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1. Introduction 

Since the proposal of logic programming by Horn clauses [5] and Prolog [7] has 
been gaining popularity because of the unified treatment of declarative semantics 
and procedural semantics. It has been successfully applied to natural language 
processing [3], data base queary [4] and others. Pattern directed invocation and 
built-in back+racking mechanism of Prolog are suited for symbolic manipulation. 

A Prolog Irdgram consists of logical formulas called Horn clauses. There are two 
types of Horn clauses -definite clause and goal clause. The definite clause has the 
form Ao+A, . . . A, (ma0) where A,&. . . &A,,, implies Ao. A0 is the head and the 
literal sequence A, . . . A, ic, the body. Erich Ai is a goal. m = 0 is the unit clause, 
which asserts that A, is true. When m >O, the clause works as a procedure to 
compute the relation A, by the goals Al . . . A,,. A Prolog program, --hich consists 
of definite clauses, can be seen as an axiom. For example, 

So = (add(0, X, X) f-, add( s(r), y, s(z)) t add(x, JJ, z)} 

is an axiomatic addition program where 9” is the successor function. It defines 
the addition-relation over the term domain (Herbrand universe). The goal clause 
has the form *A,(x) . . . A,,,(x) (m 2 I j. which is supplied by the user as a top goal. 
Here, Prolog interpreter has to find the value of x which satisfies A,, . . . , A, 
simultaneously. For example, +add(s(O), sjs(O)), x) is a goal clause to compute 

1 + 2. The Prolog interpreter computes the value of x by invoking clauses in S, and 
returns s(s(s(0))) as an answer. Procedure invocation and parameter passing are 
carried out by the matching pattern (unification) of a goal with a clause head. 
Computation by Prolog c:m be seen as a (refutation) proof for the program to 
achieve the top goal. 

The Prolog program is basically nondeterministic and the interpreter (compiler) 
lacks the ability to detect the determinacy in a program. Hence, it always prepares 
for backtrackings even if careful inspection would show the determinacy of the 
program. Preparations for backtracks are time- and memory-consuming tasks and 
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cause slow computations. The detection of the determinacies in a program and the 
elimination of oreparations for backtracks definitely save time and memory. 

in this paper we will describe a method to analyze Prolog programs based on an 
abstract it2m ?;et &nstruction. This method gives run time instantiation patterns of 
the clauses in a program. It reveals: 

( 1) possible calling patterns for a clause, 
(It) necescary conditions for successful computation of a clause. 
The first information enables 1:s to detect the possible variable values of a clause 

at calling time which will be very useful to a Prolog compiler or a Prolog program 
transformation system 161. 

The second in’formation is more important because it helps to avoid backtrackings. 
if an invoked clause does not meet the condition, backtracks will inevitably occur 
in the su@equent computation. Therefore, eliminating such an invocation will avoid 
backtrackings in a Prolog prqgram and will lead to detection of the determinacy of 
the program:; This is exempiified by a parsing program in Section 5. 

Our analy+ consists of‘the combination of term abstraction and item set construc- 
tion for a PrdI,og program and a top goal. Term abstraction identifies two terms 
which wiil red&e an infinite set of items to a finite set from some abstract point of 
view. Dur item set ,constrktion resembles the one in LR( k) parsing theory except 
that abstracted items are stored. The resulting item set for a program to achieve the 
top goal covers ail clause instantiation patterns that may appear during computations. 

First we define the term depth abstraction and the item set construction for a 
Prolog.program S and a top goal 4. Next we reveal the relationship of the item 
set for S and + 8 to the state of Prolog interpreter and/or to the proof tree for 4 
by S. Thi:n an example shows how to detect the hidden determinacies in a nondeter- 
ministic program using the information obtained from the item set for the program. 
Final!y, we discuss another instance of abstract item set construction called mode 
abstraction which enables us to give appropriate mode declarations of a program 
automatically. Mode declarations disambiguate the input/output roles of arguments 
of a predicate in a progra,m so that they can be used by a compiler for optimization. 
Readers are assumed to be familiar with clausal logic [2]. In what follows, (Y, & . . . 

stand for a sequence of literals and 8, A, . . . for substitutions. 

