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Niemann–Pick C disease (NPC) is a neuro-visceral lysosomal storage disorder mainly caused by genetic de-
fects in the NPC1 gene. As a result of loss of NPC1 function large quantities of free cholesterol and other
lipids accumulate within late endosomes and lysosomes. In NPC livers and brains, the buildup of lipids cor-
relates with oxidative damage; however the molecular mechanisms that trigger it remain unknown. Here
we study potential alterations in vitamin E (α-tocopherol, α-TOH), the most potent endogenous antioxi-
dant, in liver tissue and neurons from NPC1 mice. We found increased levels of α-TOH in NPC cells. We ob-
served accumulation and entrapment of α-TOH in NPC neurons, mainly in the late endocytic pathway.
Accordingly, α-TOH levels were increased in cerebellum of NPC1 mice. Also, we found decreased mRNA
levels of the α-TOH transporter, α-Tocopherol Transfer Protein (α-TTP), in the cerebellum of NPC1 mice.
Finally, by subcellular fractionation studies we detected a significant increase in the hepatic α-TOH content
in purified lysosomes from NPC1 mice. In conclusion, these results suggest that NPC cells cannot transport
vitamin E correctly leading to α-TOH buildup in the endosomal/lysosomal system. This may result in a de-
creased bioavailability and impaired antioxidant function of vitamin E in NPC, contributing to the disease
pathogenesis.

© 2011 Published by Elsevier B.V.
1. Introduction

Niemann–Pick type C (NPC) disease, an autosomal recessive and
neurodegenerative lipidosis, is mainly caused by mutations in the
NPC1 gene [1]. NPC1 participates in cholesterol trafficking and egress
from the endosomal/lysosomal compartment to the cellular metabol-
ic active pool [2–5]. NPC1 mutations lead to accumulation of unester-
ified cholesterol and other lipids within lysosomes [6–10]. NPC
patients present progressive neurodegeneration with increased apo-
ptosis, especially of the cerebellar Purkinje cells [11–19]. Previous
work from our group demonstrates that oxidative stress is the main
TOH,α-tocopherol (vitamin E);
ug; SHB, Sucrose-HEPES Buffer;
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upstream stimulus activating neuronal apoptosis in NPC neurons
[19,20] and that oxidative damage is present in livers of NPC mice
(unpublished results from our lab).

Vitamin E availability is crucial for antioxidant defenses in the
organism. The most bio-active form of vitamin E is α-tocopherol
(α-TOH) [21,22]. The cerebellum, which is one of the most afflicted
brain areas in NPC disease, is particularly sensitive to oxidative dam-
age. Recently, Ulatowski et al. have reported altered vitamin E status
in NPC mice [23], suggesting that levels of this antioxidant could be
involved in the pathological mechanisms of NPC disease.

Interestingly, vitamin E deficient mice present higher levels of
neuroprostanes (a lipid peroxidation marker) in cerebellum com-
pared with other zones of the CNS. This suggests that the cerebellum
is more vulnerable to the lack of vitamin E than other brain areas [24].
Moreover, patients suffering from Ataxia with isolated Vitamin E
Deficiency (AVED), a neurodegenerative disease with autosomal
recessive inheritance caused by mutations in the Ttpa gene which en-
codes the α-TOH specific intracellular transporter [25,26], present
sensory neurodegeneration and cerebellar ataxia, just as NPC patients
do [26]. In AVED, there is an impairment of α-TOH incorporation into
the VLDLs secreted by the liver, however the intestinal absorption of
the dietary vitamin E and the packaging of α-TOH into chylomicrons
are normal [25,26]. The murine model for this disease (Ttpa deficient
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mice) shows ataxia and retinal degeneration after the first year of life,
symptoms can be reversed by vitamin E dietary supplementation
[27]. NPC mice locomotor skills are slightly improved with vitamin
E dietary supplementation [28] even though the mice present a high
oxidative damage. NPC patients present decreased antioxidant capac-
ity (expressed as Trolox equivalents) and reduced Coenzyme Q10 in
serum, which indicates a decrease in the antioxidant defenses [29].
Therefore, is possible that the minimal improvements observed by
vitamin E treatments in NPC mice are due to its decreased bioavail-
ability in the NPC cells.

Due to its lipid nature, α-TOH intracellular transport requires the
activity of several proteins that could also participate in the cholester-
ol trafficking pathways [30–36]. Furthermore, NPC1L1 protein, which
has extensive homology with NPC1 [37], participates in α-TOH
and cholesterol transport into enterocytes. Also this process is inhib-
ited by ezetimibe, a well known inhibitor of cholesterol absorption
[38–42].

Based on these antecedents we propose that the NPC1 transport
pathway participates in α-TOH intracellular trafficking. We found
increased α-TOH staining levels in 8 week-old NPC1 mice cerebellum
compared to WT mice that correlates with increased levels of several
oxidative stress markers, including expression levels of some classic
oxidative stress response genes and nitrotyrosine, findings that
were previously reported by our group [20]. Moreover, we observed
accumulation and entrapment of α-TOH in NPC neurons, mainly in
the late endocytic pathway. Accordingly, we observed an increase in
α-TOH levels in NPC1 mice cerebellum. Furthermore, we have found
decreased mRNA levels of the α-TOH transporter, α-Tocopherol Trans-
fer Protein (α-TTP), in the cerebellum of NPC1 mice. Finally, by subcel-
lular fractioning studies we found an increase in the hepatic α-TOH
content in purified lysosomes from NPC1 mice. Together these results
strongly suggest vitamin E trafficking alterations in NPC cells that lead
to vitamin E accumulation and entrapment into the endocytic pathway
which may result in a decreased bioavailability and antioxidant
function of vitamin E in other cell compartments, contributing to
the pathology of NPC disease.

