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1. INTRODUCTION

The purpose of this paper is to develop a unified approach to the charac-
terization of solutions of constrained and unconstrained approximation
problems. Several papers have been written on the characterization of
solutions of special approximation problems with particular types of con-
straints or without constraints. For uniform approximation a general theory
has been obtained by using generalized weight functions. Recently a new
approach via optimization theory has been presented in [1]. The idea is to
show, first, that the local Kolmogoroft condition is satisfied. Assuming a
convexity condition, it can be shown that the tocal Kolmogoroff condition
iraplies the Kolmogoroff criterion. Hence best approximations are charac-
terized by the local Kolmogoroff condition.

An essential restriction in [1] is the assumption of linear equality constraints
For uniform approximation problems with nonlinear equality constraints,
the local Kolmogoroff condition has been deduced in [2] under the assumption
of a regularity condition that does not seem to be practical. By deleting
inequality constraints a more satisfactory regularity condition has been
studied in [3].

Our aim is to treat approximation problems with nonlinear equality
and inequality constraints in a normed linear space and to present a new and
satisfactory regularity condition. As in [1], we consider the problem as a
particular type of optimization problem.

Applying new kinds of differentiability, a new approach to optimization
problems has been developed in [4]. A generalization of the well-known
Lagrange multiplier theorem has been obtained that can be applied to
convex optimization problems as well as to differentiable optimization
problems. Here we shall apply this theorem to approximation problems with
constraints. In particular we obtain new characterization theorems for
constrained L -approximation problems of continuous functions.
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2. THE MaAXIMUM PRINCIPLE

We assume that / is a finite set, I'; (j € [) are compact topological spaces,
E and Z are Banach spaces, and M, is an open subset of E. Let the mappings
g E—~>R (el jel), p: E— Z, and f* E— R be given. The problem
is to characterize a (local) minimum of f on the set

M= N{xeE g ) =0nixveE px):= 0, nM,.
jer 7€l
Let Gy(x) == max{g, (x) : 7 € ['}} (x € E, je I). Then the problem is equivalent
to: find a (local) minimum of fon the set {x € M, : G,(x) X 0(je l). p(x) == B}
Let 7 > 0. The set of mappings r: (0, 7} — E so that lim,_,._(r(t)jt) =~ O is
denoted by H.(E) and H(E) = U, HAE).

DEFINITION. Let E;, and E, be normed linear spaces and x, € £, .

(a) Let CC E;and y: F;, — E, a mapping. A mapping y'(x,): £, - E,
is called an H(E,)-variation of y at x, with respect to C, it he E, y'(x)) he C
and r € H(E;) imply the existence of a 7 > 0 so that (1/t)(y(x, - th = r(t)) -
y(x,)) € C for every 1 € (0, 7].

(b) The mapping y: E, — E, is called G-differentiable at x, ., if there
is a continuous, linear mapping y'(x,): £, — E, so that for every fic £
limy Lo (1/0)(y(xy = th) — ¥(xy)) = y'(xp)h.

(¢) Let I" be a compact topological space. A set of mappings v. :
E, - E, (7 € I') has property:

(1) (D)at x,, if there is a neighborhood U of x,, so that the mapping
7, X > y.(x) (I' x U~ E,) is continuous.

(2) (D) at x,, if

(i) it has property (D) at x, , and

(i) there is a neighborhood U of x, so that for every re I’ y_ is
G-differentiable at every x € U and the mapping (+. x, ) — v,'(x)a (I" = U >
E, — E,) is continuous.

(d) A mapping y: E, — E, has property (D2) at x, , if

(i) v is continuous at x,

(ii) there is a neighborhood U of x; so that y is G-differentiable at
every x € U and the mapping x +— y'(x) (U — E*) is continuous. £* denotes
the normed, linear space of continuous, linear functionals on E.

Let us introduce the notation for x,e M

Iix)) = {rel;:g. (x) =0} (xeE, jel),
Iy = {jel: I'i(xy) # &},
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and Gy (x0)h = max{g, (x)h: 7€ lyx))} (jelky, xe U, heE) if (g‘r,j)'ré[‘j
has property (D1) at x, .

LemMA 1. Letjelyand x, € M. Suppose ( g,,,-),epj has property (D1) at x, .
If he E and G (xg)h <0, then for every r € H(E) there is a ¥ >0 so that
Gi(xg + th + r(t)) < O for every t € (0, 7].

Proof. Let k€ E with G;/(xp)k < 0,

8 = max{g/ ;(xo) h: 7 € I'(xy)} < 0.

For brevity we now omit the subscript j.

