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Abstract

It has long been observed that certain factorization algorithms provide a way to write the product
of many different integers succinctly. In this paper, we study the problem of representing the product
of all integers from 1 ton (i.e. n!) by straight-line programs. Formally, we say that a sequence of
integersan is ultimatelyf (n)-computable, if there exists a nonzero integer sequencemn such that
for anyn, anmn can be computed by a straight-line program (using only additions, subtractions and
multiplications) of length at mostf (n). Shub and Smale [12] showed that ifn! is ultimately hard
to compute, then the algebraic version ofNP �= P is true. Assuming a widely believed number
theory conjecture concerning smooth numbers in a short interval, a subexponential upper bound
(exp(c

√
log n log log n)) for the ultimate complexity ofn! is proved in this paper, and a randomized

subexponential algorithm constructing such a short straight-line program is presented as well.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Computing the factorial function (n!) is an interesting problem in computational com-
plexity. Because of the size of the number, computingn! certainly takes exponential time.
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One can instead study the modular factorialn!modm. Given an integerm�2, the small-
est positive integer� such that gcd(�!modm,m) > 1 is a prime factor ofm. For every
integern� �, gcd(n!modm,m) is greater than 1, hence we can use binary search to find
� if we know how to computen!modm efficiently for anym andn. This shows that the
integer factorization problem can be reduced to computingn!modm. It is very interesting
to compare modular exponentiation with modular factorial. In some sense, the reason that
primality testing is easy while factoring is hard is because modular exponentiation is easy
but modular factorial is hard. This statement may underestimate the complexity of modular
factorial, as it is believed that computingn!modm is much harder than the integer factor-
ization problem.We do not even know whether computing modular factorial is an NP-easy
problem or not.
One approach we may take to computen!modm is to find a short straight-line pro-

gram for n!. This problem relates to the algebraic model of computation[1–3]. In the
algebraic model, it makes sense to ask whether the factorial problem has a polynomial
time algorithm, because in this context, to estimate the time complexity, we only count
the number of ring operations used to computen! regardless of the size of the operands.
Sometimes, algebraic complexity is also called non-scalar complexity. If the functionn!
has polynomial time algebraic complexity, or equivalently, every integern! has a short
straight-line program uniformly, then by doing modulom in every step, we would ob-
tain a polynomial time algorithm to computen!modm on a Turing machine, which is
thought to be unlikely. Throughout this paper, we assume that a straight-line program only
contains ring operations. Shamir[11] showed that if division (computing remainder and
quotient) is allowed, thenn! can be computed by a straight-line program of polynomial
length.
The ultimate complexity of a number was first studied in[12] by Shub and Smale. They

found a surprising relation between the ultimate complexity ofn! and the algebraic version
ofNP vs.P problem.We say thatn! is ultimately hard to compute, if there does not exist a
non-zero integer sequencemn, such thatn!mn can be computed by straight-line programs
of length(logn)c for an absolute constantc. It was proved in[12]:
If n! is ultimately hard to compute, then the algebraic version ofNP �= P is true.

Note that in the Turing model, proving that the modular factorial problem is hard does
not necessarily imply thatNP �= P . There is no corresponding concept of the ultimate
complexity in the Turing model.
So far the best algorithm we know computesn! in O(√n log2 n) ring operations overZ

[14,4]. No better upper bound has been reported for the ultimate complexity ofn!. It has long
been noticed that certain factorization algorithmsprovide away towrite the product ofmany
different primes succinctly. For instance, Lenstra’s elliptic curve factorization method[10],
performs algebraic computationmodulo the integer to be factored, but the operations remain
the same for all inputs of a certain size. The algebraic computation essentially generates a
number with a lot of prime factors, since it factors almost all integers of the size. However,
these algorithms do not directly give us a straight-line program to compute a product ofn!,
because
(1) Divisions are essential in these algorithms. For instance, in the elliptic curve factoriza-

tion method, splitting of an integern happens precisely when the inverse of a integer
modulon does not exist.
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(2) More importantly, all the fast factorization algorithms are random in nature. The time
complexity of a randomized algorithm is an average measurement. Practically the al-
gorithms should work as expected, but theoretically it is possible that for any integer
n, there are bad choices of random bits such that the algorithm will take exponential
time to stop. Hence for any choice of random bits of a certain length, there are integers
which cannot be factored.

