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1. Introduction

In 1935, Fréchet [9] gave a geometric characterization of inner product spaces. In the same year, Jordan and von Neu-
mann [12] characterized inner product spaces as normed linear spaces satisfying the parallelogram law. In 1943, Ficken
showed that a normed linear space is an inner product space if and only if a reflection about a line in any two-dimensional
subspace is an isometric mapping. In 1947, Lorch presented several characterizations of inner product spaces. Since then
the problem of finding necessary and sufficient conditions for a normed space to be an inner product space has been
investigated by many mathematicians by considering some types of orthogonality or some geometric aspects of underly-
ing spaces. Some known characterizations of inner product spaces and their generalizations can be found in [2–4,16] and
references therein.

There are interesting norm inequalities connected with characterizations of inner product spaces. One of celebrated
characterizations of inner product spaces has been based on the so-called Dunkl–Williams inequality. In 1936, Clarkson [5]
introduced the concept of angular distance between nonzero elements x and y in a normed space (X ,‖ · ‖) as α[x, y] =
‖ x

‖x‖ − y
‖y‖ ‖. One can observe some analogies between this notion and the concept of angle A(x, y) between two nonzero

vectors x, y in a normed linear (X ,‖ · ‖) defined by

A(x, y) = cos−1
[

1

2

(
2 −

∥∥∥∥ x

‖x‖ − y

‖y‖
∥∥∥∥

2)]
.

In [10], Freese, Diminnie and Andalafte obtained a characterization of real inner product spaces in terms of their above
notion of angle. In 1964, Dunkl and Williams [8] obtained a useful upper bound for the angular distance. They showed that

α[x, y] � 4‖x − y‖
‖x‖ + ‖y‖ .
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In the same paper, the authors proved that the constant 4 can be replaced by 2 if X is an inner product space. Kirk
and Smiley [13] showed that

α[x, y] � 2‖x − y‖
‖x‖ + ‖y‖

characterizes inner product spaces.
In 1993, Al-Rashed [1] generalized the work of Kirk and Smiley. He proved that in a real normed space (X ,‖ · ‖) the

following inequality

α[x, y] � 2
1
q

‖x − y‖
(‖x‖q + ‖y‖q)

1
q

(
q ∈ (0,1])

holds if and only if the given norm is induced by an inner product.
In [15], Maligranda considered the p-angular distance (p ∈ R) as a generalization of the concept of angular distance to

which it reduces when p = 0 as follows:

αp[x, y] :=
∥∥∥∥ x

‖x‖1−p
− y

‖y‖1−p

∥∥∥∥.

Maligranda in the same paper and Dragomir in [7] obtained some upper and lower bounds for the p-angular distance in
normed spaces.

In this paper we present a new characterization of inner product spaces related to the p-angular distance. We also
generalize some results due to Dunkl, Williams, Kirk, Smiley and Al-Rashed by using the notion of p-angular distance
instead of that of angular distance.

2. Main results

We start this section with a norm inequality due to Maligranda [15] that provides a suitable upper bound for the p-
angular distance.

Theorem 2.1. (See [15].) Let (X ,‖ · ‖) be a normed space and p ∈ [0,1]. Then

αp[x, y] � (2 − p)
‖x − y‖

(max{‖x‖,‖y‖})1−p
(x, y �= 0).

The next theorem is a generalization of the Dunkl–Williams inequality [8] and a theorem of Al-Rashed [1, Theorem 2.2].

Theorem 2.2. Let (X ,‖ · ‖) be a real normed space, p ∈ [0,1] and q > 0.
Then the following inequality holds

αp[x, y] � 21+ 1
q

‖x − y‖
(‖x‖(1−p)q + ‖y‖(1−p)q)

1
q

for all nonzero elements x and y in X .

Proof. Due to Theorem 2.1, it is sufficient to show that

(2 − p)
‖x − y‖

(max{‖x‖,‖y‖})1−p
� 21+ 1

q
‖x − y‖

(‖x‖(1−p)q + ‖y‖(1−p)q)
1
q

.