2. Term-depth abstract ion 

Term-depth abstraction converts ii term t to the term s whose instantiation is t. 

it i4, applied to both iiterals and cl~uscs. 

Definition 1 (lwd and suhitwn). 

(a) For a given term t, t has level 0. c is called a level 0 suhterm of t. 

hhf If the subterrn .f’( t,, . . . , t,,) of t has lewl k ( W), then each t, has level k + 1 

and is callcci a Icwl k + 1 subterm of L 
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Definition 2 (depth k abstraction). For a given term t and an integer k, replace every 
level k subterm of t by a newly* created variable. The resulting term, denoted by 
[t]k, is called the depth k abstraction of the term t or simply k-term of t. Obviously 
the original t is an instantiation of [t]k for every integer k. For an expression E 
(term, literal, clause, item (see Definition 3)), replace every term t in the argument 
position of E by [t)k. Then the resulting expression, denoted by [Elk, is called the 
depth k abstraction of E. 

Example. Let a term t =f( g(x, a), J: b) and uI, uI, vl, vJ, wI, IV? be new variables 
other than X, y. O-term of t is q. I -term of t is j’( uI, u?, r+). %-term of t is 

,O a( %r ~9~)~ y, b). k-term of t (k 3 3) is f( g( X, a), _.v, b) which is the same as t. 

3. item set 

Here we define an itom set for a program to achieve a top goal. (E)t? is the result 

of a substitution 8 to an expression E. 

Definition 3 ( iterri 1 An item is a Horn clause with a dot in the body, An item of 

the form A c- . cy is called an initial item. An item of the form A * a. is called a 

closed item. We say an item is a k-item it’ every subterm occurring in the item has 

level at most k. 

Definition 4 (tlarititlt+). If an expression E (term, literal, clause, item) is diflerent 

from an expression F only in the ;*ariable names, E is called a variant of F, and 

vice versa. If E and F are variants of each other, we write E = F (modulo renaming). 

This also applies to sets of expressions. 

To construct the item set for a program S and a goal + 6, first we set up the initial 

item set for S and + T 

Definition 5 (itlirial item set 1. For a program S, an integer k and a goal +- 8, an item 

set 

Init( S, 8) = (*- 3) or (A c- s (A f- is a unit clause in S} 

i\ called the initial item set for S and + 6. 

Second we add items to Init( S, 6) by taking the downward closure and the upward 

closure of the preceding item set alternately. 

Definition 6 (dotrvnw-d k-closure). For a finite item set I, a program S and an integer 
k, we define the downward k-closure, der,oted by D-closure( I. S, k), as the minimum 
item set J such that: 
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(1) J includes r’ (module renaming). 
(2) Suppose there is an item A + a.XP in J and a definite clause B * y in S 

whose head R is un8iable with X. Let the mgu (most general unifier) of f? and X 
be 0. Then a variant C of [(B + .r)@]k is also included in J. 

Definition 7 (upward k-closztrej. For a finite item set I and integer k, we define the 
upviard k-closure, denoted by U-closure( 1, k), as the minimum item set I such that: 

(1) J includes I (modulo renaming). 

(2) Suppose there are an item A +- ax/3 and a closed item B c- ‘y. in J whose 
head B is unifiable with X, Let the mgu of f3 and X be 8. Then a variant C of 

I( A c aX$)O]k is also included in J. 

Dethition 8 (Son item and descendent item). A closed item B + y. referred to in 
Definition 7 is called a son item of C (= [(A + cuX.p)6]k). Every closed item that 
has already been defined as a son item of A +- a.X@ is also a son item of C. We 
define descendent item as the transitive closure of son item. 

‘The existence of D-closure( I, S, k) and U-closure( I, k) can be easily verified (as 
tc closure construction algorithm, see [ 11). Since k-items are finite for a given integer 
k, D-closurei I, S, k) is finite (modulo renaming). Similarly, U-closure( I, k) is finite. 

Starting with the initial item set S,, = lnit( S, 8) for a program S, a goal f- S and 
an integer k, we construct a series S,, S,, . . . of item sets by taking alternately the 
downward closure and the upward closure of the preceding item set. At some nlth 
stage of the construction the downward closure and the upward closure of S,,, is 
the same as S,,. I because the possible k-items generated from S u { 4) are finite. 

