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1. INTRODUCTION 

The purpose of this paper is to develop a unified approach to the charac- 
terization of solutions of constrained and unconstrained approximation 
problems. Several papers have been written on the characterization of 
solutions of special approximation problems with particular types of con- 
straints or without constraints. For uniform approximation a general theory 
has been obtained by using generalized weight functions. Recently a new 
approach via optimization theory has been presented in [I]. The idea is to 
show, first, that the local Kolmogoroff condition is satisfied. Assuming a 
convexity condition, it can be shown that the local Kolmogoroff condition 
implies the Kolmogoroff criterion. Hence best approximations are charac- 
terized by the local Kolmogoroff condition. 

An essential restriction in [I] is the assumption of linear equality constraints 
For uniform approximation problems with nonlinear equality constraints, 
the local Kolmogoroff condition has been deduced in [2] under the assumption 
cd a regularity condition that does not seem to be practical. By deleting 
inequality constraints a more satisfactory regularity condition has been 
studied in [3]. 

Our aim is to treat approximation problems with nonlinear equality 
and inequality constraints in a normed linear space and to present a new and 
satisfactory regularity condition. As in [I], we consider the problem as a 
particular type of optimization problem. 

Applying new kinds of differentiability, a new approach to optimization 
problems has been developed in [4]. A generalization of the well-known 
Lagrange multiplier theorem has been obtained that can be applied to 
convex optimization problems as well as to differentiable optimization 
problems. Here we shall apply this theorem to approximation problems with 
constraints. In particular we obtain new characterization theorems for 
constrained &-approximation problems of continuous functions. 
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2. THE MAXIMUM PRINCIPLE 

We assume that I is a finite set, r, (j E 1) are compact topological spaces. 
E and Z are Banach spaces. and M,, is an open subset of E. Let the mappings 
g,,j : E + R (T E rj , j E I), p: E -* Z, and f: E + R be given. The problem 
is to characterize a (local) minimum of,fon the set 

Let G,(x) m_ max{ g7,j(x) : 7 E rj} (x t E, .j t I). Then the problem is equivalent 
to: find a (local) minimum off on the set {x E M,, : G,(x) .:: 0 (,j E I). p(x) : 01 

Let T > 0. The set of mappings Y: (0, T] mm> E so that lim,-, (r(t):0 0 is 
denoted by H,(E) and H(E) ~~~ UTzJ,, H;(E). 

DEFINITION. Let El and E, be normed linear spaces and x,, E E:‘, 

(a) Let C C E2 and y: El ~--f E, a mapping. A mapping y’(x,): El --f E:, 
is called an H(E,)-variation of y at x,, with respect to C, if /I E E, y’(x,J /z E C 
and r E H(E,) imply the existence of a T > 0 so that (I!t)(y(x, m:m rli -~ r(t)) 
y(X,,)) E c for eVCXy ? E (0, T]. 

(b) The mapping y: El + E2 is called G-differentiable at s,, , if there 
is a continuous, linear mapping y’(x,,): E, -+ & so that for every 11 F E 
lim,,,+(l/t)(y(x,, ---- th) --- y(x,,)) 2-1 y’(x,,)h. 

(c) Let F be a compact topological space. A set of mappings yT : 
El -+ E, (T E r) has property: 

(1) 03 at x0, if there is a neighborhood U of x0 so that the mapping 
7, x --f y7(x) (r x U---f E,) is continuous. 

(2) (Dl) at x,, if 

(i) it has property (D) at x0 , and 
(ii) there is a neighborhood U of x,, so that for every T E r y7 is 

G-differentiable at every x E U and the mapping (7. x. h) + yT’(x)h (r _< U j 
El ---f E2) is continuous. 

(d) A mapping y: El --, E, has property (D2) at x0 , if 

(i) y is continuous at x0 
(ii) there is a neighborhood U of x0 so that y is G-differentiable at 

every x E U and the mapping x H y’(x) (U- E*) is continuous. E* denotes 
the normed, linear space of continuous, linear functionals on E. 