There is a neighborhood U of x, so that the mapping (=, x, h) — g.'(x)h
(I" x U x E—~ R) is continuous. Thus there are an open neighborhood
Iy, of I'(x,), an open, convex neighborhood U, of x,, and an open neigh-
borhood ¥, of % so that g, (x)h < §/2 forevery re Iy, xe Uy, and he V.
Since 7 ¢ Iy = g,(x,) < 0 and since I'\I'y is compact, we have

p = max{g,(x,) | re "I} <0

it =1\, % .
Let r€ H(E). There is a #, >0 so that x, + th +r(t)e U, and % +
(r()/t) e V, for every t€ (0, t;]. If I} = @ then choose t, € (0, ;] so that

&Cxa + 60F -+ 0r0) (i + (’))‘ | ey,

te(0, 4], 0o, 1]% < —p

1, sup 3

By the mean value theorem we obtain

&%y -+ 1h -+ (1) — g.(x0) = 1/ (xy -+ 01 + 0r(2)) (i + 7 e,

Thus 5
&(xp + th +-r(1)) — g.(xp) < 18/2 <0

for every r e I'yand £ € (0, #,].

If I = I then g,(x, + th -+ r(t)) < O for every 7€ I" and 1€ (0, t,] and
the proof is complete. Now suppose Iy = I'. For 7 € I'\I', and ¢ € (0, 1,] we
obtain

8.t -+ 1+ (1) < 18/ (xq + 01 + 0r)) (K 4+ T2 4
<t 1| &g + 00k + 0r(e) (i + L(t_‘).)! <0,

hence g,(x, + th - r(t)) < 0 for every r € I" and ¢ € (0, t,].
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COROLLARY 2. If the conditions of Lemma | are satisfied, then G;'(x,) is a
H(E)-variation of G; at x, with respect to (—-o0, 0).

Now we apply Theorem 11, 2.4 of [4, Maximumprinzip] and obtain
Theorem 3. Let x, € M. Assume that the sets (g, ), (j€1,) have property
(D1) at x,, p has property (D2) at x,, and the sets (Jgf,,-)mp_ {(je 1)) have
property (D) at x, . If x, is a local minimum of fon M, and there is a convex
H(E)-variation f'(x,) of f at x, with respect to (— o0, 0), then there are
numbers [ =0, /; > 0 (je 1), and a linear functional ¢ on Z so that

Z;f/(x()) h - z LG (xp) bt o p'(xg) o2 0
jel,
for every h € E; at least one number { or /; or the functional ¢ is different
from 0 or O, respectively.

If p'(x,) is surjective and there is an /1, € £ so that G;'(xy)h, << O for every
jelyand p'(xo)hy = O, then [ = 0. We call x, regular if this condition holds.
M is regular if every x € M is regular.

3, THE LocalL KOLMOGOROFF CONDITION

Suppose T'is a normed linear space and V' is a subset of 7. The set of best
approximations to w € T with respect to V is the set

Piw, V] ={vseV :foreveryve Viw ol ='w -,

Let X, be the set of linear functionals / on T such that /{w - ) == w - 1]
and | l(z); < |z for every z & T. The global Kolmogoroff criterion is. If V' is
convex then v, € P[w, V] if and only if

min{/(v - vyeR:fel, .} =0

for every v € V. For an elementary proof without using extremal functionals
see [4].

Let £ be a Banach space and let F: E— T be a mapping. We consider
the approximation by elements of the set V' - - F[M] where M is defined as
in Section 2. In this Section we assume that x, € M, F'is Fréchet differentiable
at x, , the sets (g,,;),r, and the mapping p satisfy the conditions of Theorem 3.
Let /2 E— R be defined by f(x) == || w —~ F(x)|| (x € E). Then , = Fy(x,) is a
best approximation to w with respect to F[M], if and only if x, is & minimum
of fon M. Applying {4, Lemma 11, 3.2 and Lemma I, 4.5] we obtain

LEMMA 4. The mapping f'(x,): E— R defined by
Fx)h == 1w — Flxy) — F(xpdhll — | w — Fxp)ii (heE)

is a convex H(E)-variation of f at x, with respect to (—o0o, 0).
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Let E(x) ={he E:p'(xh = 0, G/'(xh <O (jel)}. Fixg) [Elx)] is
convex. Thus Corollary 2 and Theorem 3 imply

THEOREM 5. If vy, = F(x,) is a best approximation to w and x, is regular,
then @ € Plw — F(xy), F'(xy) [E(x)1] and for every h € E(x,)

min{/o F'(x;) h: le 2\, } <O
(local Kolmogoroff condition).

If we particulaire Theorem 5 to the uniform approximation of continuous
functions, we obtain a result of Hoffmann [2]; in view of Ljusternik’s theorem
(see [4]) our reguliarity condition implies the condition used in [2] so it is
more restrictive, but it seems to be easier to apply.