In this paper, we give a formal proof of a subexponential upper bound for the ultimate
complexity ofn! under a widely believed number theory conjecture. Our result is construc-
tive in the sense that we can construct the straight-line program fromn in subexponential
time. More precisely, our paper presents a Monte Carlo algorithm (certainly in the Turing
model), given a natural numbern as input, output a straight-line programwhich computes a
non-zeromultiple ofn!with probability better than a constant. The algorithm runs in subex-
ponential time, hence the output straight-line program will have at most a subexponential
length. Our result suggests that the algebraic complexity of certain product ofn! is not as
high as the complexity ofn!, even though the product looks more random thann!. Note
that by a simple counting argument, we can prove that there exists a divisor ofn! which has
exponential straight-line complexity. Our result also shows that the complexity of certain
multiple ofn! is much closer to the integer factorization problem than the complexity ofn!
itself.
It is interesting to note that we do not knowwhether there exists a subexponential straight

line program for the polynomial(x−1) · · · (x−n), or any polynomial with a lot of distinct
integral roots. If we apply the same technique in the paper to construct straight line program,
we encounter obstacles from the Uniform Boundedness Theorem[6].

1.1. Main results

We call a number smooth if all of its prime factors are small. More precisely, a number
is said to bey-smooth, if all of its prime factors are less than or equal toy. Let

�(x, y) = |{n� x : n is y-smooth}|.
Throughout this paper, log denotes the natural logarithm. LetLx[c] denote ec

√
logx log logx .

The following proposition about�(x, Lx[a]) was proved in[5].

Proposition 1. For any constanta,�(x, Lx[a]) = xLx[−1/(2a)+ o(1)].

It was conjectured that the smooth number in some short interval is as dense as in a large
interval. In particular,

Conjecture 1. For any constanta > 0,

�(p + 1+ 2√p,Lp[a])−�(p + 1− 2√p,Lp[a]) = √pLp[−1/(2a)+ o(1)].

Though this conjecture has not been proved yet, it is widely believed to be true. See[9,10]
for details. In fact, Lenstra’s elliptic curve factorization algorithm relies on this conjecture
to achieve the subexponential time complexity.
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Theorem 1. Assume that Conjecture1 is true. Then there exist absolute constantsc1 and
c2 such that for any natural numbern, a non-zero multiple ofn! can be computed by a
straight-line program of length at mostLn[c1]. Furthermore, the straight-line program can
be constructed in timeLn[c2] by a probabilistic Turing machine.

The essential part of the proof of Theorem1 is based on Lenstra’s elliptic curve factor-
ization method. LetE be an elliptic curvey2 = x3 + ax + b with a, b ∈ Z andPs(x) be
the univariatesth division polynomial ofE . Givenn andx, Pn(x) can be computed by a
straight-line program of length O(logn) using 1,x, a andb as constants. Ifx, a andb are
integers less thann, thenPn(x) can be calculated by O(logn) arithmetic operations using
1 as the only constant. Letx be an integer which is not the abscissa of a torsion onE , i.e.
Pi(x) �= 0 for any positive integeri. For any primep, we havep|Ps(x) if s is divisible
by |E(Fp)|, whereE is the reduction ofE atp andx modp is the abscissa of a point on
E(Fp) (x may or may not be an abscissa of a point onE(Q)).
If the reductionofE at a randomprimep takesa randomnumber betweenp−2√p+1and

p+2√p+1 as the order overFq , thenwith probability greater than 1 over a subexponential
function on logp, the reduction curve has a smooth order overFp. Furthermore, given an
elliptic curveE/Fp, a random integerxmodp becomesanabscissaof apoint onE(Fp)with
a constant probability (about12). Hence ifS is a large smooth number andx is an arbitrary
integer,PS(x) contains a lot of distinct prime factors. In order to get a multiple ofn!, we
only need to collect subexponentially many elliptic curves and evaluate theirSth division
polynomials at polynomially many integers. We will show that randomly chosen elliptic
curves and integers suffice. The effects of the global torsions will be carefully controlled.
This paper is organized as follows. In Section2, we define the straight-line program and

the ultimate complexity, and prove a lemma about bipartite graphs. In Section3, we review
some facts about elliptic curves. In Section4, we formally prove the main theorem. We
conclude this paper by a discussion section.