Let us introduce the notation for x0 E M 

rj(x,) = {T E r, : g+cxo) = 0:. (x E E, j E I), 
z, = {j E I : rj(xu) 7’- ~1, 
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and G,‘(x,)h = max(g:Jx,)h : T E Z’$(xJ) (j E Z,, , x E U, h E E) if ( g,,j),Cr, 
has property (Dl) at x,, . 

LEMMA 1. Let j E I, and x,, E M. Suppose ( g7.j)7Erj has property (Dl) at x0 . 
Zf h E E and Gj’(xo)h < 0, then for every r E H(E) there is a ? > 0 so that 
Gj(Xo + th + r(t)) < Ofor every t E (0, ?I. 

Proof. Let h” E E with Gj’(xo)h” < 0, 

6 = max{g:,j(x,) h”: 7 E r$(x,)) < 0. 

For brevity we now omit the subscript j. 
There is a neighborhood U of x0 so that the mapping (T, x, h) -+ g,‘(x)h 

(Z’ x U x E -+ 173) is continuous. Thus there are an open neighborhood 
To of Qx,,), an open, convex neighborhood U, of x0, and an open neigh- 
borhood V, of 6 so that g,‘(x)h < 6/2 for every T E To, x E U, , and h E V, . 
Since T $ To * g,(xJ -C 0 and since r\Z’, is compact, we have 

Let r E H(E). There is a tl > 0 so that x0 + th” + r(t) E U,, and h” + 
(r(t)/t) E V, for every t E (0, tJ. If Z’, # @ then choose t2 E (0, tl] so that 

By the mean value theorem we obtain 

g,(x, + tf5 + r(t)) - g,(xo> = ts,‘(x, + eth + @r(t)) (A + T). 

Thus 
g,(x, + th” + r(t)) - g,(xo) < t8/2 < 0 

for every T E Z’, and t E (0, tJ 

If r = r. then g7(xo + 0% + r(t)) < 0 for every 7 E r and t E (0, tl] and 
the proof is complete. Now suppose r. # r. For 7 E r\r, and t E (0, t,] we 
obtain 

g7(xo + tJi + r(t)> < tg7’(xo + et& + er(t>> (L + *) + p 

G p + t2 1 g,‘(xo + fM + or(t)) (A + +)I < 0, 

hence g7(x,, + td + r(t)) < 0 for every 7 E r and t E (0, t,]. 
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COROLLARY 2. IJ‘the conditions of Lemma 1 are satisfied, then G,‘(x,,) is a 
H(Ej-variation of Gj at x,, with respect to (--- a3. 0). 

Now we apply Theorem II, 2.4 of [4, Maximumprinzip] and obtain 
Theorem 3. Let x, E M. Assume that the sets (gT,,)i-tl-, (,j E I,,) have property 
(Dl) at x,, , p has property (D2) at x, , and the sets (Kl,j)TCr, (,j E I ,I,,) have 
property (D) at x,, . If x,, is a local minimum off’on M, and there is a convex 
H(E)-variation f’(x,) of .f’ at .Y,, with respect to (-co, 0), then there are 
numbers i :>, 0, I, f: 0 (j E I,), and a linear functional (b on Z so that 

[f’(x,,j 17 -1 c I,G,'(s,) h I + ;' p'(x") /7 : 0 
iCl,, 

for every h E E; at least one number i or lj or the functional 5, is difrerent 
from 0 or 0, respectively. 

If p’(x,) is surjective and there is an /q, t E so that Gj’(-Yo)/l,, ~a. 0 for every 
j E I, and p’(x,)/7, = 0, then j ‘-. 0. We call x,, regular if this condition holds. 
M is regular if every x E M is regular. 

3. THE LOC’AI. KOLMOGOROFF CONDITION 

Suppose T is a normed linear space and V is a subset of T. The set of best 
approximations to $1: t T with respect to V is the set 

P[w, V] --= {L+, E V : for every 11 E V 1’ M’ 1’ 1; -; )) II’ l’,, ,). 

