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Abstract

It has long been observed that certain factorization algorithms provide a way to write the product
of many different integers succinctly. In this paper, we study the problem of representing the product
of all integers from 1 to: (i.e. n!) by straight-line programs. Formally, we say that a sequence of
integersay, is ultimately f (n)-computable, if there exists a nonzero integer sequenceuch that
for anyn, a,m, can be computed by a straight-line program (using only additions, subtractions and
multiplications) of length at mosf (n). Shub and Smale [12] showed that:if is ultimately hard
to compute, then the algebraic version®f # P is true. Assuming a widely believed number
theory conjecture concerning smooth numbers in a short interval, a subexponential upper bound
(exp(c+/Tog n Tog Tog n)) for the ultimate complexity of! is proved in this paper, and a randomized
subexponential algorithm constructing such a short straight-line program is presented as well.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Computing the factorial functiom() is an interesting problem in computational com-
plexity. Because of the size of the number, computihgertainly takes exponential time.
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One can instead study the modular factosiainodm. Given an integem> 2, the small-

est positive integes such that gct! modm, m) > 1 is a prime factor ofn. For every
integern> o, gcdn! modm, m) is greater than 1, hence we can use binary search to find
o if we know how to compute! modm efficiently for anym andn. This shows that the
integer factorization problem can be reduced to computlmgodm:. It is very interesting

to compare modular exponentiation with modular factorial. In some sense, the reason that
primality testing is easy while factoring is hard is because modular exponentiation is easy
but modular factorial is hard. This statement may underestimate the complexity of modular
factorial, as it is believed that computingmodm is much harder than the integer factor-
ization problem. We do not even know whether computing modular factorial is an NP-easy
problem or not.

One approach we may take to computenodm is to find a short straight-line pro-
gram forn!. This problem relates to the algebraic model of computafie8]. In the
algebraic model, it makes sense to ask whether the factorial problem has a polynomial
time algorithm, because in this context, to estimate the time complexity, we only count
the number of ring operations used to computeegardless of the size of the operands.
Sometimes, algebraic complexity is also called non-scalar complexity. If the fundtion
has polynomial time algebraic complexity, or equivalently, every inteddras a short
straight-line program uniformly, then by doing moduloin every step, we would ob-
tain a polynomial time algorithm to compute modm on a Turing machine, which is
thought to be unlikely. Throughout this paper, we assume that a straight-line program only
contains ring operations. Shanjirl] showed that if division (computing remainder and
guotient) is allowed, then! can be computed by a straight-line program of polynomial
length.

The ultimate complexity of a number was first studiedli] by Shub and Smale. They
found a surprising relation between the ultimate complexity!@and the algebraic version
of N P vs. P problem. We say that! is ultimately hard to compute, if there does not exist a
non-zero integer sequengs,, such thai!m, can be computed by straight-line programs
of length(logn)¢ for an absolute constant It was proved if12]:

If n!is ultimately hard to compui¢hen the algebraic version & P # P is true
Note that in the Turing model, proving that the modular factorial problem is hard does
not necessarily imply thav P # P. There is no corresponding concept of the ultimate
complexity in the Turing model.

So far the best algorithm we know computgsn O(,/n log? n) ring operations oveZ
[14,4]. No better upper bound has been reported for the ultimate complexitylbfias long
been noticed that certain factorization algorithms provide a way to write the product of many
different primes succinctly. For instance, Lenstra’s elliptic curve factorization métiopd
performs algebraic computation modulo the integer to be factored, but the operations remain
the same for all inputs of a certain size. The algebraic computation essentially generates a
number with a lot of prime factors, since it factors almost all integers of the size. However,
these algorithms do not directly give us a straight-line program to compute a produgct of
because
(1) Divisions are essential in these algorithms. For instance, in the elliptic curve factoriza-

tion method, splitting of an integer happens precisely when the inverse of a integer
modulon does not exist.
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(2) More importantly, all the fast factorization algorithms are random in nature. The time
complexity of a randomized algorithm is an average measurement. Practically the al-
gorithms should work as expected, but theoretically it is possible that for any integer
n, there are bad choices of random bits such that the algorithm will take exponential
time to stop. Hence for any choice of random bits of a certain length, there are integers
which cannot be factored.

