum and maximum values of $\left|V_{0}\right|,\left|V_{1}\right|,\left|V_{2}\right|$ for a γ_{R}-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ of a graph G ?

In Theorem 3 we present an answer to this question.

2. Bound on the sum $\gamma_{R}(G)+\frac{\gamma(G)}{2}$

The following definitions will provide the extremal families for Theorems 2 and 3.
Definition 1. - \mathcal{F} is the family of graphs obtained from a connected graph H by identifying each vertex of H with the central vertex of a path P_{5} or with an internal vertex of a path P_{4} where the $|V(H)|$ paths are vertex-disjoint.

- \mathcal{g} is the family of graphs of \mathcal{F} such that each vertex of H is identified with the central vertex of a P_{5}.
- \mathcal{g}^{\prime} is the family of graphs of \mathcal{G} constructed from a graph H having a vertex of degree $|V(H)|-1$.

Theorem 2. For any connected graph G of order $n \geq 3$,
(a) $\gamma_{R}(G)+\frac{\gamma(G)}{2} \leq n$ with equality if and only if G is $C_{4}, C_{5}, C_{4} 0 K_{1}$ or G belongs to \mathcal{F}.
(b) [1] $\gamma_{R}(G) \leq \frac{4 n}{5}$ with equality if and only if G is C_{5} or belongs to G.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}(G)$-function such that $\left|V_{2}\right|$ is maximum. It is proved in [2] that for such a function no edge exists between V_{1} and V_{2} and every vertex v of V_{2} has at least two V_{2}-private neighbors, one of them can be v itself if it is isolated in V_{2} (true for every $\gamma_{R}(G)$-function), the set V_{1} is independent and every vertex of V_{0} has at most one neighbor in V_{1}. Moreover we add the condition that the number $\mu(f)$ of vertices of V_{2} with only one neighbor in V_{0} is minimum. Suppose that $N_{V_{0}}(v)=\{w\}$ for some $v \in V_{2}$. Then the partition $V_{0}^{\prime}=\left(V_{0} \backslash\{w\}\right) \cup\{v\} \cup N_{V_{1}}(w), V_{1}^{\prime}=V_{1} \backslash N_{V_{1}}(w), V_{2}^{\prime}=\left(V_{2} \backslash\{v\}\right) \cup\{w\}$ is a Roman dominating function f^{\prime} such that $\omega\left(f^{\prime}\right)=\omega(f)-1$ if $N_{V_{1}}(w) \neq \emptyset$, or $\omega\left(f^{\prime}\right)=\omega(f),\left|V_{2}^{\prime}\right|=\left|V_{2}\right|$ but $\mu\left(f^{\prime}\right)<\mu(f)$ if $N_{V_{1}}(w)=\emptyset$ since then, G being connected of order at least $3, w$ is not isolated in V_{0}. Therefore every vertex of V_{2} has at least two neighbors in V_{0}. Let A be a largest subset of V_{2} such that for each $v \in A$ there exists a subset A_{v} of $N_{V_{0}}$ (v) such that the sets A_{v} are disjoint, $\left|A_{v}\right| \geq 2$ and $\bigcup_{v \in A} A_{v}=\bigcup_{v \in A} N_{V_{0}}(v)$. Note that A_{v} contains all the external V_{2}-private neighbors of v. Let $A^{\prime}=V_{2} \backslash A$.
Case $1 . A^{\prime}=\emptyset$. In this case $\left|V_{0}\right| \geq 2\left|V_{2}\right|$ and $\left|V_{1}\right| \leq\left|V_{0}\right|$ since every vertex of V_{0} has at most one neighbor in V_{1}.
Since V_{0} is a dominating set of G and $\left|V_{2}\right| \leq\left|V_{0}\right| / 2$ we have

$$
\gamma_{R}(G)+\frac{1}{2} \gamma(G) \leq\left|V_{1}\right|+2\left|V_{2}\right|+\frac{1}{2}\left|V_{0}\right| \leq\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{0}\right|=n .
$$