2. Preliminaries

A straight-line program of an integer is a sequence of ring operations, which outputs the
integer in the last operation. Formally,

Definition 1. A straight-line program of an integerm is a sequence of instructions

z← x�y

where� ∈ {+,−, ∗}, x, y are two previously appeared symbols or 1 andz is a new symbol,
such that after we execute the instructions sequentially, the last symbol will represent the
value ofm. The length of the program is the number of instructions. The length of the
shortest straight-line program ofm is called the straight-line complexity ofm.

An integern has a straight-line complexity at most 2 logn. In some cases, a straight-line
program is a very compact description of an integer. It can represent a huge number in small
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length. For example, the numbernm can be computed using the repeated squaring technique
and hence has a straight-line complexity at most 2 logn+ 2 logm.

Definition 2. Letubea real number.An integera is ultimatelyu-computable, if there exists
a nonzero integer sequencem such thatam can be computed by a straight-line program of
length at mostu. The smallestu is called the ultimate complexity ofa. Letf be a function
in R→ R. A sequence of integersan is ultimatelyf -computable, if for anyn, there exists
a nonzero integermn such thatanmn is ultimatelyf (n)-computable.

In this paper, we study the ultimate complexity ofn!. First we show that this problem can
be reduced to studying the ultimate complexity of the product of primes up ton.

Lemma 1. Letpn be thenth prime number. If the sequence�n = p1p2, . . . , pm,wherepm
is the largest prime less than or equal ton, can be ultimately computed by a straight-line
program of lengthf (n), thenn! can be ultimately computed by a straight-line program of
lengthf (n)+ 2 logn.

Proof. This follows from a simple fact thatn!|(�n)n. Note that the exponentn is the mini-
mum possible. �

Now we prove a lemma about bipartite graphs. Given a bipartite graphG = (X ∪ Y,E)
(E ⊆ X× Y ), we say that a subsetA ⊆ X dominates a subsetB ⊆ Y , if every vertex inB
is adjacent to at least one vertex inA.

Lemma 2. For a simple undirected bipartite graphG = (X∪ Y,E), letm = |X| andn =
|Y |. If every vertex inX has degree greater thand = �n/r� where2 < r < n/(2 logm),
then there exists a subsetS ⊆ Y , with cardinality g = �2r logm�, which dominatesX.
Moreover, if we randomly choose a subset ofY with cardinality g, it dominatesX with
probability greater than1− (1/m).

Proof. FromX × Y , we construct a new bipartite graphX × Y as follows.Y is the set of
all the subsets ofY with g elements. For anyu ∈ X andv ∈ Y, u andv are joined by an
edge iff inX × Y , u is adjacent to at least one vertex inv ⊆ Y .
For everyu ∈ X, its degree inX × Y is greater than( n

g
)− ( n−d

g
). The total number of

edges inX × Y is thus greater thanm((n
g
)− ( n−d

g
)). The average degree of elements inY

is greater than

m

((
n

g

)
−

(
n− d
g

))
(
n

g

) = m
(
1−

(
n− d
g

)/ (
n

g

))
.

We have(
n− d
g

)/ (
n

g

)
= (n− d)!/(n− d − g)!

n!/(n− g)!
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= (n− d)(n− d − 1) · · · (n− d − g + 1)
n(n− 1) · · · (n− g + 1)

<

(
1− d

n

)g
<

(
1− 1

r

)2r logm

<
1

m2
.

Suppose thatx|Y| vertices inY have degree less thanm. The average degree of vertices in
Y is less thanm(1−x)+ (m−1)x = m−x. Hencem−x > m(1− (1/m2)). This implies
thatx < 1/m. �

This lemma will be used in several places in the paper. First we present a simple conse-
quence of the lemma.