2. Materials and methods

2.1. Animals

Sprague–Dawley rats were obtained from the animal facility of
our Biological Science Faculty. BALB/c mice carrying a heterozygous
mutation in the Npc1 gene were kindly donated by Dr Peter
Pentchev. Npc1+/+ (Wild-type; WT) and Npc1−/− (NPC1) geno-
types were identified using a PCR-based screening as described
previously by Amigo et al. [43]. WT and NPC1 male mice of 6 and
8 week-old were used in the experiments. All protocols were
approved by our institution's review board for animal studies and
were in agreement with the US Public Health Service Policy on
Humane Care and Use of Laboratory Animals recommended by
the Institute for Laboratory Animal Research in its Guide for Care
and Use of Laboratory Animals.

2.2. Primary rat and mice hippocampal cell culture

Hippocampi from Sprague–Dawley rats and NPC1 mice at embry-
onic day 18 were dissected, and primary hippocampal cultures were
prepared as described by Alvarez et al. [44]. Hippocampal cells were
seeded in poly-lysine-coated wells and maintained in Neurobasal
medium supplemented with B27 (Invitrogen, Carlsbad, CA, USA)
plus antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin)
for 5 days before the cell treatments. Glial proliferation was inhibited
by adding 2 μM Cytosine-Arabinoside (AraC) on the second day and
removed the next day.
2.3. U18666A treatment

Five days (DIV) cultured rat hippocampal cells were treated with
U18666A (Enzo Life Sciences Inc. Farmingdale, NY) at 0.5 μg/ml for
24 h.

2.4. Filipin staining

Cells were fixed in 4% paraformaldehyde/4% sucrose in PBS for
30 min. After, cells were washed with PBS and treated with 2.5 mg/ml
glycine for 20 min. Finally cells were treated with 25 μg/ml Filipin
(Sigma Chemicals Co, St. Louis, MO) for 30 min, washed with PBS and
covered with Fluoromount-G (SouthernBiotech, Birmingham, AL, USA).
Images were captured with an Olympus BX51 microscope (Olympus,
Tokyo, Japan) and analyzed with the Image-Pro Express program
(Media Cybernetics, Bethesda, MD, USA).

2.5. Immunofluorescence on coverslips

Hippocampal cells were plated on poly-lysine-coated coverslips
(30,000 cells/cover). After 6 days in Neurobasal/B27, prior fixation
and immunostaining, the cells were stained with LysoTracker Red
(1 μM; DND-99, Invitrogen, Carlsbad, CA) for 2 h at 37 °C. Later, the
cells were fixed in 4% paraformaldehyde/4% sucrose in PBS and per-
meabilized with 0.02% Triton X-100. Then, cells were blocked with
5% horse serum in PBS. Immunostaining was done using anti-Lamp1
(1:250; 1D4B, Abcam, Cambridge, MA), anti-TfR (1:120; Zymed,
Invitrogen Detection Technologies, Carlsbad, CA), and anti-α-TOH
(1:500; US Biological, Swampscott, MA). Anti-rabbit-Alexa Fluor-
488 (1:5000), anti-mouse-Alexa Fluor-594, anti-mouse-Alexa Fluor-
488 (1:5000) and streptoavidin-Alexa Fluor-488 (1:1000) from
Molecular Probes, Invitrogen Detection Technologies, Carlsbad, CA,
were used as secondary antibodies. Fluorescent images were cap-
tured with a confocal Olympus microscope or with an Olympus
BX51 microscope (Olympus, Tokyo, Japan) and analyzed with the
Image-Pro Express program (Media Cybernetics, Bethesda, MD,
USA). The results are shown as the average of 3 independent experi-
ments per condition. Colocalization analyses were done as follows:
Images were captured with a confocal Olympus microscope using a
100× objective with a 1.4 numerical aperture and 0.3 μm successive
focal planes. The out-of-focus light was removed by a 3D iterative
deconvolution algorithm and the Mander's coefficients were deter-
mined using the JACoP application (ImageJ).

For pixel quantification the Multi Measure application (ImageJ)
was used. For cellular culture images quantification each neuron
was taken as an independent region of interest (ROI). Then each
ROI was averaged and divided by the total number of quantified neu-
rons. For tissue images, the whole image was taken as a ROI and a
basal intensity was determined and used as a threshold for all the
images; then, the final intensities were averaged and divided by the
quantified area.

2.6. Tissue immunofluorescence procedures

Mice (6 and 8 week-old)were anesthetizedwith xylazine/ketamine
(0.12 and 0.8 mg/10 g body weight, respectively) and perfused with 4%
paraformaldehyde in PBS. Cerebellum and livers were removed and
postfixed overnight at 4 °C, followed by 30% sucrose in PBS at 4 °C over-
night, then were cut in 40 μm coronal sections and 12 μm sections,
respectively, with a cryostat (Leica CM1850) at −20 °C. 4–5 slices by
animal were stained by experiment. We examined at least 4 animals
per condition.