Without loss of generality, we assume that ‖x‖ � ‖y‖.
Since p � 1 and q > 0, we observe that ‖x‖(1−p)q + ‖y‖(1−p)q � 2‖y‖(1−p)q .

Thus (‖x‖(1−p)q + ‖y‖(1−p)q)
1
q � 2

1
q ‖y‖1−p or equivalently

1

‖y‖1−p
� 2

1
q

(‖x‖(1−p)q + ‖y‖(1−p)q)
1
q

,

whence

(2 − p)
‖x − y‖

(max{‖x‖,‖y‖})1−p
� 2‖x − y‖

‖y‖1−p
� 21+ 1

q
‖x − y‖

(‖x‖(1−p)q + ‖y‖(1−p)q)
1
q

. �
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Proposition 2.3. Let (X ,‖ · ‖) be an inner product space. Then the following inequality holds

αp[x, y] � 2
‖x − y‖

‖x‖1−p + ‖y‖1−p

(
x, y �= 0, p ∈ [0,1]).

Proof. Let 〈·,·〉 be the inner product on X . Then

α2
p[x, y] =

〈
x

‖x‖1−p
− y

‖y‖1−p
,

x

‖x‖1−p
− y

‖y‖1−p

〉

= ‖x‖2p − 2 Re〈x, y〉
‖x‖1−p‖y‖1−p

+ ‖y‖2p

= ‖x‖2p − ‖x‖2 + ‖y‖2 − ‖x − y‖2

‖x‖1−p‖y‖1−p
+ ‖y‖2p . (2.1)

Due to equality (2.1) it is enough to show that

‖x‖2p − ‖x‖2 + ‖y‖2 − ‖x − y‖2

‖x‖1−p‖y‖1−p
+ ‖y‖2p � 4

‖x − y‖2

(‖x‖1−p + ‖y‖1−p)2

or that the last inequality of the following sequence of equivalent inequalities holds.

‖x‖2p − ‖x‖2 + ‖y‖2

‖x‖1−p‖y‖1−p
+ ‖y‖2p �

(
4

(‖x‖1−p + ‖y‖1−p)2
− 1

‖x‖1−p‖y‖1−p

)
‖x − y‖2,

‖x‖p+1‖y‖1−p − (‖x‖2 + ‖y‖2) + ‖x‖1−p‖y‖p+1

‖x‖1−p‖y‖1−p
� −(‖x‖1−p − ‖y‖1−p)2‖x − y‖2

(‖x‖1−p + ‖y‖1−p)2‖x‖1−p‖y‖1−p
,

(‖x‖1−p − ‖y‖1−p)2

(‖x‖1−p + ‖y‖1−p)2
‖x − y‖2 �

(‖x‖2 + ‖y‖2) − (‖x‖p+1‖y‖1−p + ‖x‖1−p‖y‖p+1),
(‖x‖1−p − ‖y‖1−p)2

(‖x‖1−p + ‖y‖1−p)2
+ ‖x‖p+1‖y‖1−p + ‖x‖1−p‖y‖p+1

‖x − y‖2
� ‖x‖2 + ‖y‖2

‖x − y‖2
. (2.2)

To prove (2.2), let x, y ∈ X − {0}. Without loss of generality we suppose that ‖x‖ < ‖y‖. We define the differentiable
real valued function f as follows:

f (p) = (‖x‖1−p − ‖y‖1−p)2

(‖x‖1−p + ‖y‖1−p)2
+ ‖x‖p+1‖y‖1−p + ‖x‖1−p‖y‖p+1

‖x − y‖2

(
p ∈ [0,1]).