Corollary 1. Letp be a prime. If we randomly pickn = �6 logp� integersa1, a2, . . . , an
between2 andp inclusive, then with probability at least1− 2 logp/p, for every primeq,
2< q�p, at least one of integers in{a1, a2, . . . , an} is a quadratic nonresidue moduloq.

Proof. For every primeq, 2< q�p, at mostp/3 of the integers between 2 andp inclusive
have prime factorq. For the rest of integers, half of them are quadratic nonresidues modulo
q. Hence at leastp/3 of the integers in the same range are quadratic nonresidues modulo
q. By replacingr with 3 in Lemma2we obtain the corollary, as there are(1+ �)(p/ logp)
primes less thanp. �

3. Elliptic curves

An elliptic curve is a smooth cubic curve. Letk be a field. If the characteristic ofk is not
2 or 3, we may assume that the elliptic curve is given by an equation of the form

y2 = x3+ ax + b, a, b ∈ k.
The discriminant of this curve is defined as−16(4a3 + 27b2), whose essential part is the
discriminant of the polynomialx3+ ax + b. It should be non-zero as the curve is smooth.
For detailed information about elliptic curves, we refer to Silverman’s book[13].
The set of points on an elliptic curve consists of the solution set of the definition equation

plus a point at infinity. These points form an abelian group with the infinity point as the
identity. We call a pointa torsion if it has a finite order in the group. The abscissa of the
torsions of ordern > 3 are the solutions ofP E

n (x), the nth division polynomial ofE .
Sometimes we omit the superscriptionE if no confusion is possible. These polynomials can
be computed recursively as follows:

P1= 1,
P2= 1,
P3= 3x4+ 6ax2+ 12bx − a2,
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P4= 2(x6+ 5ax4+ 20bx3− 5a2x2− 4abx − 8b2− a3),
P4n+1= 16(x3+ ax + b)P2n+2P 32n − P2n−1P 32n+1,
P4n+2= P2n+1(P2n+3P 22n − P2n−1P 22n+2),
P4n+3= P2n+3P 32n+1− 16(x3+ ax + b)P2nP 32n+2,
P4n+4= P2n+2(P2n+4P 22n+1− P2nP 22n+3).

We have

Proposition 2. For any positive integersn andx, the integerP E
n (x) can be computed by

a straight-line program of lengthO(logn + log(|x| + 1) + log(|a| + 1) + log(|b| + 1)),
whereE is the elliptic curvey2 = x3+ ax + b with a, b ∈ Z.

See[6] for the proof of (a stronger version of ) the proposition. It is based on the ideas
of repeated doubling and dynamical programming.

Proposition 3. LetE : y2 = x3+ ax + b be an elliptic curve defined overZ.Assume that
p does not divide the discriminant. Ifx is an integer and
(1) x modp is the abscissa of a point onE(Fp),
(2) the point(x,

√
x3+ ax + b) is not a torsion onE ,

thenPl(x) �= 0 andp|Pl(x), wherel is any non-zero multiple of|E(Fp)|.

Proof. For anyl, Pl(x) �= 0 sincex is not a torsion. We havep|Pl(x), since the point with
x modp as its abscissa has order dividing|E(Fp)| andl. �

Let E : y2 = x3 + ax + b be an elliptic curve defined overZ. The torsion points on
E with integral abscissa (thusy-coordinates are integers or quadratic algebraic numbers)
have order at most 18, as shown in the celebrated Uniform Boundedness Theorem in the
quadratic number fields[7,8]. Hence such integers must be the roots of somePn(x) where
n�18, or ofx3 + ax + b. The maximal possible roots of those equations are bounded by
the sum of the degrees of the equations, which is an absolute constant. LetB denote this
constant. One can takeB = 1035. Define

RE (p) = {x|x ∈ Z,1� x�p, (x,
√
x3+ ax + b) is not a torsion onE}.