If $\gamma_{R}(G)+\frac{1}{2} \gamma(G)=n$ then $\left|V_{0}\right|=2\left|V_{2}\right|$ and V_{0} is a $\gamma(G)$-set.
On the other hand,

$$
5 \gamma_{R}(G)=5\left|V_{1}\right|+10\left|V_{2}\right|=4 n-4\left|V_{0}\right|+\left|V_{1}\right|+6\left|V_{2}\right|=4 n-3\left(\left|V_{0}\right|-2\left|V_{2}\right|\right)-\left(\left|V_{0}\right|-\left|V_{1}\right|\right) \leq 4 n .
$$

Hence $\gamma_{R}(G) \leq \frac{4 n}{5}$ and if $\gamma_{R}(G)=\frac{4 n}{5}$, then $\left|V_{0}\right|=2\left|V_{2}\right|$ and $\left|V_{0}\right|=\left|V_{1}\right|$.
Case 2. $A^{\prime} \neq \emptyset$.
Let $B=\bigcup_{v \in A} A_{v}$ and $B^{\prime}=V_{0} \backslash B$. Every vertex x in A^{\prime} has exactly one V_{2}-private neighbor x^{\prime} in V_{0} and $N_{B^{\prime}}(x)=\left\{x^{\prime}\right\}$ for otherwise x could be added to A. This shows that

$$
\begin{equation*}
\left|A^{\prime}\right|=\left|B^{\prime}\right| . \tag{1}
\end{equation*}
$$

Moreover since $\left|N_{V_{0}}(x)\right| \geq 2$, each vertex $x \in A^{\prime}$ has at least one neighbor in B. Let $x_{B} \in B \cap N_{V_{0}}(x)$ and let x_{A} be the vertex of A such that $x_{B} \in A_{x_{A}}$. The vertex x_{A} is well defined since the sets A_{v} with $v \in A$ form a partition of B.

Fig. 1.
Claim 1. $\left|A_{x_{A}}\right|=2$ for each $x \in A^{\prime}$ and each $x_{B} \in B \cap N_{V_{0}}(x)$.
Proof of Claim 1. If $\left|A_{x_{A}}\right|>2$, then by putting $A_{x_{A}}^{\prime}=A_{x_{A}} \backslash\left\{x_{B}\right\}$ and $A_{x}=\left\{x^{\prime}, x_{B}\right\}$ we can see that $A_{1}=A \cup\{x\}$ contradicts the choice of A. Hence $\left|A_{x_{A}}\right|=2$, x_{A} has a unique external V_{2}-private neighbor x_{A}^{\prime} and $A_{x_{A}}=\left\{x_{B}, x_{A}^{\prime}\right\}$. Note that the vertices x_{A} and x are isolated in V_{2} since they must have a second V_{2}-private neighbor.

Claim 2. If $x, y \in A^{\prime}$ then $x_{B} \neq y_{B}$ and $A_{x_{A}} \neq A_{y_{A}}$.
Proof of Claim 2. Let x^{\prime} and y^{\prime} be respectively the unique external V_{2}-private neighbors of x and y. Suppose that $x_{B}=y_{B}$, and thus $x_{A}=y_{A}$. The function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g\left(x_{B}\right)=2, g(x)=g(y)=g\left(x_{A}\right)=0, g\left(x_{A}^{\prime}\right)=g\left(x^{\prime}\right)=g\left(y^{\prime}\right)=1$ and $g(v)=f(v)$ otherwise, is a RDF of G of weight less that $\gamma_{R}(G)$, a contradiction. Hence $x_{B} \neq y_{B}$. Since $\left\{x_{A}^{\prime}, x_{B}\right\} \subseteq A_{x_{A}}$ and $\left|A_{x_{A}}\right|=2$, the vertex y_{B} is not in $A_{x_{A}}$. Therefore $A_{y_{A}} \neq A_{x_{A}}$.