For immunofluorescence the specific antibodies used were: anti-
Cathepsin B (1:200), anti-Calbindin (1:100) from Sigma Chemicals
Co, St. Louis, MO; anti-α-TOH (1:500; US Biological, Swampscott,
MA) and Phalloidin-TRITC (1:1000; Invitrogen, Carlsbad, CA). The
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slices were incubated with primary antibodies in PBS with 0.2%
gelatin/0.4% TritonX-100 in PBS, then slices were incubated with
secondary antibodies anti-rabbit-Alexa Fluor-488 (1:5000); anti-
mouse-Alexa Fluor-594, anti-mouse-Alexa Fluor-488 (1:5000) and
anti-goat-Alexa Fluor-633 (1:5000) from Molecular Probes, Invitrogen
Detection Technologies, Carlsbad, CA. Fluorescent images were
captured with a confocal Olympus microscope or with an Olympus
BX51 microscope (Olympus, Tokyo, Japan) and analyzed with Image-
Pro Express (Media Cybernetics, Bethesda, MD, USA). The images in a
given experiment were always acquired using the same parameters.

2.7. Real-time PCR analysis

Total RNA from cultured rat hippocampal cells, cerebellum and
liver was extracted, pretreated with DNAse (Invitrogen), and then
reverse transcribed to cDNA using random primers (Invitrogen).
Real-time PCR was then performed (model AB7500, Applied Biosys-
tems, Foster City, CA, USA). The PCR conditions and the gene-specific
primer sequences are provided in the supplementary material section.
Expression in mice tissue and rat hippocampal cells were normalized
using the 18S gene. Data from the PCR reactions were analyzed using
the mathematical model described by Pfaffl [45].

2.8. Mice liver lysosomes isolation

Livers were homogenized in 4 ml of SHB (20 mM HEPES pH 7.2;
320 mM sucrose; 1 mg/ml Leupeptin, 1 mM PMSF and 1% NAC). Tis-
sues were mechanically homogenized using a glass/teflon Potter
Elvejhem homogenizer and kept at 4 °C. A sample of each fraction,
including the homogenate, was stored to be used for the α-TOH con-
tent determination by HPLC-EC. The homogenates then were diluted
to 10 ml with SHB and centrifuged at 2500 rpm for 10 min. The super-
natant was removed (Extract 1) and the pellet was resuspended in
5 ml of SHB, and centrifuged at 2200 rpm for 10 min. Pellets were dis-
carded and the obtained supernatant (Extract 2) was mixed with the
Extract 1 (Total Extract). Total Extracts were centrifuged at 2200 rpm
for 10 min. Pellets (Nuclear Fraction) were resuspended in 1 ml of
SHB and the supernatants were centrifuged at 8000 rpm for 10 min.
The new pellets (Mitochondrial Fraction) were resuspended in 1 ml
of SHB and the supernatants were centrifuged at 12,000 rpm for
45 min. The obtained pellets (Lysosomal Fraction) were resuspended
in 1 ml of SHB and supernatants (Soluble Proteins) were stored. All
Fig. 1. U18666A-inducedα-tocopherol accumulation in neurons. Control (CT) and U18666A
and α-tocopherol (αTOH) accumulation was detected by filipin staining (A) and immunoflu
nofluorescence are shown (magnification: 2). (C) The quantitation of α-TOH fluorescence i
the procedures were done at 4 °C and for the centrifugations a Sorvall
centrifuge with a Sorvall SM-24 rotor was used (Thermo Fisher Scien-
tific Inc., Waltham, MA, USA).

2.9. HPLC-EC α-TOH content measurements

Samples of approximately 0.075 g of frozen tissue (brain, cerebel-
lum and liver) were mechanically homogenized, placed in 0.5 ml
homogenization buffer (20 mM Tris pH 7.2; 2 mM MgCl2; 0.25 M
sucrose; 1 mg/ml Leupeptin; 1 mM Pepstatin; 1 mM PMSF and 0.1%
BHT) and were mechanically homogenized. Tissues were mechanical-
ly homogenized using an Ultraturrax (Kinematica, Littau, Suiza).
Protein concentration was measured as described by Bradford [46].
α-TOH content was determined by reverse phase HPLC-EC as described
byMotchnik et al. [47]. Briefly, a 100 μl sample was resuspended in eth-
anol and mixed briefly. Afterwards, hexane was added. The solution
was mixed, centrifuged for 15 min at 1000 g, and the upper hexane
layer was transferred to a glass tube; the hexane extraction procedure
was repeated twice. Hexane extracts were pooled and dried at room
temperature under a stream of nitrogen, and the resulting pellet
was dissolved in methanol/ethanol (1:1, v/v). Samples were then sep-
arated in columns using 20 mM Lithium Perchlorate in methanol/H2O
(96:4, v/v) as mobile phase.

2.10. Statistical analysis

Mean and standard error of the mean values with the correspond-
ing number of experiments are indicated in the figure legends. Prob-
ability values of the data for Student t-tests and ANOVA tests with
Bonferroni's post-test were obtained using the GraphPad Prism 5
(Graph Pad Software, Inc., San Diego, USA).