Definition 9 ( chwre ). For a program S, a goal +- S and an integer k, define a series 

of item sets I,,, jr,, . . . and the item set for S and 4, denoted by I (S, 8, k ), as follows: 

‘F I,, -7 )t:i.q$ a), 

4 I , ,. 1 = IJ-closure(D-closured I,, S, k ), k) for i 3 0. 

~(S,&k)=I,,ul,uI,u -a*. 

Proof. t I ) is obvious. Note that I is the least upper bound of an ascending chain 
I:,-- I, “< I? i - . - - and both D-closure and U-closure are monotonous and continuous 

;13 3 function of an item set. Therefore, 

I C-I II-closure( I, S, k ) r-. U-closure( D-closure( I, S, k \, k) = I. 

( 2 t iind f 3 1 can br derived from these relritions t‘asilj. ‘2 
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Example. Let a program S, ={A(x)+ B(x)D(x), B(y)+ C(y), C(a), C(b), D(b), 
x, y : variable, n, b : constant} and let the top goal to achieve be + A(z) (z : variable). 
For simplicity we ignore the term depth abstraction, i.e., t.he term abstraction depth 
k is infinite. 

lo = Init( S,, A(z)) 

=(*.A(z), C(a)+.C(b)+.D(b)+.}, 

II, = D-closure( I(,, S, k) 

= lo~{A(x-)-.B(x)D(x), B(j.+.C(y)}, 

I, = LJ-closure( 2 b, k) 

= I~u(scn)~ C(a)., B(b)* C(b)., A(a)* B(a).D(a), A(b) 

+ Bw.D(b)l, 

I; = D-closure( I,, S, k) = I,, 

I,=U-closure(l;,k)-I,u{A(b)+B(b)D(b).,+A(b).}, 

1: = Li-&aure( D-closure( 12, S, k), k). 

Therefore, the item set for S to achieve +-A(z) is as follows: 

I(S, A(z), k) = 

= { +.A( z), *-A(b)., 

C(a)+., C(b)+-., D(b)+., 

A(s)+.B(x)D(x), A(a)+ B(a).D(a), 

A(b)+ B(b).D(b), A(b)+ B(b)D(b)., 

B(y) + .C( v), B(a) c- C( Q A, B(b) + C(b).). 1 

An item constructed by instantiating a clause and putting a dot m the body is 
called an item generated from the clause. Thus: 

kerns generated from A(x)+- B(x)D(x) 

-{A(x)+.B(x)D(x), A(a)+- B(a).D(a), , 

A(b)+- B(b).D(b), AU+- WW(WJ, ; 

Items generated from B(J)) + C(y) , 

= {B(L’k.C(y), B(a)+- C(n)., B(+- c.‘(b).), 

and so on. 
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4. Relationship bemeen I(S, 6, k) and the computation to achieve +6 

In this section we investigate the relation I(S, 6, k) and the computation process 
of +-; by Prolog Interpreter. We introduce a model of Prolog interpreter. The 
intermediate state of the interpreter can be represented by the pair, ((w (goals), 0 
(substitutions)). The actual value of the goals is (a)& For example, if the state is 
( A( X, _V ) B( y, z), { x\u, z\f( .a~)}), the actual goals are A( Q, _v) B( y,.f( y) L In the follow- 
ing, [A( (A may be empty) means that A is an ancestor goal for the current goals. 
It is usually called an A-literal in the context of resolution [2]. 

Suppose an initial goal is *- S and a program is S = (C,, . . . , C,,). The initial state 

is ((5 i 1, F) where F is a null subst.itution. 

The state transition can be defined in two ways: 

( 1 i expansion (procedure call). 

Let the current state be (Aa, 0). The interpreter always attacks the left-most goal. 

To 4ve or compute the current goal (.4)8, the interpreter selects a clause f?,, +- /3 

in S, uhose head H,, is unifiable with (ri!8 !renaming is assumed implicitly). Let 

the mgu be h. Then next state is (p 1 &la, 8 *A). 

( 2 I trtrnccrtion (.procedure return). 