Let Z,.() be the set of linear function& 1 on T such that /(n v,,) l\’ L’,, 1 
and / l(z), < /i z 1) for every z c T. The global Kolmogoroff criterion is. If V is 
convex then c,, E P[M’, V] if and only if 

min(l(l. 2.“) t 5%: I c LT,,. ?,,I 0 

for every L: E V. For an elementary proof without using extremal functionals 
see [4]. 

Let E be a Banach space and let F: E-F T be a mapping. We consider 
the approximation by elements of the set V F[M] where M is defined as 
in Section 2. In this Section we assume that x,, E M, F is FrCchet diff‘erentiable 
at x0 , the sets ( gTJTtr, and the mappingp satisfy the conditions of Theorem 3. 
Let,f: E-j IR be defined by .f(x) : = !I w -- F(x)11 (x E E). Then 2;,, L F,,(x,) is a 
best approximation to u’ with respect to F[M], if and only if x,, is a minimum 
offon M. Applying [4, Lemma II, 3.2 and Lemma II, 4.51 we obtain 

LEMMA 4. The mapping J’(x,): E---f R de$ned bj 

f’(x,)h mm= 1; w ~ F(x,,) - F’(x,)h /I ~. ‘( M’ - F(x,)ll (/7 E E) 

is a convex H(E)-variation off at x, with respect to (--03, 0). 
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Let E(x,,) = (h E E :p’(x,)h = 0, G,‘(x,)h < 0 (j E lo)). F’(x,) [E(x,)] is 
convex. Thus Corollary 2 and Theorem 3 imply 

THEOREM 5. If v0 = F(xO) is a best approximation to w and x,, is regular, 
then 0 E P[w - F(x,), F’(xO) [E(x,,)]] andfor euery h E E(x,) 

min{l o F”(x,,) h: I E Z;-,} ,< 0 

(local Kolmogoroflcondition). 

If we particulaire Theorem 5 to the uniform approximation of continuous 
functions, we obtain a result of Hoffmann 121; in view of Ljusternik’s theorem 
(see [4]) our regularity condition implies the condition used in [2] so it is 
more restrictive, but it seems to be easier to apply. 

We point out that the general theory developed in [4) is as well applicable 
to approximation problems with asymmetric norms as the one used in [S]. 

4. THE @OF CONVEX HULL THEOREM 

In addition to the assumptions of Section 3 we suppose that there are 
elements e, ,..., e, E E with span{F’(x,,) e, ,..., F’(x,,)e,} = F’(x,,) [P(x,,)] where 
P(x,J = (h E E: p’(x,)h = 0). Let &(x,,) be the set of vectors -( g:,i(x,,)el,..., 
g:,j(x,,)e,) with T E rj(xO) and j E 1, and ,4(x,) the set of vectors (1 .P)(x,,)el ,..., 
I . F’(x,,)e,) with I E Z,,,-,, . Suppose that 0 $ con{d(x,,) u Uie10 A?(x,,)}. 
Applying the separation theorem there is an k E P(x,,) so that 1. F’(x,)h > 0 
for every I G Z,-,, and g:,j(x,)h < 0 for every 7 E Fj(x,) and j E I, , Hence 
h E E(x,) which contradicts Theorem 5 if x0 is regular. But if x0 is regular 
then 0 $ con{lJjsr, A&)}. So we have proved. 

Theorem 6. If v,, = F(x,) is a best approximation to w and x,, is regular, 
then 0 can be written as a convex combination of elements of the set 
A(x,,) u lJiol, A&) with at least one point from the set A(x,) included 
nontrivially. 

5. REGULARITY 

In this section it will be shown that many constrained approximation 
problems are regular. 

EXAMPLE 1. Linear equality or inequality constraints on parameters [6-g]. 

(a) E = IP, 2 = [w”, M = {x E E : Ax = b), A is a real m x n- 
matrix, b E UP. M is regular if A is surjective (rank A = m). 