In this paper, we give a formal proof of a subexponential upper bound for the ultimate

complexity ofn! under a widely believed number theory conjecture. Our result is construc-

tive in the sense that we can construct the straight-line programs#raomsubexponential

time. More precisely, our paper presents a Monte Carlo algorithm (certainly in the Turing

model), given a natural numbeias input, output a straight-line program which computes a

non-zero multiple of:! with probability better than a constant. The algorithm runs in subex-

ponential time, hence the output straight-line program will have at most a subexponential
length. Our result suggests that the algebraic complexity of certain produtiohot as

high as the complexity of!, even though the product looks more random tharNote

that by a simple counting argument, we can prove that there exists a divisawbich has

exponential straight-line complexity. Our result also shows that the complexity of certain

multiple ofn! is much closer to the integer factorization problem than the complexity of
itself.

Itis interesting to note that we do not know whether there exists a subexponential straight
line program for the polynomigk — 1) - - - (x — n), or any polynomial with a lot of distinct
integral roots. If we apply the same technique in the paper to construct straight line program,
we encounter obstacles from the Uniform Boundedness Thef@em

1.1. Main results

We call a number smooth if all of its prime factors are small. More precisely, a number
is said to bey-smooth, if all of its prime factors are less than or equal.tbet

Y(x,y) ={n<x :nis y-smooth}|.

Throughout this paper, log denotes the natural logarithmZLL.@t] denote &v'09x10910gx
The following proposition abou¥' (x, L,[a]) was proved if5].

Proposition 1. For any constant, ¥ (x, Ly[a]) = xLy[—1/(2a) + o(1)].

It was conjectured that the smooth number in some short interval is as dense as in a large
interval. In particular,

Conjecture 1. For any constant > O,
Y(p+1+2p. Lplal) = ¥(p+1-2{/p. Lyla]) = /pLpl—1/(2a) + o(D)].

Though this conjecture has not been proved yet, itis widely believed to be try®, Bale
for details. In fact, Lenstra’s elliptic curve factorization algorithm relies on this conjecture
to achieve the subexponential time complexity.
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Theorem 1. Assume that Conjectutkis true. Then there exist absolute constantand
¢2 such that for any natural number, a non-zero multiple of! can be computed by a
straight-line program of length at mosgt,[c1]. Furthermore the straight-line program can
be constructed in timé&, [c2] by a probabilistic Turing machine

The essential part of the proof of Theordrs based on Lenstra’s elliptic curve factor-
ization method. Le€ be an elliptic curvey? = x2 + ax + b with a, b € Z and Ps(x) be
the univariatesth division polynomial of€. Givenn andx, P,(x) can be computed by a
straight-line program of length @g~) using 1,x, a andb as constants. lf, a andb are
integers less than, then P, (x) can be calculated by @gn) arithmetic operations using
1 as the only constant. Letbe an integer which is not the abscissa of a torsiod ore.
P;(x) # 0 for any positive integei. For any primep, we havep| Py (x) if s is divisible
by |E(Fp)|, whereE is the reduction of at p andx mod p is the abscissa of a point on
E(F,) (x may or may not be an abscissa of a pointgQ)).

Ifthe reduction of atarandom primg takes arandom number betwgen2,/p+1and
p+2,/p+1asthe order ove¥,, then with probability greater than 1 over a subexponential
function on logp, the reduction curve has a smooth order dvgr Furthermore, given an
ellipticcurveE /F,, arandom integer mod p becomes an abscissa of a point(r ,) with
a constant probability (abo%t). Hence ifS is a large smooth number ands an arbitrary
integer, Ps(x) contains a lot of distinct prime factors. In order to get a multiple 'ofve
only need to collect subexponentially many elliptic curves and evaluatestiedivision
polynomials at polynomially many integers. We will show that randomly chosen elliptic
curves and integers suffice. The effects of the global torsions will be carefully controlled.