Let lthe current state be (1 A Icy, 0). Since ]A] in the left-most position means that 

.4 has ahead:; been solved, the interpreter truncates ]AJ. Then nest state is (0. 0,). 

This interpreter model does not take consideration of unsuccessful computations, 

ix., backtrxks. Hu! it suffices for showing the relation betwecan a Prolog program 

;ind thtz item set. 

If the state becomes (11. O), then the computation ends successfully. The anslier 

4x;titution is 0 :lnd the goal proved is ( cVO. The rd;ition between I( S. 6, k) and 

thx computation proce:..s for f- 8 by an interpreter is revtxled by Proposition 1 1. 
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Thus it enables us to detect redundant clauses to eliminate from the program S. 

Second it teaches us possible calling patterns of a clause in a computation for +- S. 

In other words, it informs us of the possible values of variables in the head of a 
clause after unification. This would be of great use to a Prolog compiler or a Prolog 

program transformation system [6]. 
NOW we turn our attention to the instantiation patterns of a clause in the successful 

computation, i.e., global success patterns of the clause. We already know by Proposi- 

tion I I that if a clause A t- a is called in the computation for a top goal +- S and 

the subtler 6VU. si is successfully solved, then there is a closed item A’ + cy ‘. in I( S, 6, k) 

of which instantiation (A’ + a’)A is (A + cu)O where 8 is the substitution obtained 

up to the time when the subgoal cy was solved. Therefore, the set of closed items 

r’rom A + (Y teaches us the instantiation patterns of A + LY at the time when its 

subgoal has been successfully solved, i.e., the local success patterns of A + a. 

However, it is possible that local successes become useless because of the sub- 

sequent backtracks. To illustrate this, consider the example following Proposition 

10, where program S, = {Ah) f- B(s)D(x), B(y) t- C(y), C(a), C(b), D(h). The 

top goal -A(z) being given, .4(.x) + B(...)C(x) is invoked and the current goal will 

become B(s). Then B(x) calls B(_v)+ C’(V) and the current goal will become C(v). 

C(Y) can be successfully solved by calling C(a) or C( 6) with resulting substitution 

{_v\,u) or (_v\ hj rLqectively. Therefore, the local success patterns of B(,r) +- C‘(_V) 

for the top goal *-A(z) will ‘become {B(J) 6 r;a), B(b)* C(h)} as is suggested by 

the closed item set (B(a) + 3 a I., B(h) + C(h).) generated from R(J~) +- C(V). 

Suppose that the subgoal r(~v) is solved with substitution {_I+}. In this case, the 

call of R(J)+ C(_V) returns with {_~\a). This solves B(X) in A(x)+ B(x)D(s) with 

substitution {.~\a) and the next goal becomes D(s){s\a} = D(a). D(u), however, 

cannot be solved because S, does not include ;I clause whose head is D(n). Pit this 

point the backtrack starts. It will undo the successful return of B(J~ I+ C’(y). Thus, 

the local success of (B(y)+ C(y))(y\a) = B(a)- C(a) will not help to achieve the 

top goal +-A(z). B(a) c- C(a) is not a global success pattern of B(y) + C(y) but an 

unsuccessful pattern of B(_+- C(y). 

As this example shows, even if there is a closed item A’ + d. generated from 

,4 *- (Y in the item set I( S, 6, k), it is not necesstirily a global success pattern of A +- Q! 

to achieve c-6. I (S, 6, k ) often includes closed items that correspond to unsuccessful 

computntions. 

To rule out closed items which correspond to unsuccessful computations as many 

;IS possible, we enumerate the closed items generated from the clauses which may 

h;ive taken p;u=t In the successful computations to achieve the top goal ~6. This is 

done by starting with the closed item t 6’. generated from +-S, and tracing downward 

the descendant closed items of t-6’. . At the same time, instantiations are propagated 

from parent items to their closed sons. Any global success pattern of a clause for 

;jchieving t(‘i is proved to be an instance of some enumerated and instantiation- 

propagated item. Non-enumerated items correspond to unsuccessful computations 

(see Proposition 14). Enumerated items are called success items. Based on %% 6, k), 

the suc(;ess item set I -suc( S, f, k ) is given by the following definition. 
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Definition 13 (success item set). For a program S, a goal + S and an integer k, 
construct the item set I (S, 6, k) for S and + 6 as follows: 

(1) 
(2) 

1 .et A 

(3) 
(Ai 

(5) 

Let Lsuc = {+ S. 1 a $r)sed item from the goal clause + 6). 