Then|RE (p)|�p−B. Given an integer, we can decide whether the integer is inRE (p) in
polynomial time. From Lemma2, we conclude

Corollary 2. Let p be a prime andE : y2 = x3 + ax + b be an elliptic curve defined
overZ with 1� a�p − 1 and1� b�p − 1. If n = �6 logp� integersx1, x2, . . . , xn are
randomly chosen fromRE (p), then with probability greater than1− 2 logp/p, for any
primeq satisfying7B < q�p andq�4a3+27b2, one ofxi modq is the abscissa of a point
on the reduction ofE at q.

Proof.We construct a bipartite graphP × Y as follows. The setP consists of all the prime
numbers from 7B top which are not the prime factors of 4a3+ 27b2. LetY = RE (p). For
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anyq ∈ P andx ∈ Y , draw an edge betweenq andx iff x3+ ax + b is a quadratic residue
moduloq.
For a primeq, there are at leastq−2√q+1many points on the reduction ofE atq. Hence

there are at leastq − 2√q/2 manyx between 1 andq inclusive such thatx3+ ax + b are
quadratic residuesmoduloq.Among them,(q−2√q/2)−Bmanyare not torsion points. To
count such elements between 1 andp inclusive, we need to multiple the number by�p/q�.
Thus the degree ofq inP is greater than((q−2√q/2)−B)×�p/q� > q/3×�p/q� = p/3
for q > 7B. The theorem now follows from Lemma2. �

Thej -invariant of the curvey2 = x3+ax+b is defined asj = 1728(4a3/(4a3+27b2)).
Two elliptic curves with a samej -invariant are isomorphic over the algebraic closed field.
For elliptic curves defined over a prime finite fieldFp wherep > 3, two curves with a same
j -invariant may not be isomorphic. Ifj �= 0 or 1728, there are exactly two isomorphic
classes which have the samej -invariant, one can be represented byy2 = x3+ kx + k and
the other byy2 = x3 + c2kx + c3k, wherek = 27j/4(1728− j) andc is a quadratic
nonresidue modulop. There are different number of points over the two classes of curves.
There are at most 6 isomorphic classes withj = 0, and at most 4 isomorphic classes with
j = 1728.
We are interested in counting the number of isomorphic classes of elliptic curves with the

number of points coming from a given set. In[10], the following proposition was proved.

Proposition 4. There exist two constantsc1, c2 such that ifA is a set of integers between
p + 1− √p andp + 1+ √p, the number of non-isomorphic classes of elliptic curves
defined overFp whose number of points overFp are inA is

c1
√
p(|A| − 2)/logp�N� c2

√
p|A| logp(log logp)2.

4. Proof of the main theorem

Our goal is to construct a straight-line program of some multiple of�p = 2× 3× 5×
· · · × p in Lp[c1] time for some constantc1. Firstly, we compute a numberS = 2e1 × 3e2
× · · · × pess , whereps is the maximal prime less than or equal toLp[1] and for every
1� i� s, peii is the leastpi-power greater thanp + 1+ 2

√
p. Obviously we can compute

S in timeLp[2+ o(1)].
Secondly, we randomly choosel = �6 logp� integersc1, c2, . . . , cl between 2 andp

inclusive.We call the step successful if for every prime 2<q�p, at least one of the integers
is a quadratic nonresidue modq. The step succeeds with probability greater than 1−
(2 logp/p) according to Lemma1.
Denote byD the set of elliptic curve{y2 = x3+ ax+ a|1� a�p} ∪ {y2 = x3+ ac2i x+

ac3i |1� i� l,1� a�p}. Construct a bipartite graphX×D as follows.X consists of all the
primes between 7B+1 andp inclusive. For any primeq ∈ X and any elliptic curveE ∈ D,
connectq andE by an edge iff the reduction curveE of E atq is non-singular, and the order
of E(Fq) isLp[1]-smooth.
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Lemma 3. The degree of every element inX is greater thanpLp[−12 + o(1)] under
Conjecture1.

Proof. For any prime 7B < q�p, consider the subset ofD:

Dq = {y2 = x3+ ax + a|1� a� q}
∪ {y2 = x3+ ac2i x + ac3i |1� i� l,1� a < q}.