This paper is organized as follows. In Sectiynwe define the straight-line program and
the ultimate complexity, and prove a lemma about bipartite graphs. In S&¢timreview
some facts about elliptic curves. In Sectibnwe formally prove the main theorem. We
conclude this paper by a discussion section.

2. Preliminaries

A straight-line program of an integer is a sequence of ring operations, which outputs the
integer in the last operation. Formally,

Definition 1. A straight-line program of an integer is a sequence of instructions
Z < X0y

wherex € {+, —, %}, x, y are two previously appeared symbols or 1 aiigla new symbol,

such that after we execute the instructions sequentially, the last symbol will represent the
value of m. The length of the program is the number of instructions. The length of the
shortest straight-line program aff is called the straight-line complexity of.

An integern has a straight-line complexity at most 2 lmgn some cases, a straight-line
program is a very compact description of an integer. It can represent a huge number in small
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length. For example, the numbetf can be computed using the repeated squaring technique
and hence has a straight-line complexity at most 2:l6g2 logm.

Definition 2. Letu be areal number. Anintegeis ultimatelyu-computable, if there exists
a nonzero integer sequeneesuch thatzm can be computed by a straight-line program of
length at most:. The smallest is called the ultimate complexity @f. Let f be a function

in R — R. A sequence of integets, is ultimately f-computable, if for any:, there exists

a nonzero integer,, such that,m, is ultimately f (n)-computable.

In this paper, we study the ultimate complexity:0f First we show that this problem can
be reduced to studying the ultimate complexity of the product of primes up to

Lemma 1. Let p, be thenth prime number. If the sequenge= pip2, ..., pm, Wherep,,

is the largest prime less than or equalipcan be ultimately computed by a straight-line
program of lengthf (n), thenn! can be ultimately computed by a straight-line program of
length f (n) + 2 logn.

Proof. This follows from a simple fact that!|(«,)". Note that the exponentis the mini-
mum possible. [

Now we prove a lemma about bipartite graphs. Given a bipartite giaph(X U Y, E)
(E C X x Y), we say that a subsdt C X dominates a subs#t C Y, if every vertex inB
is adjacent to at least one vertexAn

Lemma 2. For a simple undirected bipartite grapi = (X U Y, E), letm = | X| andn =
|Y]. If every vertex inX has degree greater thath = [n/r] where2 < r < n/(2logm),
then there exists a subsgtC Y, with cardinality g = [2r logm7, which dominatesy.
Moreover if we randomly choose a subset Bfwith cardinality g, it dominatesX with
probability greater tharll — (1/m).

Proof. From X x Y, we construct a new bipartite graphx ) as follows.) is the set of
all the subsets of with g elements. For any € X andv € Y, u andv are joined by an
edge iffinX x Y, u is adjacent to at least one vertexure Y.

For everyu ¢ X, its degree inX x ) is greater tham;) — (”;d). The total number of

edges inX x ) is thus greater tham((g) — (";d)). The average degree of element3in
is greater than

(-CD e /)

(n ) g 8
8
We have

<n—d>/<n>_(n—d)!/(n—d—g)!
g g) n!/(n—g)!
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_m=-d)n—d-1)---n—d—g+1)
N nn—21---(n—g+1

g 2rlogm
“(=5) <(+=7)
n r
1

< ﬁ
Suppose that|)| vertices in) have degree less than The average degree of vertices in
Yislesstham(1—x) 4+ (m — 1)x = m —x. Hencen —x > m(1— (1/m?)). This implies
thatx <1/m. O

This lemma will be used in several places in the paper. First we present a simple conse-
quence of the lemma.