If -40 l - A,, . . . , A,. is in I-sue, then choose its son item B + /?. from I( S, S, k). 
be a substitution such that A, = (B)h for some i. 
Add (B + P.)h to I-sue. 
Repeat steps (2) and (3) until no closed items are added to I-sue. 

The resulting I-SW set i$ the success item set I-suc( S, 6, k) for S and + 43. 

Proposition 14. For a program S, a goal ft 6 and an integer k, construct the success 

item set I-suc( S, 6, k) for S and + 6. If a clause A + (x 1s used in the successful 
ComputationSor + S with an answer substitution 0, then there are a closed item A’+ cy’. 

generated jiom A + cy in I-srrc(S, 8, k) and a substitution h such that (A + a)0 = 

(.A’ + a’)h holds. 

The proof of this proposition is omitted. 

Proposition 14 is the main pain; of this paper. Imagine that a clause A- cy is 
invoked in a computation to .achievc -6. When A + cy is instantiated by the unitka- 
:ion, it is not known whether it can have a global success or not. According to 
Proposition 14, however, the necessary condition 
must be satisfied. 

Necessary condition for global success. Assume 

instantiated to A’+ (Y’ by the invocation. Then 

for global success mentioned below 

that a clause A - CY is invoked and 

there is a success item A” t- ~2” in 

I-suc( ‘z, 6, k) generated -from A c- cy such that A’+ CC is an instance @‘A”+ 6 

In other words, once the instantiation pattern of an invoked clause violates the 
above condition, any computation including the invocation will be cancelled by 
backtracks. Therefore, checking this condition at calling time avoids fruitless compu- 
tations and realizes better behavior of a program. This connition also gives a chance 
to detect the determinacies in a program. Assume that a program S has several 
clauses for the relation “p”, i.e., clauses whose head predicate name is “p”. SO 
there will be non-determinacies with respect to the selection of possible callees 
(clauses whose head predicate name is “p”) when a caller ot: the form p(. . .) appears 
in the computation for a top goal 4. But if in I-suc(S, 6, k) every success item 
generated from one callee and wery success item generated from another callee are , 

non-unifiable, we can conclude that there is a! most one callec that has a global 
success. Thus, a non-unifiable check in I-suc(S, 6, k) reveals the determinacy with 
respect to !he relation .,P”. 

From the above discussions and from ihe fact that instantiation patterns in a 
success item set become informative in proportion to the term abstraction depth k, 

it i< reasonable to expect that jTve can eliminate almost all backtracks and detect 
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determinacies, if any, in a program by choosing a sufficiently large k. On the other 
hand, since the computational cgst of a success item set grows exponentially with 
respect to k, a large k make3 t.le computation needed for the item set construction 
impossible. Deciding the term abstraction depth seems critical and should depend 
on the program and the top :C .!I to achieve. 

5. Success values of variable* aad the detection of non-determinacies in a program 

In this =a-r: - ,,Qklti~ we will illustrate how to apply the necessary condition for globai 
success to eliminating backtracks in Prolog programs. We take a parsing program 
for a small regular langlrjge as an example. It is a nondeterministic top-down parser 
wi\:hout left recursive rules. Based on the information obtained from the success 
item set for the prograin,, WC show that it can be transformed to a deterministic parser. 

%G~I\MMAR-1 for the regular expressions by (a, b, emp} 
‘1X(exp) ::=(term) (expl) 
%(expl) ::= +(term) (expl) 1 A 

%(term) ::= (factor) (term i ) 

*&(terml) ::=(fartor) (term 1) 1 A 

y&, ,* ~dct()r‘\ ::=((exp)) (factorl) 1 a (factorl) ( 

0: 
m b&actor 1) 1 emp {factor 1 ) 

o&{factorl) ::=*(factor i} 1 A 

In this grammar ‘A‘ denotes an empty symbol. Below is 2 DEC-10 Prolog [7] 
program S, for GRAMMAR-~. 