We point out that the general theory developed in [4] is as well applicable
to approximation problems with asymmetric norms as the one used in [5].

4. THe O oF CoNvEX HULL THEOREM

In addition to the assumptions of Section 3 we suppose that there are
elements e, ,..., e, € E with span{F’(x,) e, ..., F'(xg)en} = F'(x,) [P(x,)] where
P(xy) = {he E: p'(xp)h = 8}. Let 4,{x,) be the set of vectors —(g, {(xp)er,...,
g..i(x0)ey) with T € I'y(x,) and j € I, and A(x,) the set of vectors (/- F'(xy)ey ,...,
[ F'(x))e,) with leZ, , . Suppose that @ ¢con{d(x,) Y Ujer, 4;(xo)}-
Applying the separation theorem there is an s € P(x,) so that [ - F'(xg)h > 0
for every /e 2, _, and & ;(x0)h < 0 for every 7€ I'(x,) and je I,. Hence
h e E(x,) which contradicts Theorem 5 if x, is regular. But if x, is regular
then @ ¢ con{{J;es, 45(xo)}. So we have proved.

Theorem 6. If v, = F(x;) is a best approximation to w and x, is regular,
then @ can be written as a convex combination of elements of the set
A(x) U Ujer, 4i(x,) with at least one point from the set A(x,) included
nontrivially.

5. REGULARITY

In this section it will be shown that many constrained approximation
problems are regular.

ExaMpPLE 1. Linear equality or inequality constraints on parameters [6-9].
(a) E=R" Z=R" M ={xeE.:Ax =b}, A is a real m X n-
matrix, b € R™. M is regular if 4 is surjective (rank 4 = m).

(b) E =R, J,C{l,..,n}, J,C{l,..,n}, a; (jeJp) are positive real
numbers, M ={xeE:x; =0if jeJ,, | x;| < a; if jeJy}. M is regular.
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ExaMPLE 2. Monotone approximation [10]. KeN,, neN, u,..,
o€ CK[0, 11, ] = {jeZ:1 <j <K+ 1}.Let I, ..., I'x,, be closed subsets
of [0, 1] and ¢;...., exe{—1, 1}. Suppose u,...,ux e C[0, 1] are given;
E = R™

gT,j(-Xl serns Xn) = €5 [Z '\-uligilj(T) - uj*l(T):l (T € Ff ’ ] € Ia RS b)
1

(a) K =0, span{ry,..., v, 1s a Haar space. Then there is a ¢ € span
{01 +eors U5} sO that €,3(z) << O for every ¢ € [0, 1]. Hence M is regular.
(b)y K =1, span {v,,..., v,} = P* (polynomials of degree <<n — 1).

Then there is a ¢ P*~* so that ¢90V(r) << 0 for every €0, 1] and j =
0, 1,..., K (see [10]). Hence M is regular.

ExAMPLE 3. Restricted range approximation [5, 11-15]. ne N, ¢y ,..., 0, €
C[0, 1] linear independent. Let I" be a closed subset of [0, 1], F == R¥,
I={,2},and [, ueC[0, 1]

GralXy ey X)) = Y x,0.(7) — u(7) (rel’, xeE),
1

Bral Xy ooy Xp) = (1) — D x,0,(7) (rel,xeE).
1

Suppose {(7) << u(r) for every r € I" and assume that at least two points x,
X € M are given so that 3} (x, — X,) v, # O. Let V == span{v, ,..., v,,}. For
v € V the mapping o, : I'—{—1, 0, 1} is given by

5 1 if o(r) == u(7)
= —1  if o(r) =+
[= 0 it fm) < u(r) < ul.

Suppose V' is a Haar space. Let ve V, ) << v(r) <K u(r) for every re I
and 0 <7y < <7, < l. Then there is a je{0,1,...,n — 1} so that
o,(75) 0u(75.1) # —1. That means v “alternates” at most »n times. Then there
is a 9 € ¥V so that 4(r) << 0 if () = u(7) and (1) > 0 if v(r) = I(7) (use a
theorem of Krein (see [26]) on polynomials of Haar spaces with prescribed
zeros). Then M is regular.

A similar argument shows that the problem is regular if rational restricted
range approximation is considered. If /(v) < u(=) is assumed as in [16-18]
we do not know if the problem remains regular.

o4(7)

ExampLE 4. Interpolatory constraints [3, 19-24].
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When considering nonlinear equality constraints only our regularity
condition is more general than the condition used in [3]. Hence problems
with interpolatory constraints, as considered in [3], are regular.

ExamPLE 5. Interpolatory constraints and inequality constraints on
parameters.