3. Results

3.1. U18666A treatment triggers cholesterol and α-TOH accumulation

We treated primary rat hippocampal neurons with U18666A
(U18) using a concentration of 0.5 μg/ml for 24 h as previously
described by Karten et al. [48] and us [20]. As expected, this drug
induced intracellular cholesterol accumulation (assessed by filipin
staining and cellular cholesterol content measurement) (Fig. 1A and
(U18)-treated (0.5 μg/ml for 24 h) rat hippocampal neurons were fixed, and cholesterol
orescence (B), respectively. Image size: 3.6 pixels/nm. Amplifications of α-TOH immu-
ntensity of 7 images. Results are shown as mean±SEM. *** pb0.001.
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Supplementary Data) without inducing cell death (see Supplementary
Data).

Next we characterized the commercial antibody against BSA/α-
TOH and demonstrated its specificity (see Supplementary Data).
Since this antibody has a high affinity for α-TOH we used it to assess
the cellular levels of α-TOH by immunofluorescence. With this anti-
body we found a 3-fold increment of the α-TOH signal in U18-
treated neurons compared to control (untreated) neurons (Fig. 1B
and C).

This warranted further investigation. To determine the subcellular
localization of α-TOH in the U18-treated neurons we performed dou-
ble immunofluorescences against α-TOH and: i) transferrin receptor
(TfR, early and recycling endosomes marker); ii) Lamp1 (endosomes
and lysosomes marker) and; iii) LysoTracker (lysosomes marker)
(Fig. 2A). By colocalization analyses, using Mander's coefficients
which measure the proportion of overlapping signal of each channel
with the other, we determined the proportion of vesicles that contain
Fig. 2. Colocalization analysis betweenα-tocopherol and endocytic pathway markers in U18
Transferrin Receptor (red) immunofluorescences (TfR, left), α-TOH (red) and Lamp1 (green
sosomal marker LysoTracker (red) of U18666A-treated rat hippocampal neurons (0.5 μg/ml
nification of the cytoplasm. Magnification: 7.9. B. Quantitation of the colocalization betw
coefficients of 5 images. The value of the not hatched bar corresponds to the left axis an
pb0.05; ** pb0.01. C. Confocal fluorescence images showing Lamp1 (green) and α-TOH (red
(0.5 μg/ml for 24 h). Image size: 5.6 pixels/nm. D. Quantitation of the colocalization betwe
hatched bar corresponds to the left axis and the hatched bar corresponds to the right axis.
α-TOH (left axis, Fig. 2B) and the proportion of total intracellular
α-TOH contained within vesicles (right axis, Fig. 2B). The right axis
value will be higher if there is more α-TOH contained within the
respective vesicles and the left axis value will be higher if there are
a greater number of vesicles that contain α-TOH. We found that
α-TOH was distributed between all the compartments (Fig. 2B). For
the TfR positive vesicles, both ratios were similar (Fig. 2B, red bars).
The Lamp1 positive vesicles contained more α-TOH from its total
compared with other compartments (Fig. 2B, hatched blue bar)
even though not all Lamp1 positive vesicles contained α-TOH
(Fig. 2B, blue bar). Finally, for the LysoTracker positive vesicles the
proportion of vesicles from the total pool that contained α-TOH
(Fig. 2B, green bar) was greater than the proportion of the total
α-TOH contained within the LysoTracker positive vesicles (Fig. 2B,
green hatched bar). In conclusion, α-TOH accumulates mainly in
Lamp1 positive vesicles; however, almost all LysoTracker positive
vesicles contain α-TOH. Nonetheless, we cannot discard the presence
666A-treated neurons. A. Confocal fluorescence images showing α-TOH (green) and the
) immunofluorescences (center) and α-TOH (green) immunofluorescence with the ly-
for 24 h). Image size: 5.6 pixels/nm. The lower left corner in each figure shows a mag-
een α-TOH and the different markers of the endocytic pathway through Mander's

d the hatched bar corresponds to the right axis. Results are shown as mean±SEM. *
) immunofluorescences of Control (CT) and U18666A-treated rat hippocampal neurons
en α-TOH and Lamp1 through Mander's coefficients of 5 images. The value of the not
Results are shown as mean±SEM. ** pb0.01; *** pb0.001.

image of Fig.�2
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of α-TOH in other compartments that we have not evaluated, such as
the mitochondria.

When we compared α-TOH colocalization with Lamp1 in control
and U18-treated neurons (Fig. 2C), we found that a significant
increase in both Mander's coefficients occurred. This result indicates
that U18 treatment increases the number of Lamp1 positive vesicles
that contain α-TOH (Fig. 2D, non-hatched bars) and an increase in
the amount of α-TOH localized within those vesicles (Fig. 2D, hatched
bars). This result suggests that the U18 treatment induces α-TOH
accumulation in late endosomes.

3.2. α-TOH accumulation in NPC1 deficient primary neurons

After these analyses in the pharmacological model of NPC we
focused our study in the genetic model of the disease, the BALB/c
npcnih mice (NPC1 mice). As previously described [13], NPC1 neurons
presented morphological abnormalities with thicker and shorter
prolongations, an enlarged axon shaft and ectopic dendrites (Fig. 3).
As expected, NPC1 hippocampal neurons accumulated intracellular
cholesterol, determined by filipin staining (Fig. 3D). As a control we
performed immunofluorescences against NPC1 and, as expected, we
found no signal in the NPC1 neurons (Fig. 3E). More importantly,
when we evaluated α-TOH levels by immunofluorescence we found
that the α-TOH signal was increased in NPC1 neurons compared
with wild-type (WT) neurons (Fig. 3C and F).