_______ Prolog program S, ________ _____ ___________ 

exp(XhZ,):- termo(,, YA expl(Y,, Z,). 
expl([‘+‘IX2]Z2) : - term(X,, YL), expl (Y2, Z,). 
expl(X,, Xd. 

term( X4, Z,) : - factor( X4, YJ, term I( Yq, Z4 j. 
term 1 (X5, Z,) : - factor( X5, Y,), term i (TisI 2&j. 

term 1 (X6, X,). c 

frrctor( [‘(’ 1 X,], Z,) : - exp( X7, [‘)’ 1 YJ), factor I ( Y7, Z,). 
factor( [a ] X,], Yx) : - factor 1 (X8, Y,). 
factor( [b ( X,], U,) : - factor 1 (X9, Yy). 
factor([empIX,,,], Y,J : -factorl(X,,,, Y,J. 
factorl([‘*‘lX,,], YJ : -factorl(X,,, Y,,). 
factori(X,,, X,,L 

Each predicate name(exp, expl, term, etc.) corresponds to a nonterminal symbol. 
A string wrth an upper case letter at its head (X,, Y,, Z,, etc.) is a variable. Other 
strings are constants. “[o 1 !I]” and “[u, b, c. . .I” denote cons( a, h) and list( a, b, c. . .) 

in LISP respectively. “: -” is an implication symbol. 
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Every prediicate p(X, Y) in S, has two arguments both of which are lists of words 
(terminals). j7([“,, . . . , W,, Wj, i, . . . ?I W,,], [Wi+*, . . . , w,]) has declarative meaning as: 

The category (p) derives [w,, . . . , w,], the part of the entire sentence [ tq, . . . , w,] 

and the rest of sentence to parse is [M*;+. I,. . . , w,,]. 

The program SI may cause a number of backtracks due to ungrammatical input 
sentences and nondeterministic computations in S,. For example, because [‘*‘, a] 
is not a grammatical sentence in GRAMMAR-I, :-exp([‘*‘, a], [ 1) invokes clauses 
l-4, then clauses 7- 10 and backtrack occurs. Although [a, ‘+‘, a] is a grammatical 
sentence, a goal :- exp([a, ‘+‘, a], [ 1) causes a backtrack too. In the parsing of 
[a, ‘+‘, a], there appears a subgoal term1 ([‘+‘, a], [ 1) which calls clause 5. Then 
backtrack results. 

We will show how to eliminate these backtracks, either by an input sentence 

grammatical or not, using the modified version of the necessary condition for global 
success which is reformulated in terms of the instantiation patterns of variables in 

a clause called success values of variables. 

Definition 15 (szdccess value). From a given program S, top go‘31 4 to achieve and 
integer k, ‘construct the succe:+s item set I-suc( S, S, k 1. The term t is a success value 
of the var.iable v in a cla::_;.c3 A * N to achieve +c’i if i! takes t as its value in some 

success item A’+- a’. generated from .4+ CY in I-suc(S, 6, k I. 

It follows from the necessary condition for global success stated in Section 4 that 

if the value of ;1 variable LJ in an invoked clause is not an instance of any success 

value of ~1 to achieve the top goal, the invoked clause will not have a global success. 

Thus we can eliminate backtracks by checking success values. 

In order to realize backtrack elimination using success values, first we have to 
select an appropriate top goal. As any parsing computation by S, is included in the 

computations to achieve a general goal :- exp(X,,, [ 1) where X,, is a variable, we 
choose this as the top goal for the success item set construction. Second, we have 

to decide the depth of term abstraction. We choose 2 as the depth since our interest 
is the first element of ;i list in the argument position. Then we construct the item 

set Ii SI, exp( X0, [ J), 2) for S, to achieve the top goal : -exp( X,,, [ 1) with term 

abstraction depth 2. This includes 201 items (the item set construction was currietl 

out by ;t LISP program). 

Ne.ut we construct the success item set I-suc( S,, exp( A’,,, [ 1). 2) for S, to achieve 

: -txpt A’,,, [ 3) from I($, csp(X,,, [ 11, 2). This includes 1.2 items. Then we extract 
the success \*Aues of he;id variables (vari;lbles occurring in a clause head) from 

I-SK: St, esp( SC,, [ 71, 2). 