Corollary 1. Let p be a prime. If we randomly piok = [6log p] integersas, az, ..., a,
betweer? and p inclusive then with probability at least — 2log p/ p, for every primey,
2 < g< p, atleast one of integers ifu1, az, . . ., a,} is a quadratic nonresidue modudo

Proof. For every primey, 2 < g< p, at mostp /3 of the integers between 2 apdnclusive

have prime factog. For the rest of integers, half of them are quadratic nonresidues modulo
g. Hence at leasp/3 of the integers in the same range are quadratic nonresidues modulo
q. By replacing- with 3 in Lemma2 we obtain the corollary, as there afe+ ¢)(p/ log p)
primes less thap. O

3. Elliptic curves

An elliptic curve is a smooth cubic curve. Liebe a field. If the characteristic &fis not
2 or 3, we may assume that the elliptic curve is given by an equation of the form

y2=x3+ax+b, a,bek.

The discriminant of this curve is defined ad6(4a® + 276%), whose essential part is the
discriminant of the polynomiat® + ax + b. It should be non-zero as the curve is smooth.
For detailed information about elliptic curves, we refer to Silverman’s a8k

The set of points on an elliptic curve consists of the solution set of the definition equation
plus a point at infinity. These points form an abelian group with the infinity point as the
identity. We call a point torsionif it has a finite order in the group. The abscissa of the
torsions of ordem > 3 are the solutions oP¢ (x), the nth division polynomial ofé.
Sometimes we omit the superscripti®if no confusion is possible. These polynomials can
be computed recursively as follows:

P1=1
Py=1,
P3= 3x* + 6ax? + 12bx — a?,
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Py =2(x® + 5ax* + 20bx3 — 5a°x? — dabx — 8b% — d°),
Pani1=16(x3 + ax + b) Py 2Py, — Poy_1Py, i1,
Pant2 = Pois1(Pous3Ps, — Pou_1P,,5).
Pan+3 = P3Py, 1 — 16(x3 + ax + b) P2, P35,
Pania= Poni2(PonsaP 1 — Pou P31 3).
We have

Proposition 2. For any positive integers andx, the integerPf(x) can be computed by
a straight-line program of lengt®(logn + log(|x| + 1) + log(la| + 1) + log(|b| + 1)),
where€ is the elliptic curvey? = x3 4+ ax 4+ b witha, b € Z.

See[6] for the proof of (a stronger version of) the proposition. It is based on the ideas
of repeated doubling and dynamical programming.

Proposition 3. Let€ : y2 = x2 + ax + b be an elliptic curve defined ov&:. Assume that
p does not divide the discriminant.fis an integer and

(1) x modp is the abscissa of a point afi(F ),

(2) the point(x, +/x3 + ax + b) is not a torsion or€,

thenP;(x) # 0 and p| P, (x), wherel is any non-zero multiple o (F )|

Proof. For anyl, P;(x) # 0 sincex is not a torsion. We havg| P;(x), since the point with
x mod p as its abscissa has order dividifg(F )| and/. [

Let £: y?2 = x% 4+ ax + b be an elliptic curve defined ové. The torsion points on
& with integral abscissa (thus-coordinates are integers or quadratic algebraic numbers)
have order at most 18, as shown in the celebrated Uniform Boundedness Theorem in the
qguadratic number fields,8]. Hence such integers must be the roots of sé@iy@) where
n< 18, or ofx2 4+ ax + b. The maximal possible roots of those equations are bounded by
the sum of the degrees of the equations, which is an absolute constast.desiote this
constant. One can tak® = 1035. Define

Re(p) = {x|x € Z, 1< x< p, (x, vVx3 4+ ax + b) is not a torsion orf’}.