Let $A^{\prime \prime}=\left\{x_{A} \mid x \in A^{\prime}\right.$ and $\left.x_{B} \in B \cap N_{V_{0}}(x)\right\}$ and $B^{\prime \prime}=\bigcup_{v \in A^{\prime \prime}} A_{v}$. By Claims 1 and 2 ,

$$
\begin{equation*}
\left|B^{\prime \prime}\right|=2\left|A^{\prime \prime}\right| \text { and }\left|A^{\prime \prime}\right| \geq\left|A^{\prime}\right| \tag{2}
\end{equation*}
$$

Let $A^{\prime \prime \prime}=V_{2} \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)$ and $B^{\prime \prime \prime}=\bigcup_{v \in A^{\prime \prime \prime}} A_{v}=V_{0} \backslash\left(B^{\prime} \cup B^{\prime \prime}\right)$. By the definition of the sets A_{v},

$$
\begin{equation*}
\left|B^{\prime \prime \prime}\right| \geq 2\left|A^{\prime \prime \prime}\right| \tag{3}
\end{equation*}
$$

Claim 3. If $x \in A^{\prime}$ and $x_{B} \in B \cap N_{V_{0}}(x)$, then x^{\prime}, x_{B} and x_{A}^{\prime} have no neighbor in V_{1}. Hence $B^{\prime \prime \prime}$ dominates V_{1}.
Proof of Claim 3. Let w be a vertex of V_{1}. If w has a neighbor in $B^{\prime} \cup B^{\prime \prime}$, let $g: V(G) \rightarrow\{0,1,2\}$ be defined by $g\left(x_{A}^{\prime}\right)=2, g(w)=g\left(x_{A}\right)=0, g(v)=f(v)$ otherwise if w is adjacent to x_{A}^{\prime},
$g\left(x^{\prime}\right)=2, g(w)=g(x)=0, g(v)=f(v)$ otherwise if w is adjacent to x^{\prime},
$g\left(x_{B}\right)=2, g(w)=g\left(x_{A}\right)=g(x)=0, g\left(x_{A}^{\prime}\right)=g\left(x^{\prime}\right)=1, g(v)=f(v)$ otherwise if w is adjacent to x_{B}.
In each case, g is a RDF of weight less than $\gamma_{R}(G)$, a contradiction. Therefore $N(w) \subseteq B^{\prime \prime \prime}$.
We are now ready to establish the two parts of the theorem.
(a) By Claim 3, $B^{\prime \prime \prime} \cup A^{\prime} \cup A^{\prime \prime}$ is a dominating set of G. Therefore, by (1)-(3),

$$
\begin{aligned}
\gamma(G) & \leq\left|B^{\prime \prime \prime}\right|+\left|A^{\prime}\right|+\left|A^{\prime \prime}\right| \\
& \leq\left|B^{\prime \prime \prime}\right|+\left|B^{\prime \prime}\right| \\
& \leq\left(2\left|B^{\prime \prime \prime}\right|-2\left|A^{\prime \prime \prime}\right|\right)+\left(2\left|B^{\prime \prime}\right|-2\left|A^{\prime \prime}\right|\right)+\left(2\left|B^{\prime}\right|-2\left|A^{\prime}\right|\right)
\end{aligned}
$$

Hence $\gamma(G) \leq 2\left|V_{0}\right|-2\left|V_{2}\right|$ and $\gamma_{R}(G)+\frac{1}{2} \gamma(G) \leq\left(\left|V_{1}\right|+2\left|V_{2}\right|\right)+\left(\left|V_{0}\right|-\left|V_{2}\right|\right)=n$.
If $\gamma_{R}(G)+\frac{1}{2} \gamma(G)=n$ then $\left|A^{\prime \prime}\right|=\left|A^{\prime}\right|,\left|B^{\prime \prime \prime}\right|=2\left|A^{\prime \prime \prime}\right|$ and $B^{\prime \prime \prime} \cup A^{\prime} \cup A^{\prime \prime}$ is a $\gamma(G)$-set. We note that these conditions of equality include that of Case 1 since in Case $1, A^{\prime}=A^{\prime \prime}=\emptyset, A^{\prime \prime \prime}=V_{2}$ and $B^{\prime \prime \prime}=V_{0}$.