3.3. Cerebellar α-TOH accumulation in NPC1 mice

The most affected organ in NPC disease is the cerebellum. There-
fore, we performed double immunofluorescences against α-TOH
and calbindin, a marker for Purkinje cells (Fig. 4). As expected, the
NPC1 cerebellum tissue was deteriorated compared with the WT
cerebellum tissue in the 6 and 8 week-old mice (Fig. 4B, E and H).
This was evidenced by the disorganization of the cerebellum tissue
as ectopic calbindin positive cells appeared in the nuclear and granu-
lar layer in the 8 week-old NPC1 mice (Fig. 4H). There was also a loss
in the number of Purkinje cells in the 6 week-old NPC1 mice which
was even greater in the 8 week-old NPC mice (Fig. 4B, E and H).
More significantly, α-TOH levels were increased in the cerebellum
of the NPC1mice (Fig. 4A, D and G). When we compared the cerebella
from 6 week-old NPC1 mice versus 8 week-old NPC1 mice we noticed
Purkinje cells loss and ectopic calbindin positive neurons in 8 week-
old mice tissue. Even though, a sub-set of calbindin positive neurons
remained positive for α-TOH in 8 week-old NPC1 mice (Fig. 4D–I).
Fig. 3. Intracellular accumulation of α-tocopherol in NPC1 mice hippocampal neurons. Wild
(blue; A, D), immunostainedwith anti-NPC1 (red; B, E) and anti-α-TOH (green; C, F). Image size:
2.9).
3.4. Hepatic α-TOH accumulation in NPC1 mice

Livers are severely damaged in NPC disease [1]. To study possible
hepatic α-TOH alterations we performed triple immunofluorescences
against α-TOH, cathepsin B and actin in liver slices from 6 and
8 week-oldWT and NPC1mice (Fig. 5A). NPC1 livers showed abnormal
actin distribution with irregular cellular morphology, both indicators
of tissue damage. These results agree with previously published data
showing marked accumulation of multiple non-enzymatically formed
cholesterol oxidation products in livers of 9 week-old NPC1 mice in
comparison with wild-type mice, indicating the presence of oxidative
stress in this tissue [49].

This was especially highlighted in 8 week-old NPC1 mice (Fig. 5A).
We found an increase in cathepsin B levels in NPC mice liver and,
interestingly, there was also a significant increase in α-TOH levels
in the 6 week-old NPC mice (Fig. 5A and B). We could not detect sig-
nificant differences between 8 week-oldWT and NPC1mice, probably
because of the high extent of NPC1 liver damage. Finally, we found an
increase in the colocalization between α-TOH and cathepsin B in the
6 week-old NPC1 mice, suggesting that α-TOH accumulates in the
late endosomal/lysosomal compartment (Fig. 5C).

3.5. Changes in α-TOH content and mRNA expression of
α-TOH-metabolism and transport related genes in NPC1 mice

To determine α-TOH concentration in different organs we used
HPLC-EC (Fig. 6). Although we did not detect changes in α-TOH con-
centration in the brain and plasma of 8 week-old mice (Fig. 6A and B),
we found a significant increase in the cerebellar α-TOH levels of NPC1
mice (Fig. 6A). Hepatic NPC1 α-TOH levels were higher than WT,
but not significantly. This tendency was more pronounced in the
6 week-old NPC1 tissue (Fig. 6C), in concordance with our immuno-
fluorescence results.

The differences observed in α-TOH levels in the NPC1 mice tissues
may be related to changes in the expression of key genes that participate
in the transport and metabolism of α-TOH. Therefore, we measured
the expression of several α-TOH -related genes in the cerebellum and
liver of WT and NPC1 mice.

We found that Srbi mRNA levels are elevated in the liver of the
8 week-old NPC1mice (Fig. 7B) and that there is a trend to be elevated
in the liver at 6 weeks (Fig. 7B) that can be also observed in the cerebel-
lum of the 8 week-old NPC1 mice (Fig. 7A). These increments suggest
that there is an increased uptake ofα-TOH into the liver and cerebellum
[32].
-type (WT) and Npc1−/− (NPC1) mice hippocampal neurons were stained with filipin
3.6 pixels/nm. Amplifications of each condition are shown in the left corner (magnification:

image of Fig.�3


Fig. 4. Immunofluorescence analysis for α-tocopherol signal in the cerebellum of WT and NPC1 mice. Representative immunofluorescence images for α-TOH (A, D, G) and calbindin
(B, E, H) in cerebellum of 6 and 8 week-old (6w and 8w), wild-type (WT) and Npc1−/− (NPC1) mice are shown. In C, F, and I the merge of both signals is shown. Image size:
3.6 pixels/nm. Amplifications for 6w and 8w NPC1 mice merge images are shown in the left corner (magnification: 1.9).
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For the α-TOH specific transporter α-TTP, we found a significant
reduction in Ttpa mRNA levels in the cerebellum of 6 week-old
NPC1 mice in comparison with the WT mice (Fig. 7C), which correlat-
ed with the increase in cerebellar α-TOH levels of NPC1 mice
(Fig. 6A). Nonetheless, we did not find differences between WT and
NPC1 mice 8 week-old (Fig. 7C), even though at this age α-TOH cere-
bellar levels were increased in the NPC1 mice (Fig. 4A and G). On the
other hand, no differences were found in the hepatic Ttpa mRNA
levels between WT and NPC1 mice both at 6 and at 8 weeks of age
(Fig. 7D). However there was a slight trend to be increased in NPC1
mice at 6 weeks of age, in which there was an increase in the levels
of the α-TOH levels (Figs. 7D, 6C and 5). In addition we measured
Ttpa levels in untreated and U18-treated rat hippocampal neurons
and found no differences between both groups (Fig. 7E) despite the
increase of the α-TOH levels in the U18-treated neurons (Fig. 1B
and C).