Then|Re(p)|> p — B. Given an integer, we can decide whether the integer Rxifp) in
polynomial time. From Lemma, we conclude

Corollary 2. Let p be a prime anc€ : y? = x3 4 ax + b be an elliptic curve defined
overZ with 1<a< p —landl1l<b<p — 1.If n = [6logp] integersxy, x2, ..., x, are
randomly chosen fronRg (p), then with probability greater thad — 2log p/p, for any
primeg satisfying7B < ¢< p andgqt4a® + 27h2, one ofx; modg is the abscissa of a point
on the reduction of atgq.

Proof. We construct a bipartite graph x Y as follows. The seP consists of all the prime
numbers from B to p which are not the prime factors ofi2+ 27b2. LetY = Rg(p). For
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anyg € P andx € Y, draw an edge betweegnandx iff x2 + ax + b is a quadratic residue
modulog.

For a primey, there are atleagt—2, /g +1 many points on the reduction8fatg. Hence
there are at leagt — 2,/g/2 manyx between 1 ang inclusive such that® + ax + b are
quadratic residues moduwjoAmong them(q —2, /4/2) — B many are not torsion points. To
count such elements between 1 anihclusive, we need to multiple the number ky/q |.
Thus the degree @fin P is greaterthai(qg —2,/q/2)—B) x| p/q) > q/3x|p/q) = p/3
for ¢ > 7B. The theorem now follows from Lemnfa [

The j-invariant of the curve? = x3+ax+bis defined ag = 1728443/ (4a%+27b2)).
Two elliptic curves with a samg-invariant are isomorphic over the algebraic closed field.
For elliptic curves defined over a prime finite fiélg wherep > 3, two curves with a same
j-invariant may not be isomorphic. |f # 0 or 1728, there are exactly two isomorphic
classes which have the sanunvariant, one can be representedyBy= x° + kx + k and
the other byy? = x3 + c%kx + ¢k, wherek = 27;/4(1728— j) andc is a quadratic
nonresidue modulp. There are different number of points over the two classes of curves.
There are at most 6 isomorphic classes witk 0, and at most 4 isomorphic classes with
j =1728.

We are interested in counting the number of isomorphic classes of elliptic curves with the
number of points coming from a given set.[li0], the following proposition was proved.

Proposition 4. There exist two constantg, ¢ such that ifA is a set of integers between
p+1—./pandp+ 1+ ./p, the number of non-isomorphic classes of elliptic curves
defined oveF, whose number of points ovEl, are in A is

c1/P(|A] — 2)/log p< N< c24/plAllog p(log log p)2.

4. Proof of the main theorem

Our goal is to construct a straight-line program of some multiple,of= 2 x 3 x 5 x
--+ x pin L,[c1] time for some constant . Firstly, we compute a number= 2°t x 3%

x -+ x ps*, wherepy is the maximal prime less than or equal&g[1] and for every
1<i<s, pf" is the leastp;-power greater thap + 1 + 2,/p. Obviously we can compute
Sintime L,[2+ o(1)].

Secondly, we randomly chooge= [6logp] integersc, ca, ..., ¢; between 2 angh
inclusive. We call the step successful if for every primg;X p, at least one of the integers
is a quadratic nonresidue mad The step succeeds with probability greater than 1
(2log p/ p) according to Lemma.

Denote byD the set of elliptic curvéy? = x*+ax +a|1<a< pyU{y? = x® +ac?x +
acl.3|1< i</, 1< a< p}. Construct a bipartite grapti x D as follows.X consists of all the
primes between# + 1 andp inclusive. For any primg € X and any elliptic curv& € D,
connecly and€ by an edge iff the reduction cuniof £ atq is non-singular, and the order
of E(Fy) is L,[1]-smooth.
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Lemma 3. The degree of every element }is greater thaanp[—% + o(1)] under
Conjecturel.

Proof. For any prime B < ¢< p, consider the subset &f:

Dy = {y* = x>+ ax + al1<a< q}
U {y2 =x3 +aci2x +aci3|1<i§l, 1<a < g}.