Thej -invariants ofy2 = x3+ ax+ a andy2 = x3+ ac2i x+ ac3i are 1728(4a/(4a+ 27)).
If one of integers in{c1, c2, . . . , cn} is a quadratic nonresidue moduloq, then there exist
representations of all the isomorphic classes of elliptic curves overFq in Dq , except for the
curves withj -invariants 0 or 1728. There are at least

√
q/Lq [12+o(1)]manyLq [1]-smooth

integers betweenq − 2√q + 1 andq + 2√q + 1 according to Conjecture1. Hence there
are at least

√
q (
√
q/(Lq [1/2 + o(1)])) = q/(Lq [12 + o(1)]) curves inDq which have

Lq [1]-smooth orders overFq according to Proposition4. In the setD, we need to multiply
this number by�p/q�, i.e. there are at leastq/Lq [12 + o(1)]�p/q� > p/Lp[12 + o(1)]
curves inD haveLp[1]-smooth order overFq . Hence the degree ofq in X × D is greater
thanp/Lp[12 + o(1)]. �

Now we proceed to the third step.We randomly choosew = �Lp[1]� curvesE1, . . . , Ew
from D. We call the step successful if for any prime 7B� q�p, q does not divide the
discriminant of at least one of the curves in{E1, . . . , Ew} and the reduction of this curve at
q has aLp[1]-smooth order overFq . In the other words, in graphX×D, {E1, . . . , Ew} ⊆ D
dominatesX. SinceLp[1] > 2 logpLp[12 + o(1)], the step succeeds with probability at
least 1− (2 logp/p) according to Lemmas2 and3.
In the fourth step, for each 1� i�w, we pickh = �6 logp� random integersxi,1, xi,2,

. . . , xi,h inREi (p).We call theith sub-step successful, if for any prime 7B < q�p, at least
one integer in{xi,1, xi,2, . . . , xi,h} moduloq is the abscissa of aFq -point in the reduction
curve ofEi atq. The successful probability for each sub-step is greater than 1− (2 logp/p)
according to Corollary2. Hence the successfully probability for this step is greater than
(1− (2 logp/p))w.

Lemma 4. All these four steps are successful with probability

(
1− 2 logp

p

)Lp[1/2+o(1)]
>
1

3
.

If all the four stepsare successful, thenwecanget amultiple of�p byevaluating theSth di-
vision polynomials ofE1, . . . , Ew onx1,1, x1,2, . . . , x1,h; · · · ; xw,1, . . . , xw,h, respectively
and multiplying the results together. Now we are ready to write the straight-line program
for a multiple of 2× 3× 5× · · · × p.
(1) Start by computing the product of all the primes less than 7B. Let the result beT1.
(2) Add instructions to compute

P
E1
S (x1,1), . . . , P

E1
S (x1,h); · · · ;P Ew

S (xw,1), . . . , P
Ew
S (xw,h).
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(3) Add instructions to compute

T2← ∏
1� i�w,1� k�h

P
Ei
S (xi,k).

(4) AddT ← T1× T2 into the straight-line program.
Based on the analysis in this paper, it can be verified that the above straight-line program
computes a product of�p and it has subexponential length.

5. Discussion

The relation between ultimate complexity and integer factorization can be further ex-
plored.
Firstly, canwe derive a factorization algorithm froma straight-line program for amultiple

of n!?The only problem here is that themultiple ofn!, i.e.n!mn, may contain primes greater
thatn. We must try to restrict the integermn such that it only has primes less thann. It
seems hard to do so with the algorithm in this paper.
Secondly, is the lower bound of the ultimate complexity ofn! also subexponential? Since

this problem is closely related to the integer factorization problem, which is believed not to
have a polynomial time algorithm, we suspect that the answer to this question is positive.
The existence of a short straight-line program for a large number does not imply that

we can construct the short straight-line program in reasonable time. Given two integers
m, n and a primep, if m modp is the generator ofF∗p andp�n, then there exists a short
straight-line program for a power ofm which is congruent ton modulop. But we do not
know how to construct such a straight-line program fromm, n andp, as the problem is
equivalent to computing the discrete logarithm problem overFp. We believe that it might
be possible that for somen, n! or a multiple ofn! have very short straight-line programs,
however constructing the program would be very hard.
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