In order to extract the success values for S, of clause 1, for example, esp( Xi, Z, ), 

the head of clause I, is unified with the head patterns of the success items generated 

from &use I. Since the head patterns of success items from clause 1 are 

~~~p+~], [ JL exp([cll S]. [ ‘1,. exp([a j S], [‘Yi:‘+, . . . . WP([‘(‘, .Y / 1 :, { ‘1’. X 1 \‘I), 

tlxp! [ ‘I’ . A’ i 1’1. [‘j’, .%’ 1 I’]), esp(l’~‘, A’ / F), [ 1) ( 15 different yj;ltterns)). the suc~cs~ 



values for X, are (~1, h, emp, ‘(‘}. Discussions so far show us that if the value of X, 
is not one of (a, b, emp, ‘C), the computation containing clause 1 never succeeds 
globally. As the reader may notice, the set {a, 6, emp, ‘( ‘) is the First( 1; symbol set 

for the category (exp). In this fashion we can extract the success values for X3, X4, 
X5, X6, Xl2 (see Fig. 1). 

What do these success values imply in practice? Let us return to the previous 
example. Suppose that we are going to parse a(n) (illegal) sentence [‘*‘, a]. The 
first call is : -exp([‘*‘, a], [ 1) with X, = ‘*‘. But since ‘*’ is not a success value for 
X, (see Fig. ! ): we can immediately return with failure without further computations 
that would be discarded by backtrackings. Suppose that we are going to parse a 

(legal) sentence [a, ‘+‘, a]. The call term1 ([‘+‘, a], [ ]) occurs. There are two possible 
calls (nondeterminacy!), clause 5 and clause 6. The success values in Fig. 1 suggest 
that we should choose clause 6 because ‘+’ is a success value for X6, not for X5. 

Note that if the first argument of some caller is not ground (contains no free 
variables), the detection of the determinacy of program S, by those success values 
may not work wel, (irnagme .what happens if a call term l( Y4, [ 3) occurs where 1; 

is a free variable: both callee:;, clause-5 and clause-& will pass the check by success 
values and be successfully invoked). Therefore, we must confirm whether the 
condition that the first argument of any caller is ground is satisfied or not. i;ortunately, 
this cundiCon is L;hown to hold (automatic verification of this condition concerns 
another embodiment of thle concept of “+tract item set for logic programs” which 
will be discussed in Section 6). Thus, by the success values and the clause head 
patterns in S, we can conclude that S, is deterministic in spite of the nondeterministic 
appearance. 

If we convert the examp!e program to an explicitly deterministic one using the 
success ~31~s given in Fig. 1, it becomes an LL( 1) parser. This is not accidental. 

Variable Success values 

x a, 6, emp, Y’ 

x.1 ‘I’, c 1 

x.4 a, 6, emp, Y’ 
1-q -- -. 

X5 a, 6, emp, 7’ 
- ., - 

& ’ f ‘, ‘I’, [ ] 

x*2 a, 6, m-p, ‘(‘, 
‘j’, ‘+ ‘) [ 1 

~_. -- 
Fig. 1. Success vrtlues for head variables in S,. 
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When a grammar is LL( k) and a parsing program like S, for the grammar is given, 
we can always detect the LL(k)-ness of the program by extracting success values 
from the success item set, and convert it to the determin:s::c program. Even if a 

grammar is not LL(k), it is evident that we can optimiz‘ a parsing program by 
examining success values. 

We have applied similar optimization techniques to a bottom-up parser for 
GRAMMAR-~. The resultant progra;n’ is an LR( II )-like deterministic parser as ex- 
pected. But in general we cannot expect the conversion to an exact LR(k) parser 
because, in order to realize an LR(k) parser, the Prolog interpreter would need to 
invoke several clauses at a time, which corresponds to a GO TO action. 

6. Automatic mode declaration via mode items 

Our analysis for logic programs relies on the item set construction and term 
abstraction. Another kind ‘of abstraction, instead of term depth abstraction, is 
expected to bring forth a new kind of item set construction. For example, looking 
at the arguments of a predicate from data type point of view would produce an 
item set which contains information about data types of the arguments. Here we 
will discuss briefly: another e’mbodiment of the concept of “abstract item set” which 
concerns automa,ilc mode declarations for logic programs. 

In logic programs, every-argument in a predicate works as both input and output. 
For example, S,, in Section I can be used as a subtract program by exchanging the 
roles of arguments Cough it is designed to be used as an addition program. Such 