The j-invariants ofy? = x3 + ax +a andy? = x+ ac?x +ac? are 17284a/(4a + 27)).
If one of integers inc1, 2, ..., ¢} is a quadratic nonresidue modujothen there exist
representations of all the isomorphic classes of elliptic curveskyer D,, except for the
curves withj-invariants 0 or 1728. There are atleg&f/L,, [% +o(1)] manyL,,[1]-smooth
integers between — 2, /g + 1 andg + 2,/ + 1 according to Conjecturk Hence there
are at leasl /g (\/q/(L4[1/2 4+ o(D])) = q/(Lq[% + o(1)]) curves inD, which have
L4[1]-smooth orders ovef, according to Propositiod. In the seD, we need to multiply
this number by p/q], i.e. there are at Ieaqt/Lq[% +oMIlp/q] > p/Lp[% + o(1)]
curves inD haveL ,[1]-smooth order oveFF,. Hence the degree gfin X x D is greater
thanp/L,[3 +oD)]. O

Now we proceed to the third step. We randomly chaose [L,[1]] curvess, ..., &y
from D. We call the step successful if for any prim8Z ¢< p, ¢ does not divide the
discriminant of at least one of the curved#, ..., £,} and the reduction of this curve at
g has alL ,[1]-smooth order ovef, . In the other words, in grapki x D, {£1, ..., &,} € D
dominatesX. SinceL ,[1] > 2 IogpL,,[% + 0(1)], the step succeeds with probability at
least 1- (2logp/p) according to Lemma2 and3.

In the fourth step, for each<li< w, we pickh = [6log p] random integers; 1, x; 2,
..., X; 5 in Rg, (p). We call theith sub-step successful, if for any prim8 « ¢ < p, at least
one integer inx; 1, x; 2, . . ., X; ,} Modulog is the abscissa of B, -point in the reduction
curve of&; atg. The successful probability for each sub-step is greater that2log p/ p)
according to Corollar2. Hence the successfully probability for this step is greater than

(1-(2logp/p)™.

Lemma 4. All these four steps are successful with probability

( ) |ng>L,,[1/2+o(1)] 1
1-— > —.
p

Ifallthe four steps are successful, then we can get a multiplg by evaluating theSth di-
vision polynomials o€, ..., &, ONX1.1, X1.2, .., X145+ -+ Xw.1s - - - » Xw,i, FESPECtively
and multiplying the results together. Now we are ready to write the straight-line program
for a multiple of 2x 3 x 5x -+ x p.
(1) Start by computing the product of all the primes less thAnlL#t the result bg?.
(2) Add instructions to compute

& & Ew Ew
Psl(xl,l)» cees Psl(xl,h); Ty PS (Xw,1), -+ s PS (Xw,h)-
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(3) Add instructions to compute

&
Ty < I Py (Xik)-
1<i<w,1<k<h

(4) AddT < Ty x T» into the straight-line program.
Based on the analysis in this paper, it can be verified that the above straight-line program
computes a product of, and it has subexponential length.

5. Discussion

The relation between ultimate complexity and integer factorization can be further ex-
plored.

Firstly, can we derive a factorization algorithm from a straight-line program for a multiple
of n!? The only problem here is that the multiplexfi.e.n!m,,, may contain primes greater
thatn. We must try to restrict the integer, such that it only has primes less thanlt
seems hard to do so with the algorithm in this paper.

Secondly, is the lower bound of the ultimate complexity bdilso subexponential? Since
this problem is closely related to the integer factorization problem, which is believed not to
have a polynomial time algorithm, we suspect that the answer to this question is positive.

The existence of a short straight-line program for a large number does not imply that
we can construct the short straight-line program in reasonable time. Given two integers
m,n and a primep, if m mod p is the generator of), and pin, then there exists a short
straight-line program for a power of which is congruent ta modulo p. But we do not
know how to construct such a straight-line program fragv and p, as the problem is
equivalent to computing the discrete logarithm problem éverWe believe that it might
be possible that for someg n! or a multiple ofn! have very short straight-line programs,
however constructing the program would be very hard.
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