The first condition, $\left|A^{\prime \prime}\right|=\left|A^{\prime}\right|$, implies that each vertex x of A^{\prime} has exactly one neighbor x_{B} in B. Hence the vertices of $A^{\prime} \cup A^{\prime \prime} \cup B^{\prime} \cup B^{\prime \prime}$ (in Case 2) can be partitioned into 5-paths $x^{\prime} x x_{B} x_{A} x_{A}^{\prime}$ with $x^{\prime} \in B^{\prime}, x \in A^{\prime}, x_{A} \in A^{\prime \prime}$ and $x_{B}, x_{A}^{\prime} \in B^{\prime \prime}$. The second condition, $\left|B^{\prime \prime \prime}\right|=2\left|A^{\prime \prime \prime}\right|$, implies that $\left|A_{v}\right|=2$ for each $v \in A$. Hence the vertices of $A^{\prime \prime \prime} \cup B^{\prime \prime \prime}$ can be partitioned into 3-paths $v_{1} v v_{2}$ with $v \in A^{\prime \prime \prime}$ and $v_{1}, v_{2} \in B^{\prime \prime \prime}$. The third condition, $A^{\prime} \cup A^{\prime \prime} \cup B^{\prime \prime \prime}$ is a $\gamma(G)$-set, implies that for each $v \in A^{\prime \prime \prime}$, at least one of v_{1}, v_{2} has a neighbor in V_{1} for otherwise $\left(A^{\prime} \cup A^{\prime \prime} \cup B^{\prime \prime \prime} \cup\{v\}\right) \backslash\left\{v_{1}, v_{2}\right\}$ is a dominating set of order $\gamma(G)-1$. Hence the vertices of $A^{\prime \prime \prime} \cup B^{\prime \prime \prime} \cup V_{1}$ are partitioned into 4-paths $w v_{1} v v_{2}$ or 5-paths $w_{1} v_{1} v v_{2} w_{2}$.

In this partition of V, each 4-path and 5-path has exactly two vertices in the $\gamma(G)$-set $A^{\prime} \cup A^{\prime \prime} \cup B^{\prime \prime \prime}$ and contributes for 2 to $\gamma(G)$. Each 4-path has one vertex in V_{2}, one in V_{1} and two in V_{0} and contributes for 3 to $\gamma_{R}(G)$. Each 5-path has either two vertices in V_{2} and three in V_{0} or one vertex in V_{2}, two in V_{0} and two in V_{1}, and thus contributes for 4 to $\gamma_{R}(G)$. Hence each 4-path and 5-path of the partition induces in G a P_{4}, C_{4}, P_{5} or C_{5}.

If a 4-path induces a C_{4} and $G \neq C_{4}$, then there exists an edge between the C_{4} and a 4-path or 5-path. The contribution of the two paths to $\gamma(G)$ and $\gamma_{R}(G)$ should be respectively 4 and 6 or 7 . Fig. 1, where the dotted lines may exist or not, shows that this is impossible because $\gamma\left(G_{i}\right)=3$ for $1 \leq i \leq 4$ and $\gamma_{R}\left(G_{5}\right)=6<7$. Similarly Fig. 2 shows that it is not possible that a 5-path induces a C_{5} and $G \neq C_{5}$ because $\gamma\left(G_{1}\right)=3<4, \gamma_{R}\left(G_{2}\right)=6<7$ and $\gamma_{R}\left(G_{i}\right)=7<8$ for $3 \leq i \leq 5$.