We also measured the mRNA levels of another intracellular α-TOH
transporter, Sec14l2 (Fig. 7F and G), and we found that its expression
is slightly incremented in the liver of the 6 week-old NPC1 mice,
(Fig. 7G) which suggests that part of the internalized α-TOH could
be transported into the Golgi apparatus and mitochondria [50].

In agreement with previously published data we found an in-
crease in Apoe mRNA levels in cerebellum of 8 week-old NPC1 mice
(Fig. 7H) [51]. Apoe is expressed in the cells of the CNS, particularly
in astrocytes and increases its expression following nerve damage
[52]. Therefore, it is possible to speculate that increase in Apoe expres-
sion in NPC1 mice cerebellum is related to the transport of cholesterol
and tocopherol toward damaged neurons.

Published data from Abe et al. [53] suggests that lipolysis of
triacylglycerol-rich chylomicron by LPL is necessary for postprandial
vitamin E transport to the liver and subsequent transport to the
other tissues. We found that Lpl levels are increased in the liver of
the 6 and 8 week-old NPC1 mice (Fig. 7K), there are also significantly
elevated in the cerebellum of the 8 week-old NPC1 mice while there
is a trend to be elevated at 6 week-old NPC1 mice (Fig. 7J).
Interestingly, LPL is also active in the CNS and expressed in Purkinje
cells of the cerebellum. Moreover, CNS LPL is functional mediating
the uptake of triglyceride fatty acids throughout the CNS [54].

These results suggest increased α-TOH and fatty acids transport to
the liver and cerebellum of the NPC1 mice.

3.6. Elevated levels of α-TOH in lysosomal fractions from NPC1
mice livers

Finally, to corroborate our staining analysis biochemically and
determine the α-TOH concentration in different organelles, we per-
formed subcellular fractionation followed by HPLC-EC analysis on
6 week-old WT and NPC1 mice livers. We choose this time point
because we found the biggest differences in hepatic α-TOH concen-
tration at this stage (Figs. 5 and 6C). α-TOH was increased in every
fraction measured (2-fold increase in the extract and in the mito-
chondrial fraction) in the NPC1 tissue. But, there was a 3-fold increase
of α-TOH levels in the lysosomal fraction of the NPC1 tissue (Fig. 8).
This result confirms that α-TOH accumulates mainly in the late endo-
somal/lysosomal compartment in the NPC1 cells.

4. Discussion

Our results show a buildup of vitamin E in the endo/lysosomal
system in NPC models, suggesting impairments in vitamin E bioavail-
ability and antioxidant capacity. Deficiencies in the NPC1 protein
impair cholesterol transport from the endo/lysosomal system to
other organelles [6–10]. Our results suggest that NPC1 function is
also relevant for intracellular transport of vitamin E in the endocytic
pathway.

Our findings are in agreement with a recently published report
that describes lysosomal NBD-tocopherol accumulation in human
NPC1 mutant fibroblasts and hepatocyte cell lines with NPC1 or
NPC2 knock-down [23]. That report also found increments in vitamin
E content in livers of NPC1 and NPC2 mice at 12 week-old and in

image of Fig.�4


Fig. 5. Immunofluorescence analysis for α-tocopherol signal in livers of WT and NPC1 mice. A. Representative immunofluorescence images for α-TOH (green), cathepsin B (blue)
and phalloidin (red) in livers of wild-type (WT) and Npc1−/− (NPC1) mice of 6 and 8 week-old (6w and 8w). The black and white image shows the α-TOH signal alone. Image size:
3.7 pixels/nm. B. Quantitation of α-TOH relative levels in livers of 6 and 8 week-old (6w and 8w) WT and NPC1 mice. C. Quantitation of α-TOH and cathepsin B signals co-
localization by Pearson's correlation coefficient. Results are shown as mean±SEM. * pb0.05; ** pb0.01.
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cerebellum of 12 week-old NPC2 mice. In addition, our results indi-
cate an increment of 50% in vitamin E content in the cerebellum
at 8 week-old NPC1 animals, age at which the animals clearly show
locomotor deterioration, suggesting that bioavailability of vitamin E
could be contributing to the cerebellum pathology.

Although NPC1 mice at 6 weeks of age showed increased hepatic
levels of α-TOH, we did not find significant differences in the liver
between WT and NPC1 mice at 8 weeks of age. This could be due to
the progressive liver damage, almost undetectable at 6 weeks of
age, but that at 8 weeks is evident by collagen accumulation, infiltra-
tion of macrophages and elevated levels of plasma ALT (unpublished
Fig. 6. α-tocopherol content in cerebellum, brain, liver and plasma of WT and NPC1 mice. α
mice cerebellum, brain and liver (A) and plasma (B), and in livers of 6 week-old (6w) WT
results from our group and [55,56]). For this reason, the NPC1 mouse
liver tissue at 8 weeks of age would be highly impaired, masking the
differences that have been detected at 6 weeks of age.