(b) E = Iw”, J1 C {I ,.,., n}, J2 C {l,..., n}, aj (j E J,) are positive real 
numbers, M={xEE:x~BO ifjEJ,, lxj/ <ai ifjEJ2}. Mis regular. 
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EXAMPLE 2. Monotone approximation [lo]. K E N,, n E N, cl ,..., 
u, E P[O, I], I = {j E Z : 1 <j < K + 1). Let r, ,..., I’,,, be closed subsets 
of [0, l] and Q...., ex.E:{-l, I}. Suppose zr,,...,~~EC[0, l] are given: 
E :-: [w?L: 

(a) K = 0, span(z:, ,..., r:,j IS a Haar space. Then there is a 6 E span 
{q ,..., 0,) so that q&t) < 0 for every t E [0, I]. Hence M is regular. 

(b) K 3 1, span {ul ,..., z*,) = P-l (polynomials of degree <n - 1). 

Then there is a 6 E Pn-l so that l $(J)(t) < 0 for every t E [0, l] and j mu= 
0, l,..., K (see [lo]). Hence M is regular. 

EXAMPLE 3. Restricted range approximation [5, 11-151. IZ E N, z+ ,..., z’, c- 
C[O, l] linear independent. Let r be a closed subset of [0, 11, E em iw”, 
1=(1,2},andI,uEC[O, I]: 

&,1(X, >‘..> Y ) = i X,2’,(T) -- U(T) rr (7 E r, s t E), 
1 

&,2(-G ,..., x,) = l(7) - 1 &J;(T) (T E r, x t E). 

Suppose 1(~) < U(T) for every T E r and assume that at least two points X, 
X EM are given so that Cy (x, - X,) v, f 0. Let V = span{q ,..,, P,:. For 
v~Vthemappingo,:r+{-l,O, 1)isgivenby 

if V(T) = U(T) 
if L’(T) = l(T) 

if l(T) <: L.(T) < U(T). 

Suppose v is a Haar space. Let v E I/, l(T) < c’(T) < u(T) for every 7 E r 
and 0 < To < “’ < TT, ::; 1. Then there is a j ~(0, I,..., n - I} so that 
%(Tf) %(Tf+d + - 1. That means v “alternates” at most y1 times. Then there 
is a 6 E v so that s(T) < 0 if u(T) z= U(T) and 6(T) > 0 if V(T) = l(T) (use a 
theorem of Krein (see [26]) on polynomials of Haar spaces with prescribed 
zeros). Then A4 is regular. 

A similar argument shows that the problem is regular if rational restricted 
range approximation is considered. If l(T) < U(T) is assumed as in [16-l 81 
we do not know if the problem remains regular. 

EXAMPLE 4. Interpolatory constraints [3, 19-241. 
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When considering nonlinear equality constraints only our regularity 
condition is more general than the condition used in [3]. Hence problems 
with interpolatory constraints, as considered in [3], are regular. 

EXAMPLE 5. Interpolatory constraints and inequality constraints on 
parameters. 

Let 12 E N, r E N. E = R”, 2 = R’, u1 ,..., u, E C[O, I] linear independent 
so that span{u, ,..., u,> isaHaarspace,O<t,<~~~<t,~1;a,,...,a,~lR. 
Letg,(x, ,..., x,) = V-X~ (Jo {l,..., IZ}, x E E)P(x~ ).a.) x,) = (C xjUj(tl) - ~1 )a..) 
C xjuj(tr) - a,) (x El?). Let JC{I,..., n} so that x E M j $ J imply xj = 0 
and there is a Z E M so that Xi :> 0 for every j E J. 

Let x,, E M and h = X - x0 . p’(xJ is surjective, $(x0) h = 0, gi’(x,)h = 
--hj = -jsj < 0 ifj E I0 . Hence M is regular. 

6. CHARACTERIZATION OF SOLUTIONS 

If I;[M] is an ol-sun(see[25]), then best approximations are characterized 
by the Kolmogoroff criterion. A sufficient condition for &‘[M] to be an cu-sun 
is a property, we call it property S, used in [25]. If this condition is satisfied, 
then best approximations are characterized by the local Kolmogoroff 
condition. 