ambiguities abcjut inpM/output distinction force a compiler to generate superfluous 
codes to cope with them, and result in slow computations. Therefore, it is advan- 
trieeou!< to give information about the input/output roles of the arguments in ;i 
predicate to the compiler by some mechanism, namely, mode declarations. Of course 
they depend on the programmer’s intention ai how to use use predicates and 
especially how input/output roles are assigned to the argument of a top goal. 

We halve developed a method to generate mode declarations ;tutomsticallp when 
“argument mode” is assigned to each argument in the top goal predicate. (Argument 

mode means the classification of instantiation states, i.e., mode abstraction ,>f rln 

xgument term I defined by: 

-6 if I is instantiated to a ground term, 

- iI‘ t is a variable and uninstantiated. 

a) . if t i$ inst;lntiated to an unknown term.1 

This method is based on observations that by mode abstraction there can be onI> 
~1 tit:ite number of argument modes for one clause and only sonx of them :Ire 
;~llo\vec! to xtually occur at rutI time. It‘ we can enumerate 211 of the run time 

qumrn~ modes. it is CR+ to give ;i mo& declaration ;tppropr iltte to ;1 predicatr: 
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“p” by extracting the argument modes of callers of the form “p(. . .)“. 

Therefore, the point is how to sort out exactly the actual argument modes from 
the possible ones when the argument modes of a top goal are given. In order to 
make the enumeration as accurate as possible, we construct a set of “mode items” 
in which each may represent a state of some invoked clause and contain its variable 
modes (defined similarly to term modes) at that state. A typical mode item would be 

(add(s(x), ,p; s(z)) c- .add(x, y, z), [(x, +), (y, +>, (2, ->]>~ 

This item stands for one of the possible variable modes of a clause add(s(x), 
y, s(z))+add( x, y, z) just before the call of add(x, y, z). Since x and y are ground. 
and z is a variable (indicated by the left component of the item), the argument 
modes of the predicate “add” at this coil are judged to be add(+, +, -). This item 
shows that a mode item keeps the mode types of instantiated variables instead of 
the variable instantiations. 

An algorithm to construct a set of mode items for a program and a top goal is 
very similar to the one for ;ln item set construction by term depth abstraction defined 
in the previous sections. It starts with an initial item, say (c-.add( n,, n2, n3), 

Ih, +A h, +A n3, ->I) where n,, n, and n, are variables, which corresponds to the 
top goal. Then I( takes the downward closure and the upward closure of the preceding 
mode item set alternately until no mode item can be added. During the closure 
construction process, argument modes are made to propagate by matching the 
argument modes of a csller predicate and a callee predicate via variable modes in 
these two. 

A set of mode items for a program and a top goal do not only bring the mode 
declarations for them but also sometimes help us to detect the determinacy of the 
program driven by the goal. For example. in order to detect the determinacy of the 
parsing program S, in Section 5 we are required to confirm that the first argument 
of a predicate is always ground when it becomes a caller in a parsing process. This 
is checked affirmatively by constructing a set of mode items for S, to achieve the 
top goal l -exp(x, y) *where x is ground and J’ is a variable (the construction was . 

crtrried out by a tentative automatic mode declaration program written in DEC- 10 
Prolog). 

7. Conclusion 

We have proposed a method to detect the determinacies in a logic program by 
constructing an item set for the program to achieve the top goal. The item set 
construction with term depth abstraction reduces infinite clause instantiation patterns 
to finite. From the item set we can extract the success values of variables in a 
program. They enable us to detect the determinacies implicit in the program with 
the help of the item set generated by term mode abstraction. This is shown by a 
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parsing program example. We hope that our method provides one step closer to an 
intelligent logic program compiler and a logic program understanding system. 
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