At a subcellular level, lysosomal membranes contain the highest
total levels of α-TOH [57] if they are normalized against phosphorus
concentration within phospholipids [58]. We showed a relative en-
richment of hepatic α-TOH in mitochondria and lysosomes. In NPC1
livers we detected a 50% increment of α-TOH levels in lysosomes
compared to mitochondria, whereas no increase was detected in
WT lysosomes compared with WT mitochondria. We also detected a
4-fold enrichment of α-TOH levels in NPC1 lysosomes compared
-TOH content was measured by HPLC in 8 week-old (8w) WT (n=4) and NPC1 (n=7)
(n=2) and NPC1 (n=2) mice. Results are shown as mean±SEM. * pb0.05.
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Fig. 7. mRNA expression levels of α-TOH-related genes in rat hippocampal cells and cerebellum and livers of WT and NPC1 mice. The mRNA levels in rat hippocampal cells (RHN)
and 6 and 8 week-oldWT and NPC1 mice were analyzed by real-time PCR. The gene product was normalized using 18S gene expression. Data are mRNA levels (mean±SEM values)
in rat hippocampal cells and both WT and NPC1 mice. There were 3 untreated and U18-treated rat hippocampal cultures and 4 and 5 mice in each group of 6 and 8 week-old mice,
respectively. The following genes were analyzed: α-TOH transfer protein (α-TTP) Ttpa; α-TOH associated protein (Sec14l2); lipoprotein transporters, receptors and metabolism-
related genes Apoe, Srbi and Lpl; * pb0.05 NPC1 vs WT mice.
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with the total homogenates, whereas only a 2-fold enrichment was
detected in WT lysosomes. In conclusion, our results show a differen-
tial localization of hepatic α-TOH with a relative enrichment in NPC1
hepatic lysosomes compared to wild-types.

The results obtained by liver subcellular fractionation were com-
plemented by immunofluorescence and colocalization studies in
U18-treated and untreated rat hippocampal neurons. We determined
that α-TOH staining mainly colocalize with Lamp1 positive vesicles
(a late endosomes/lysosome marker). In this regard, it is important
to remark that not all the Lamp1/2 positive vesicles colocalize with
NPC proteins [59] which is in agreement with our finding that α-
TOH was not present in all Lamp1 positive vesicles as well. U18 treat-
ment increased colocalization between α-TOH and Lamp1 compared
Fig. 8. α-tocopherol content in hepatic subcellular fractions of WT and NPC1 mice.
α-TOH content was measured by HPLC in liver fractions of 6 week-old (6w) WT
(n=3) and NPC1 (n=3) mice obtained as described in Materials and methods. Results
are shown as mean±SEM. ** pb0.01.
to untreated neurons, suggesting that the drug is inducing α-TOH
accumulation. Furthermore, we observed colocalization between α-
TOH and LysoTracker. Most lysosomes present α-TOH, although the
majority of α-TOH was not found within lysosomes.

Although U18 has been widely used as an inducer of lipid accumu-
lation in late endomes/lysosomes, it should be mentioned that this
agent is toxic at high concentrations and prolonged incubation
times [60]. However, under the conditions used in this study for
primary hippocampal neurons (0.5 μg/ml for 24 h) no significant
differences in cell viability and major morphological changes were
observed, as has been reported by Cheung et al. for primary cortical
neurons with U18 treatment [60]. In addition, U18 modulates several
aspects of cholesterol metabolism besides from triggering lysosomal
cholesterol accumulation. It also affects the activity of HMG-CoA
reductase, the cholesterol synthesis rate-limiting enzyme, in a
concentration-dependent manner [61,62]. Therefore, it cannot be
completely ruled out that accumulation of α-TOH in lysosomes of
neurons treated with U18 is due, in part, to the effect of the drug on
the inhibition of cholesterol synthesis. In this sense, it is possible to
speculate that a decrease in cholesterol synthesis, an important
source of cholesterol in neurons, would decrease the concentration
of cholesterol in the plasma membrane. Given the lipophilic proper-
ties of α-TOH it distributes into lipid storage organelles and cell mem-
branes [63]; therefore, inhibition of cholesterol synthesis induced by
U18may indirectly favor the redistribution of α-TOH to the lysosome,
which is enriched in cholesterol. Because of this limitation it was
necessary to corroborate the results obtained with the pharmacolog-
ical model of NPC in primary cultured neurons from NPC1 mice, a
much more difficult model to work with, in which we also found
increments in the α-TOH signal.
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To associate NPC α-TOH accumulation with its intracellular traf-
ficking alterations, we measured the transcript levels of several
genes related with α-TOH transport and metabolism. Our results
show a significant reduction in the Ttpa cerebellar mRNA levels, but
no differences were found in U18-treated neurons compared with
controls. Previous reports show regulation of α-TTP protein levels
by α-TOH, however little is known about the regulation of mRNA
levels. Patients from neurodegenerative diseases with engagement
of oxidative stress such as Alzheimer Disease and AVED present
higher α-TTP protein levels [64]. On the other hand, mice fed with a
high vitamin E diet show increments in protein levels of α-TTP. In
the liver, our results show no significant differences in Ttpa mRNA
levels between WT and NPC1 mice; even though hepatic α-TOH
levels were higher at 6 week-old NPC1 animals. Thus, it seems that
alterations in the expression of the α-TTP intracellular transporter
are not responsible for a common mechanism for vitamin E accumu-
lation in the cerebellum and liver of NPC1 animals. Higher mRNA
expression levels of Srbi, Apoe and Lpl correlated with α-TOH levels
on liver and/or cerebellum. These results suggest that there is an
increase uptake and transport of α-TOH in the NPC1 mice but they
do not explain its intracellular accumulation as they can neither
explain the intracellular accumulation of cholesterol and other lipids.
The cerebellum is one of the most susceptible organs to vitamin E
deficiency due to high levels of lipid peroxidation. Several metabolic
ataxias are caused by malfunction of proteins involved in α-TOH traf-
ficking. Among them is AVED syndrome in which patients can absorb
vitamin E correctly, so patients are supplemented with it as part of
their treatment. In NPC disease there is a progressive loss of locomo-
tor skills, ataxia, which strongly correlates with early degeneration of
Purkinje cells. In the cerebellar cortex, clusters of α-TTP are aligned
within small cells around the Purkinje cell layer [65]. This observation
together with our results, suggest that vitamin E accumulation and its
eventual reduced bioavailability in NPC neurons could initially affect
the cerebellum and account for the increased susceptibility of this
tissue in the disease. Thus, it is possible to speculate that vitamin E
accumulation could have an important pathogenic role in NPC disease
and contribute to oxidative damage and cell death.