DEFINITION. (F, M) has property S, if the following holds. Suppose U, 
%~aw, D f 210, w E T, and Z(U - UJ > 0 for every I E &,-, . Then there 
are x0 E M, h E E(x,), so that I;(x,)) = z+, and 1 . P’(x,,)h > 0 for ebery I E ,E,-, . 

If F is linear, p and g,,j (T E r, j E I) are linear, then (F, M) has property 8. 
In [l-3, 5, 9-11, 13, 14, 19,20, 241 linear uniform approximation problems 
with linear constraints are studied. For those problems regularity has been 
proved in Section 5. Since in these problems (F, M) has property S, best 
approximations are characterized by the local Kolmogoroff condition. 
Our result implies furthermore that for linear &-approximation problems 
with linear constraints this statement equally holds. We drop the detailed 
presentation of these results. 

7. APPLICATIONS TO RATIONAL APPROXIMATION 

Let n, m E N. Let u1 ,..., U, E C[O, l] and u1 ,..., u, E C[O, l] be two sets 
of linear independent functions: 

N = 
1 
y E UP: f yjuj(t) > 0 for every t E [0, I] , 

1 I 



310 WOLFGANG WARTH 

E = IR” x BP, M,, =- [w” :; N. Let the mappings P: Rn --f C[O, I], Q: 
UP - CIO, 11, and P: M,, - C[O, 11 be defined by 

We consider best uniform approximations of continuous functions from 
F[M], where M is some subset of M,, . 

(a) Suppose I’ is a compact subset of [O, I]. Let I, u E C[O, I] so that 
Z(T) < U(T) for every 7 E 1: 

(b) Let R and S be k x 11 and k >: m-matrices so that rank(R, S) = k-. 

(c) Let IC {l,..., n}. 

gj(X, Y> = px.i (.j E 4 (4 Y> E El. 
M = {(x, y) E E : gj(x, y) < 0 for every .i E 1). 

Let us extend F and g,,, (7 E r, ,j E (1, 2)) to E. As we have seen in Section 5 
M is regular if it is defined as in (a), (b), and (c). 

For (x, y) E MO let 

and 

T,(x, y) = span{u, ,..., tl, , --F(x, 49&l ,..., --F(x, JI)L’,,~ 

Then for (x, y) E MF’(x, y) [E(x, y)] is in: 

Case (a), the set of functions q E T(x, y) so that q(T) < 0 if 

FCC Y>(T) = 4~) and 4(T) 2 0 if F(x, y)(7) == f(7). 
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Case (b), the set of functions 4 ~7 (C ajUj -- F’(x, J’) z b,Ltj)/Q(J9) E 
T(x, ~1) so that Ra + Sb y- 0. 

Case (c), the set of functions (1 (C aju,; - F(x, I’) C hjL:;)/Q( I’) E T(x. -1”) 
SO that aj _; 0 ifj E I and Xj my 0. 

If (2, j). (x, J) E M then there is :t q t T(x, .I)) so that 

F(.T, J) --- f-(x, J’) _ (Q(y,l’Q( J,)q. 

Since Q(y)(t) ,-. 0 for every t E [O, I] and ~7 t N (1.1 ;M) has property 5’. 
Hence best approximations are characterized by the local Kolmogoroff 
condition. For case (b) that has already been proved in [7]. 

REFERENCES 

I. K. R. GEHNER, Characterization theorems for constrained approximation problems 
via optimization theory, J. Approximation Theory 14 (1975). 51--76. 

2. K. H. HOFFMANN, Zur Theorie der nichtlinearen TschebyschefT-Approximation mit 
Nebenbedingungen, Nwzer. Math. 14 (1969) 24-4 I 

3. G. A. GISLASOV A?;D H. L. LOEB, Nonlinear Tchebychef approximation with con- 
straints, J. Approxin~ation Tiicwq~ 6 (1972), 291-300. 

4. J. WERNER, W. WARTH, AND A. KIRSC-H, Notwendige Optimalit~tsbedingungen, ill 
“Lecture Notes in Economics and Mathematical Systems,” Springer, Berlin, to appear. 

