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1. Introduction

In 1935, Fréchet [9] gave a geometric characterization of inner product spaces. In the same year, Jordan and von Neu-
mann [12] characterized inner product spaces as normed linear spaces satisfying the parallelogram law. In 1943, Ficken
showed that a normed linear space is an inner product space if and only if a reflection about a line in any two-dimensional
subspace is an isometric mapping. In 1947, Lorch presented several characterizations of inner product spaces. Since then
the problem of finding necessary and sufficient conditions for a normed space to be an inner product space has been
investigated by many mathematicians by considering some types of orthogonality or some geometric aspects of underly-
ing spaces. Some known characterizations of inner product spaces and their generalizations can be found in [2-4,16] and
references therein.

There are interesting norm inequalities connected with characterizations of inner product spaces. One of celebrated
characterizations of inner product spaces has been based on the so-called Dunkl-Williams inequality. In 1936, Clarkson [5]

introduced the concept of angular distance between nonzero elements x and y in a normed space (%, | - |) as «[x, y]=
||“§—|| — Hi,’—“H. One can observe some analogies between this notion and the concept of angle A(x, y) between two nonzero
vectors X, y in a normed linear (%, || - ||) defined by
2
1 X
Ax,y) =cos™! [—(2 N I )]
2 Ixi Iyl

In [10], Freese, Diminnie and Andalafte obtained a characterization of real inner product spaces in terms of their above

notion of angle. In 1964, Dunkl and Williams [8] obtained a useful upper bound for the angular distance. They showed that
4|x —
afx, y1< Alx =yl .
Xl + 1yl
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In the same paper, the authors proved that the constant 4 can be replaced by 2 if 2" is an inner product space. Kirk
and Smiley [13] showed that
2lx=yl
%I+ Nyl

characterizes inner product spaces.
In 1993, Al-Rashed [1] generalized the work of Kirk and Smiley. He proved that in a real normed space (%, | - ||) the
following inequality

afx, y] <

X — i
XN+ Nylaye

holds if and only if the given norm is induced by an inner product.
In [15], Maligranda considered the p-angular distance (p € R) as a generalization of the concept of angular distance to
which it reduces when p =0 as follows:

alx, y1 <27 (qe(©,11)

Y
IxIt=P Jlylt-»

ap[xs Y] =

Maligranda in the same paper and Dragomir in [7] obtained some upper and lower bounds for the p-angular distance in
normed spaces.

In this paper we present a new characterization of inner product spaces related to the p-angular distance. We also
generalize some results due to Dunkl, Williams, Kirk, Smiley and Al-Rashed by using the notion of p-angular distance
instead of that of angular distance.

2. Main results

We start this section with a norm inequality due to Maligranda [15] that provides a suitable upper bound for the p-
angular distance.

Theorem 2.1. (See [15].) Let (X, || - ||) be a normed space and p € [0, 1]. Then

X =yl
(max{lx|, [lyIH'-P

aplx, y1<2—-p) .y #0).

The next theorem is a generalization of the Dunkl-Williams inequality [8] and a theorem of Al-Rashed [1, Theorem 2.2].
Theorem 2.2. Let (%, || - ||) be a real normed space, p € [0, 1] and q > 0.
Then the following inequality holds
lIx -yl
1
(IX[|T=PX ||y || 1=P))a

for all nonzero elements x and y in Z'.

+

141
aplx,y] <2 74

Proof. Due to Theorem 2.1, it is sufficient to show that

=yl e Ix—yl

2-p — < .
(max{|x|l, [lyIH*-P (X[ A=Pa 4 ||y =P

Without loss of generality, we assume that ||x|| < || ¥].
Since p <1 and g > 0, we observe that ||x||1=P 4 || y||1=P L 2| y|1-P)a,

11 .
Thus (||x||1=P 4 ||y||1=P¥)ya < 24 ]|y||’~P or equivalently

1
1 24

’

i S ]