We suppose that G is different from C_{4} and C_{5}. The set of the $k \geq 0 P_{4}$'s of the partition induces a subgraph J such that $\gamma(J)=2 k=|V(J)| / 2$. By Theorem A, each component of J is the corona of a connected graph. Thus all the endvertices of

Fig. 4.
the P_{4} 's have degree 1 in J and every edge between two P_{4} 's joins vertices of degree 2 in each P_{4}. Similarly Fig. 3 shows that the only possibility for the extremity of an edge between a P_{5} and a P_{4} or P_{5} is to be the central vertex of a P_{5} or a vertex of degree 2 of a P_{4} (because $\gamma\left(G_{i}\right)=3<4$ for $1 \leq i \leq 2, \gamma_{R}\left(G_{i}\right)=6<7$ for $3 \leq i \leq 5$ and $\gamma_{R}\left(G_{i}\right)=7<8$ for $6 \leq i \leq 10$).

Finally Fig. 4 shows that the two internal vertices of a P_{4} cannot be adjacent to vertices of two different P_{4} or P_{5}, nor to the same internal vertex of another P_{4}, nor to the central vertex of a P_{5} (because $\gamma_{R}\left(G_{1}\right)=8<9, \gamma_{R}\left(G_{2}\right)=9<10$, $\left.\gamma_{R}\left(G_{3}\right)=10<11, \gamma_{R}\left(G_{4}\right)=5<6, \gamma_{R}\left(G_{5}\right)=6<7\right)$. Therefore either G contains two P_{4} 's $x y z t, x^{\prime} y^{\prime} z^{\prime} t^{\prime}$ together with the edges $y y^{\prime}, z z^{\prime}$, or G consists of paths P_{4} and P_{5} joined by edges between the central vertex of each P_{5} and one internal vertex of each P_{4}. Since G is connected, $G=C_{4} \mathrm{O} K_{1}$ in the first case and G belongs to Family \mathcal{F} in the second case.

Conversely, it is easy to check that each of $C_{4}, C_{5}, C_{4} \mathrm{o} K_{1}$ satisfies $\gamma_{R}(G)+\frac{1}{2} \gamma(G)=n$. Let now G be a graph of \mathcal{F} composed of k_{1} paths P_{4} and k_{2} paths P_{5}. Then $\gamma(G)=2 k_{1}+2 k_{2}, \gamma_{R}(G)=2 k_{1}+3 k_{2}$ and $\gamma_{R}(G)+\frac{1}{2} \gamma(G)=4 k_{1}+5 k_{2}=n$.
(b) By Claim 3 and since each vertex of V_{1} has at most one neighbor in $V_{0},\left|V_{1}\right| \leq\left|B^{\prime \prime \prime}\right|$. Using this inequality and (1)-(3) we get

$$
\begin{aligned}
5 \gamma_{R}(G) & =5\left|V_{1}\right|+10\left|V_{2}\right| \\
& =4 n-4\left|V_{0}\right|+\left|V_{1}\right|+6\left|V_{2}\right| \\
& \leq 4 n-4\left|B^{\prime}\right|-4\left|B^{\prime \prime}\right|-4\left|B^{\prime \prime \prime}\right|+\left|B^{\prime \prime \prime}\right|+6\left|A^{\prime}\right|+6\left|A^{\prime \prime}\right|+6\left|A^{\prime \prime \prime}\right| \\
& \leq 4 n+2\left(\left|A^{\prime}\right|-\left|A^{\prime \prime}\right|\right)+3\left(2\left|A^{\prime \prime \prime}\right|-\left|B^{\prime \prime \prime}\right|\right) \\
& \leq 4 n .
\end{aligned}
$$

Hence $\gamma_{R}(G) \leq \frac{4 n}{5}$.
If $\gamma_{R}(G)=\frac{4 n}{5}$ then $\left|A^{\prime \prime}\right|=\left|A^{\prime}\right|,\left|B^{\prime \prime \prime}\right|=2\left|A^{\prime \prime \prime}\right|$ and $\left|V_{1}\right|=\left|B^{\prime \prime \prime}\right|$. We note that these conditions of equality include that of Case 1.