5. R. J. DUFFIN AND L. A. KARLOVITZ, Formulation of linear programs in analysis I: 
Approximation theory, SfA~zrl J. Appl. Math. 16 (1968), 662-675. 

6. B. BROSOMSKI, ijber Tschebyscheffsche Approximationen mit linearen Nebenbe- 
dingungen, Mat/z. Z. 88 (1965), IO5-128. 

7. C. GILORMINI, Approximation par fractions rationnclles g&ralistes dont les coefficients 
vCrifient des relations linkaires, C. K. Acad. Sci. fari,r Scar. A 264 (1967), 795-798. 

8. H. WERNER, Tschebyscheff approximation with sums of exponetials, if? “Approximation 
Theory” (A. Talbot, Ed.), Academic Press, New York, 1970. 

9. J. A. ROULIER ANI) G. D. TAYLOR, Uniform approximation by polynomials having 
bounded coefficients, Abh. Math. Scwz. Utziu. Hamburg 36 (1971), 126-l 35. 

10. G. G. LORENTZ AND K. L. ZELLER, Monotone approximation by algebraic polynomials, 
Trans. Amer. Math. Sot. 149 (1970), l-18. 

11. P. J. LAURENT, Approximation uniforme de fonctions continue sur un compact avec 
conttaintes de type int?galit&, RIRO 1 (1967), 81-95. 

12. R. DEVORE, One-sided approximation of functions, J. Approximatiorz Tizcwy 1 (196X), 
1 l-25. 

13. G. D. TAYLOR, On approximation by polynomials having restricted ranges, SIAM 
.I. Nunzer. Anal. 5 (1968), 25&268. 

14. G. D. TAYLOR, On approximation by polynomials having restricted ranges 111, J. 
Math. Anal. Apppl. 27 (1969), 241-248, 

15. H. L. LOEB, D. G. MOURSUND, AND G. D. TAYLOR, Uniform rational weighted approxi- 
mation having restricted ranges, J. Approximation Theory 1 (1968), 401-411. 

16. L. L. SCHUMAKER AND G. D. TAYLOR, On approximation by polynomials having 
restricted ranges II, SIAM J. Numer. Anal. 6 (1969), 31-36. 

17. G. D. TAYLOR, Approximation by functions having restricted ranges: equality case, 
Numer. Math. 14 (1969), 71-7X. 



312 WOLFGANG WARTH 

18. W. SIPPEL, Approximation by functions having restricted ranges, in “Approximation 
Theory” (G. G. Lorentz, Ed.), Academic Press, New York, 1973. 

19. S. PASZKOWSKI, Sur I’approximation uniforme avec des nceuds, Ann. Mon. Math. 
2 (1955), 118-135. 

20. F. DEUTSCH, On uniform approximation with interpolatory constraints, J. Math. 
Anal. A& 24 (1968), 62-79. 

21. C. GILORMINI, Approximation rationnelle avec des nceuds, C. R. Acad. Sci. Paris 
Ser. A 263 (1966), 286-287. 

22. C. GILORMIM, ContinuitC de l’approximation rationnelle de Tchebycheff avec des 
nceuds, C. R. Acaa! Sci. Paris Ser. A 264 (1967), 359-360. 

23, A. L. PERRIE, Uniform rational approximation with osculatory interpolation, J. 
Cornput. System Sci. 4 (1969), 509-522. 

24. H. L. LOEB, D. G. MOURSUND, L. L. SCHUMAKER, AND G. D. TAYLOR, Uniform general- 
ized weight function polynomial approximation with interpolation, SIAM J. Numev. 
Anal. 6 (1969), 283-293. 

25. B. BROSOWSKI AND R. WEGMANN, Charakterisierung bester Approximationen in 
normierten Vektorgumen, J. Approximation Theory 3 (1970), 369-397. 

26. S. KARLIN AND W. J. STWDDEN, “Tchebycheff Systems: With Applications in Analysis 
and Statistics,” Interscience, New York, 1966. 