IYIE=P " (x| a=pa 4 |y 1-Pa)a
whence

X =yl ] LSl PPN TR % =yl

S S a . Od
(max{IxI 1y ID"? S Tyl (X 1 [y -P0)E

2-p
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Proposition 2.3. Let (2, || - ||) be an inner product space. Then the following inequality holds

lx =yl

Xp e By #0. pelo).

aplx, y] <2

Proof. Let (-,-) be the inner product on 2. Then

@2[x, y] :< Y x Yy >
P IxIP=P AlylIT=P 7 xt=p qly|i=p
2Re(x, y) P
= [IX1*P = — =+ 1P
Ix[IT=P (| ylI*=P
X1 + Iyl = lIx = y1I? 2
= [|x]|*P — +lyI%P. 21
X1 =P ||y (1P
Due to equality (2.1) it is enough to show that
X112 + 11yl — [Ix — y|I? Ix— ylI?
X% — o VI <A 3
XI5 =Pyl UxNF=P +1lylI*=P)
or that the last inequality of the following sequence of equivalent inequalities holds.
X112 + Iy 112 4 1
%1% — g+ 1Y I1PP < - Vel | LI
X1 =Pyl UxNF=P + 1yl =Py AxI* =PIyl

IXIPHH P — (l® + 1y 12 + I Py 1P (P = iyl )% = y 2
IXI1T=P |y |1 =P SRR QIR Py R
(xI'=P = [y =P)?
(IXI1=P + |y |11=P)2
4 N a2 o 7 o [ 1
(IxI1=P + [y =P)? lIx — ylI? Tollx—yl?
To prove (2.2), let x, y € & — {0}. Without loss of generality we suppose that x| < ||y||. We define the differentiable
real valued function f as follows:
fipy < W2 =22 IXIPH I + Py e
(Ix[1T=P + [ly|1=P)? lx—yl2

We claim that f has exactly one local extremum point at the interval (0, 1).
By a straightforward calculation we see that

Ix = yI2 < (%2 + 1y12) = (IKIPT Iy P + ) =Py P,

(2.2)

(p €10, 1]).

F=0 < 4lx—yP>xI"" = 1y1P) + (IyI2P — 1x17) (1K1 + 1yl =?)> =0
& 4b(1—a""P)+ (@ —1)(1+d"P)’ =0,

_yll2
where a = % and b = % Clearlya>1 and (a —1)2 <b < (a+ 12

Using the software MAPLE 11 we observe that the exponential equation

4b(1—a'"P) + (@ —1)(1+a'?)’ =0

has exactly one solution pg in the interval (0, 1). In fact the function f takes the local minimum at the point of pg due to
the facts that f’(0) <0 and f’(1) > 0. Hence the function f takes the absolute maximum at the boundary points of [0, 1].
Therefore

f(p) <max{f(0), f()} (p<l0,1]).
Thus

(X1 =1yID> 2000yl 112+ 112
X1+ 1yID?  lx=yl2" lx = yi2

f(p)émaX{ } (pelo.1]),

whence

lIx11% + 1y 11>

ey P01 o

f(p) <
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The next theorem is due to Lorch [14], in which the dimension of the underlying space 2  plays no role. This is
significant since, for instance, the symmetry of Birkhoff-James orthogonality which is a characterization of inner product
spaces is valid when dim & > 3, see [6,11]. We recall that the behavior of a space in dimension 1 or 2 differs from that in
dimension 3, see [3,17].

Theorem 2.4. (See [14].) Let (2, || - ||) be a real normed space. Then the following statements are mutually equivalent:

(i) Foreachx,y € Z if Xl = |yl then |Ix+ y|| < [lyx+y 'yl (for all y #0).
(ii) Foreachx,y € & if |x+ y| < llyx+y 'yl (forall y #0), then ||x]| = [ y|.
(iii) (&, | - |) is an inner product space.

The next result is an extension of the results of Al-Rashed [1]. It provides a reverse of Proposition 2.3.

Theorem 2.5. Let (2, || - ||) be a real normed space and p € [0, 1). If there exists a positive number q such that
Ix—yl
(IIx|1T=P II}/II(l’p)q)‘l?

then (&, || - ||) is an inner product space.