The first two conditions of equality, $\left|A^{\prime \prime}\right|=\left|A^{\prime}\right|,\left|B^{\prime \prime \prime}\right|=2\left|A^{\prime \prime \prime}\right|$, are the same as in Part (a) and imply that $V_{2} \cup V_{0}$ can be partitioned into 5-paths and 3-paths. The third condition, $\left|V_{1}\right|=\left|B^{\prime \prime \prime}\right|$, implies that the edges between $B^{\prime \prime \prime}$ and
V_{1} form a matching covering $B^{\prime \prime \prime}$ and V_{1}. Thus the 3-paths partitioning $A^{\prime \prime \prime} \cup B^{\prime \prime \prime}$ can be prolonged to 5-paths partitioning $A^{\prime \prime \prime} \cup B^{\prime \prime \prime} \cup V_{1}$. Hence V is partitioned into 5-paths, each of them contributes for 4 to $\gamma_{R}(G)$ and thus induces P_{5} or C_{5} in G. Also the configurations shown by G_{3}, G_{4}, G_{5} in Fig. 1 and G_{6} to G_{10} in Fig. 2, for which the global contribution of the two 5-paths to $\gamma_{R}(G)$ is too small, are impossible. Therefore $G \in\left\{C_{5}\right\} \cup \mathcal{G}$.

Conversely, every graph G in $\left\{C_{5}\right\} \cup \mathcal{G}$ obviously satisfies $\gamma_{R}(G)=\frac{4 n}{5}$.

3. Bounds on $\left|V_{0}\right|,\left|V_{1}\right|$ and $\left|V_{2}\right|$ for a $\gamma_{R}(G)$-function $\left(V_{0}, V_{1}, V_{2}\right)$

Theorem 3. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any $\gamma_{R}(G)$-function of a connected graph G of order $n \geq 3$. Then

1. $1 \leq\left|V_{2}\right| \leq \frac{2 n}{5}$ and a graph G admits a $\gamma_{R}(G)$-function such that $\left|V_{2}\right|=\frac{2 n}{5}$ if and only if G belongs to $\mathcal{Q} \cup\left\{C_{5}\right\}$.
2. $0 \leq\left|V_{1}\right| \leq \frac{4 n}{5}-2$ and a graph G admits a $\gamma_{R}(G)$-function such that $\left|V_{1}\right|=\frac{4 n}{5}-2$ if and only if G belongs to $g^{\prime} \cup\left\{C_{5}\right\}$.
3. $\frac{n}{5}+1 \leq\left|V_{0}\right| \leq n-1$ and a graph G admits a $\gamma_{R}(G)$-function such that $\left|V_{0}\right|=\frac{n}{5}+1$ if and only if G belongs to $g^{\prime} \cup\left\{C_{5}\right\}$.

Proof. By Theorem B, $\left|V_{1}\right|+2\left|V_{2}\right| \leq 4 n / 5$.

1. If $V_{2}=\emptyset$, then $V_{1}=V$ and $V_{0}=\emptyset$. The RDF $(0, n, 0)$ is not minimum since $\left|V_{1}\right|+2\left|V_{2}\right|>4 n / 5$. Hence $\left|V_{2}\right| \geq 1$. On the other hand, $\left|V_{2}\right| \leq 2 n / 5-\left|V_{1}\right| / 2 \leq 2 n / 5$.
If $\left|V_{2}\right|=2 n / 5$, then $4 n / 5 \leq\left|V_{1}\right|+2\left|V_{2}\right|=\gamma_{R}(G) \leq 4 n / 5$. Therefore $\gamma_{R}(G)=4 n / 5$ and by Theorem B, G is C_{5} or belongs to \mathcal{G}. Conversely define the function f by giving the value 2 to the vertices adjacent to leaves when $G \in \mathcal{G}$ and to two non-adjacent vertices when $G=C_{5}$, and the value 0 to the other vertices. Then f is a $\gamma_{R}(G)$-function with $\left|V_{2}\right|=2 n / 5$.
2. Since $\left|V_{2}\right| \geq 1,\left|V_{1}\right| \leq 4 n / 5-2\left|V_{2}\right| \leq 4 n / 5-2$.