However, we cannot discard a different scenario in which the
excess of vitamin E acts as a pro-oxidant molecule in NPC cells. In
fact, α-TOH can play diverse roles in lipoprotein oxidation displaying
neutral, anti-, or, indeed, pro-oxidant activity under various condi-
tions [66]. For example, in the presence of determinant Cu2+/LDL
ratios α-TOH acts as a mediator of LDL lipid peroxidation [67]. In
this sense, it is important to mention that NPC lysosomes accumulate
not only cholesterol but also Cu2+ [68,69] (unpublished results from
our group). Therefore, an alternative hypothesis is that the lysosomal
buildup of vitamin E found in NPC cells could actively contribute to
the pathology acting as a pro-oxidant molecule and increasing the
levels of toxic cholesterol oxidation products. Indeed, there is an
increase in the levels of cholesterol oxidation products in plasma
and tissues of NPC mice and patients [29,49]. Moreover, a correlation
between the oxysterol profile with the age of disease onset and dis-
ease severity was established in NPC mice and decreased levels of
oxysterols were found in response to therapeutic intervention in the
NPC1 feline model [49] suggesting that cholesterol oxidation prod-
ucts could serve as biomarkers of NPC disease. Nevertheless, consid-
ering all the above exposed data and our results we think that it is
the lower bioavailability of vitamin E which is decreasing the anti-
oxidant defenses in the disease and contributing by this way to the
increase in oxidative damage.

NPC cells accumulate cholesterol along with excess sphingomyelin
(SM), glycosphingolipids, bis- (monoacylglycerol) phosphate (BMP)
[70–72] and other lipids. Therefore, the accumulation and trafficking
defects of these other lipids could potentially modulate α-TOH intra-
cellular trafficking. Although the arrangement of vitamin E in biolog-
ical membranes is presently unknown, considerable information
available from studies of model membrane systems show that α-
TOH intercalates into phospholipid bilayers with the long axis of the
molecule oriented parallel to the lipid hydrocarbon chains [63].
Other indirect evidence suggest that α-TOH interacts, in similar man-
ner as cholesterol with membranes, showing high affinity for sphin-
gomyelin and the fatty acid chains of complex lipids [73]. Thus, it is
conceivable that α-TOH intracellular trafficking will be also altered
by accumulation of these kinds of lipids in late endosomes/lysosomes
from NPC cells.

In addition, sphingolipids accumulation could also exacerbate
the susceptibility of NPC cells to oxidative damage. These lipids are
regulators of cellular redox homeostasis modulating NADPH oxidase
[74], antioxidant enzymes (like catalase) [75] and NOS activity [76].
Therefore, their lower bioavailability could increase oxidative damage
in NPC cells.

Despite the increase in oxidative stress, vitamin E treatments did
not improve the neurological symptoms of NPC1 mice [28]. Taken to-
gether these evidences suggest that vitamin E administration is not
able to compensate the oxidative damage of NPC cells, which could
be due to the lack of bioavailability of this cellular antioxidant or
alternatively, because it is acting as a pro-oxidant molecule.

NPC proteins are capable of transporting other lipids besides
cholesterol. This observation, together to the fact that NPC cells accu-
mulateα-TOHwithin lysosomes, raises the question of whether these
proteins are able to directly transport α-TOH. NPC1 protein has a
greater affinity for oxysterols than cholesterol [77] and it also shares
structural homology with NPC1L1 [37]. Interestingly, NPC1L1 can
bind and transport α-TOH, which is inhibited by ezetimibe, suggest-
ing that NPC1L1 α-TOH binding site is the same domain where it
binds cholesterol [41,42]. On the other hand, NPC2 has a hydrophobic
pocket that binds cholesterol and other sterols as well (cholesterol
precursors, oxysterols, etc.) through the saturated hydrocarbons tail
[78,79]. However, recent published results show that NPC1 and
NPC2 sterol binding domains can bind α-TOH with low affinity, sug-
gesting that the buildup of α-TOH in NPC cells is not due to direct
transport impairments but rather by dysfunction of the final stage
of the endocytic pathway [23]. Our findings suggest a lower bioavail-
ability of vitamin E, which could have a pathogenic role in disease
progression and may contribute to oxidative damage in NPC cells.
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