1
aplx, y] <21

(x,y #0), (2.3)

Proof. In the case when p =0 the theorem holds by a result due to Al-Rashed [1, Theorem 2.4]. So let us assume that
O<p<1.

Let x,y € Z, x| = |||l and y # 0. From Theorem 2.4 it is enough to prove that ||x + y| < |[yx+ ¥~ 'y|. Also we may
assume that x# 0 and y #0.

Applying inequality (2.3) to ypnx and —y*pny instead of x and y, respectively, we obtain

n n 1 Plx 4y
ap[yP x, —y P y] <29 lyZx+y 7yl - (neNuU{0}).
(y P x| =P + [y =P y || =P)a
For y > 0 it follows from the definition of « that
ly”x+y Pyl

1
<20

yP'x vy
H Y PPN TP | PPy TP

IX[|1=P (y P"(1=P) 4 —p"(1-Pa)
or equivalently

(VP”Up)q + PP
2

1
q n n n n
) b7 k< ey

for all n € NU {0}, whence 0 < [P x+y Py <llyP"x+y~P"y|| (n e NU{0}), since yP"(1=PM 4 =P"(1=P)d > 2 Hence
{llyP x+ )/*p"y“}f;":0 is a convergent sequence of nonnegative real numbers. Thus we get
— i p" -p" -1
Ix+yl=lim [y"x+y " y| <[yx+y~y|
duetoO0O<p<1.
Now let y be negative. Put ;. = —y > 0. From the positive case we get

Ix+yll < |ux+pny|=yx+y~ly|. ©

Lemma 2.6. Let (2, || - ||) be a normed space and p € [0, 1].If0 < q1 < g3, then
X — 1 X —
lx— vl <2 lx— vl _ (xy+0).

1
20 -
(Ix]|A=P)a2 4 || y||(A-P)2) a2 (I1x]|A=P)a1 4 ||y || A=P)1) a1

Proof. Without loss of generality, assume that x # y. We have the following equivalent statements

X =yl L X =yl

1
202 <20

1 1
(Ix]|A=P)a%2 4 || y||(1=P)d2) 2 (Ix]|A=P)a1 4 || y||A=P)1) a1

1 11 1

o (”x”(l—P)th + ”y”(l—P)Ch)ﬂ < ZT—E(HXH(l—p)qZ + ”y”(]—p)qz)ﬁ
q qq
& ”X”(lfp)th + ”y”(lfp)th < Zlfé(“)(”(lfp)fn + ”y”(lfp)qz)ﬁ

_ a _ a q_a _ _ ar
N (||X||(l P)CIZ)qz +(||y||(1 p)Qz)qz <2 @ (||x||(] P)Q2+||y||(1 p)Qz)qZ.
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The last inequality is an application of the following known inequality
a+b' <2 @a+b)' (a,b>0,0<t<1)

toa=|x|""P%, b=|y|""P% and t=1. O

Finally we are ready to state the characterization of inner product spaces. It is a generalization of a known theorem of
Kirk and Smiley [13].

Theorem 2.7. Let (X, || - ||) be a real normed space, and p € [0, 1). Then the following statements are mutually equivalent:
1
(i) aplx, yl <20 — W=V (x y20) forallq e (0,1].
(x| A=P)a | y||A=P)a) @
1
(ii) aplx, y] <20 — W=V (x y£0), for some q > 0.
(x| A=P) || y||A=P)9) T
(iii) (2, |- |)) is an inner product space.

Proof. (i) = (ii) is trivial.

(ii) = (iii) is the same as Theorem 2.5.

To complete the proof, we need to establish the implication (iii) = (i). To see this, let g € (0, 1] be arbitrary. It follows
from Proposition 2.3 that
o x=yl
IX|1=P + [|y|IT=P
By setting g1 =q and g2 =1 in Lemma 2.6 we get

X— 1 X—
J vl <o Ix =yl .
IX[1F=P + Nyl =P (X[ T=P) + ||y || (T=P)a)a

(2.5)

Now the result follows from inequalities (2.4) and (2.5). O
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