If $\left|V_{1}\right|=4 n / 5-2$, then $4 n / 5 \leq\left|V_{1}\right|+2\left|V_{2}\right|=\gamma_{R}(G) \leq 4 n / 5$. Therefore $\gamma_{R}(G)=4 n / 5$, i.e., $G \in\left\{C_{5}\right\} \cup \mathcal{G}$, and $\left|V_{2}\right|=1$.
When $G \in \mathcal{G}$, let G be obtained by identifying each vertex of a graph H with the central vertex of a P_{5} and let $V_{2}=\{x\}$. Then $V_{0}=N(x), V_{1}=V \backslash N[x]$ and $4 n / 5-2=\left|V_{1}\right|=n-d(x)-1$. Hence $d(x)=n / 5+1$. The unique vertex x of V_{2} belongs to H and must be adjacent to all the other vertices of H. Therefore $G \in\left\{C_{5}\right\} \cup g^{\prime}$.

Conversely if $G \in \mathcal{g}^{\prime}$, the function f defined by $f(x)=2$ for some vertex x of H of degree $|V(H)|-1, f(v)=0$ for $v \in N(x)$ and $f(v)=1$ elsewhere is a $\gamma_{R}(G)$ function with $\left|V_{1}\right|=4 n / 5-2$. Similarly, there exists a $\gamma_{R}\left(C_{5}\right)$ function with $\left|V_{2}\right|=1$ and $\left|V_{1}\right|=2=4 n / 5-2$.
3. The upper bound comes from $\left|V_{0}\right| \leq n-\left|V_{2}\right| \leq n-1$. For the lower bound, adding side by side $2\left|V_{0}\right|+2\left|V_{1}\right|+2\left|V_{2}\right|=2 n$, $-\left|V_{1}\right|-2\left|V_{2}\right| \geq-4 n / 5$ and $-\left|V_{1}\right| \geq-4 n / 5+2$ gives $2\left|V_{0}\right| \geq 2 n / 5+2$. Therefore $\left|V_{0}\right| \geq n / 5+1$.
If $\left|V_{0}\right|=n / 5+1$ then $\left|V_{1}\right|=4 n / 5-2$ and thus $G \in\left\{C_{5}\right\} \cup g^{\prime}$. Conversely if $G \in g^{\prime}$ then the $\gamma_{R}(G)$ function described in Part 2 is such that $\left|V_{0}\right|=d(x)=|H|+1=n / 5+1$. Also for the $\gamma_{R}\left(C_{5}\right)$-function with $\left|V_{2}\right|=1$, we have $\left|V_{0}\right|=2=n / 5+1$.

Note that the lower bounds 1 and 0 on $\left|V_{2}\right|$ and $\left|V_{1}\right|$ and the upper bound $n-1$ on $\left|V_{0}\right|$ cannot be improved since they are attained by stars.

Acknowledgement

The fourth author's research was supported by the Research Office of Azarbaijan University of Tarbiat Moallem.

References

[1] E.W. Chambers, B. Kinnersley, N. Prince, D.B. West, Extremal problems for Roman domination SIAM J. Discrete Math. (in press).
[2] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22.
[3] J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (4) (1985) $287-293$.
[4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[5] W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (6) (1989) 749-762.
[6] C.S. Revelle, K.E. Rosing, Defendens imperium romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (7) (2000) $585-594$.
[7] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (6) (1999) 136-139.
[8] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc., 2000.

[^0]: * Corresponding author.

 E-mail addresses: Odile.Favaron@lri.fr (O. Favaron), s.m.sheikholeslami@azaruniv.edu, sm_sheikholeslami@yahoo.com (S.M. Sheikholeslami).