We claim that f has exactly one local extremum point at the interval (0,1).
By a straightforward calculation we see that

f ′(p) = 0 ⇔ 4‖x − y‖2(‖x‖1−p − ‖y‖1−p) + (‖y‖2p − ‖x‖2p)(‖x‖1−p + ‖y‖1−p)3 = 0

⇔ 4b
(
1 − a1−p) + (

a2p − 1
)(

1 + a1−p)3 = 0,

where a = ‖y‖
‖x‖ and b = ‖x−y‖2

‖x‖2 . Clearly a > 1 and (a − 1)2 � b � (a + 1)2.

Using the software MAPLE 11 we observe that the exponential equation

4b
(
1 − a1−p) + (

a2p − 1
)(

1 + a1−p)3 = 0

has exactly one solution p0 in the interval (0,1). In fact the function f takes the local minimum at the point of p0 due to
the facts that f ′(0) < 0 and f ′(1) > 0. Hence the function f takes the absolute maximum at the boundary points of [0,1].

Therefore

f (p) � max
{

f (0), f (1)
} (

p ∈ [0,1]).
Thus

f (p) � max

{
(‖x‖ − ‖y‖)2

(‖x‖ + ‖y‖)2
+ 2‖x‖‖y‖

‖x − y‖2
,
‖x‖2 + ‖y‖2

‖x − y‖2

} (
p ∈ [0,1]),

whence

f (p) � ‖x‖2 + ‖y‖2

2

(
p ∈ [0,1]). �
‖x − y‖
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The next theorem is due to Lorch [14], in which the dimension of the underlying space X plays no role. This is
significant since, for instance, the symmetry of Birkhoff–James orthogonality which is a characterization of inner product
spaces is valid when dimX � 3, see [6,11]. We recall that the behavior of a space in dimension 1 or 2 differs from that in
dimension 3, see [3,17].

Theorem 2.4. (See [14].) Let (X ,‖ · ‖) be a real normed space. Then the following statements are mutually equivalent:

(i) For each x, y ∈ X if ‖x‖ = ‖y‖, then ‖x + y‖ � ‖γ x + γ −1 y‖ (for all γ �= 0).
(ii) For each x, y ∈ X if ‖x + y‖ � ‖γ x + γ −1 y‖ (for all γ �= 0), then ‖x‖ = ‖y‖.

(iii) (X ,‖ · ‖) is an inner product space.

The next result is an extension of the results of Al-Rashed [1]. It provides a reverse of Proposition 2.3.

Theorem 2.5. Let (X ,‖ · ‖) be a real normed space and p ∈ [0,1). If there exists a positive number q such that

αp[x, y] � 2
1
q

‖x − y‖
(‖x‖(1−p)q + ‖y‖(1−p)q)

1
q

(x, y �= 0), (2.3)

then (X ,‖ · ‖) is an inner product space.

Proof. In the case when p = 0 the theorem holds by a result due to Al-Rashed [1, Theorem 2.4]. So let us assume that
0 < p < 1.

Let x, y ∈ X , ‖x‖ = ‖y‖ and γ �= 0. From Theorem 2.4 it is enough to prove that ‖x + y‖ � ‖γ x + γ −1 y‖. Also we may
assume that x �= 0 and y �= 0.

Applying inequality (2.3) to γ pn
x and −γ −pn

y instead of x and y, respectively, we obtain

αp
[
γ pn

x,−γ −pn
y
]
� 2

1
q

‖γ pn
x + γ −pn

y‖
(‖γ pn x‖(1−p)q + ‖γ −pn y‖(1−p)q)

1
q

(
n ∈ N ∪ {0}).