Let neN, reN, E = R" Z =R", uy,..., u, € C[0, 1] linear independent
so that span{u, ,..., #,} isa Haar space, 0 <t << .- <1, < 1; 0y ,..., 0, € R.
Letgi(xy,..., ) = —x; (je{l,....n}, x€EE) p(x1 ,..., X,) = (& x;u,(t;) — 01 ,...,
> xu(t,) —o,) (x€E). Let JC{1,...,n} so that xe M j¢ J imply x; =0
and there is a X € M so that X; >> 0 for every je J.

Let xoe M and h = X — x,. p'(x,) is surjective, p'(xp) & = O, g/(xp)h =
—h; = —X; < 0if je l,. Hence M is regular.

6. CHARACTERIZATION OF SOLUTIONS

If F[M] is an «-sun(see[25]), then best approximations are characterized
by the Kolmogoroff criterion. A sufficient condition for F[M] to be an a-sun
is a property, we call it property S, used in [25]. If this condition is satisfied,
then best approximations are characterized by the local Kolmogoroff
condition.

DEerFINITION. (F, M) has property S, if the following holds. Suppose v,
vo € FIM], v # vy, we T, and l(v — vy) > O for every /€ 2,_, . Then there
are x, € M, h € E(x,), so that F(x,) = voand ! - F'(xo)h > OforeveryleZ vy

If Fis linear, p and g, ; (7 € I, j € I) are linear, then (F, M) has property S.
In [1-3, 5, 9-11, 13, 14, 19, 20, 24] linear uniform approximation problems
with linear constraints are studied. For those problems regularity has been
proved in Section 5. Since in these problems (¥, M) has property S, best
approximations are characterized by the local Kolmogoroff condition.
Our result implies furthermore that for linear L -approximation problems
with linear constraints this statement equally holds. We drop the detailed
presentation of these results.

7. APPLICATIONS TO RATIONAL APPROXIMATION

Let n, me N. Let uy,..., u, € C[0, 1] and v, ,..., v, € C[0, 1] be two sets
of linear independent functions:

N=lyeRm™Y yuvit) > 0forevery t € [0, 1];,
1
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E=R"x R" M, = R" »x N. Let the mappings P: R* — ([0, 1], O:
R™ — C[0, 1], and F: M, — C[0, 1] be defined by

PO = 2 X (xR,
1

Q(,V) = Z Vil (},‘ = Rm),
1

Flx, y) = Px)[Q(r)  ((x, y) € My).

We consider best uniform approximations of continuous functions from
F[M], where M is some subset of M, .

(a) Suppose I"is a compact subset of [0, 1]. Let /, w e C[0, 1] so that
I(1) < u(7) forevery re I

g1, ¥) = Flop)(n) —u(r)  (rell (x, p)e M),
g-r,z(xs y) - _F(Ax» })(7) + I(T) (e Fs (x, )’) € MO)S
M ={x,p)eMy:g..x,y) <0, g, x,3) <0forevery reI'}.

(b) Let Rand S be k « nand k > m-matrices so that rank(R, S) == k.

px.y) - Rx Sy (5 EE,
M ={(x,y)eE:px, y) = O}

(c) LetIC{l,..., n}.

gj(x: y) = —Xj (1 € I’ (X, y) € E)*
M = {(x, y) e E:gix, y) < 0 for every jeI}.

Let us extend Fand g, ; (re I, j{l, 2}) to E. As we have seen in Section 5
M is regular if it is defined as in (a), (b), and (c).

For (x, y) € M, let

To(x, v) = span{uy ,..., u, , —F(x, V)ty ey —F(x, Py}
and
T(x, p) = {h/Q(y) t he Tyx, )}

Then for (x, yv) e M F'(x, ¥) [E(x, y)] is in:
Case (a), the set of functions g € T(x, y) so that g(+) < 0 if

Flx, y)7) = u(r) and  q(r) =0 if F(x, y)(r) = l(7).
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Case (b), the set of functions ¢ == (3 au; — F(x, v} ¥ br))/Q(») €

T(x, ) so that Ra + Sh == 6.

SO

Case (¢), the set of functions ¢ - (S a;u; —- F(x,») Y b)) /0 y)e Tix, 1)
that ¢; = Qifjeiand x; = 0.

If (X, ¥). (x, ¥) € M then there is 0 ¢ € T(x, ») so that
F(X, §) — Flx, ») = (Q(»); 0 )g.

Since Q(y)r) =~ 0 for every 1€[0, 1] and v N (2 M) has property S.
Hence best approximations are characterized by the local Kolmogoroff
condition. For case (b) that has already been proved in [7].

10.

11.

12,

13.

15.

16.

17.
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