For γ > 0 it follows from the definition of αp that∥∥∥∥ γ pn
x

γ pn(1−p)‖x‖1−p
+ γ −pn

y

γ −pn(1−p)‖y‖1−p

∥∥∥∥ � 2
1
q

‖γ pn
x + γ −pn

y‖
‖x‖1−p(γ pn(1−p)q + γ −pn(1−p)q)

1
q

or equivalently

(
γ pn(1−p)q + γ −pn(1−p)q

2

) 1
q ∥∥γ pn+1

x + γ −pn+1
y
∥∥ �

∥∥γ pn
x + γ −pn

y
∥∥

for all n ∈ N∪{0}, whence 0 � ‖γ pn+1
x+γ −pn+1

y‖ � ‖γ pn
x+γ −pn

y‖ (n ∈ N∪{0}), since γ pn(1−p)q +γ −pn(1−p)q � 2. Hence
{‖γ pn

x + γ −pn
y‖}∞n=0 is a convergent sequence of nonnegative real numbers. Thus we get

‖x + y‖ = lim
n→∞

∥∥γ pn
x + γ −pn

y
∥∥ �

∥∥γ x + γ −1 y
∥∥

due to 0 < p < 1.
Now let γ be negative. Put μ = −γ > 0. From the positive case we get

‖x + y‖ �
∥∥μx + μ−1 y

∥∥ = ∥∥γ x + γ −1 y
∥∥. �

Lemma 2.6. Let (X ,‖ · ‖) be a normed space and p ∈ [0,1]. If 0 < q1 � q2 , then

2
1

q2
‖x − y‖

(‖x‖(1−p)q2 + ‖y‖(1−p)q2)
1

q2

� 2
1

q1
‖x − y‖

(‖x‖(1−p)q1 + ‖y‖(1−p)q1)
1

q1

(x, y �= 0).

Proof. Without loss of generality, assume that x �= y. We have the following equivalent statements

2
1

q2
‖x − y‖

(‖x‖(1−p)q2 + ‖y‖(1−p)q2)
1

q2

� 2
1

q1
‖x − y‖

(‖x‖(1−p)q1 + ‖y‖(1−p)q1)
1

q1

⇔ (‖x‖(1−p)q1 + ‖y‖(1−p)q1
) 1

q1 � 2
1

q1
− 1

q2
(‖x‖(1−p)q2 + ‖y‖(1−p)q2

) 1
q2

⇔ ‖x‖(1−p)q1 + ‖y‖(1−p)q1 � 2
1− q1

q2
(‖x‖(1−p)q2 + ‖y‖(1−p)q2

) q1
q2

⇔ (‖x‖(1−p)q2
) q1

q2 + (‖y‖(1−p)q2
) q1

q2 � 2
1− q1

q2
(‖x‖(1−p)q2 + ‖y‖(1−p)q2

) q1
q2 .
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The last inequality is an application of the following known inequality

at + bt � 21−t(a + b)t (a,b � 0, 0 < t � 1)

to a = ‖x‖(1−p)q2 , b = ‖y‖(1−p)q2 and t = q1
q2

. �
Finally we are ready to state the characterization of inner product spaces. It is a generalization of a known theorem of

Kirk and Smiley [13].

Theorem 2.7. Let (X ,‖ · ‖) be a real normed space, and p ∈ [0,1). Then the following statements are mutually equivalent:

(i) αp[x, y] � 2
1
q ‖x−y‖

(‖x‖(1−p)q+‖y‖(1−p)q)
1
q

(x, y �= 0), for all q ∈ (0,1].

(ii) αp[x, y] � 2
1
q ‖x−y‖

(‖x‖(1−p)q+‖y‖(1−p)q)
1
q

(x, y �= 0), for some q > 0.

(iii) (X ,‖ · ‖) is an inner product space.

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) is the same as Theorem 2.5.
To complete the proof, we need to establish the implication (iii) ⇒ (i). To see this, let q ∈ (0,1] be arbitrary. It follows

from Proposition 2.3 that

αp[x, y] � 2
‖x − y‖

‖x‖1−p + ‖y‖1−p
(x, y �= 0). (2.4)

By setting q1 = q and q2 = 1 in Lemma 2.6 we get

2
‖x − y‖

‖x‖1−p + ‖y‖1−p
� 2

1
q

‖x − y‖
(‖x‖(1−p)q + ‖y‖(1−p)q)

1
q

. (2.5)

Now the result follows from inequalities (2.4) and (2.5). �
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