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Abstract

The problem of estimating a complex measure made up by a linear combination of Dirac distributions
centered on points of the complex plane from a finite number of its complex moments affected by additive
i.i.d. Gaussian noise is considered. A random measure is defined whose expectation approximates the
unknown measure under suitable conditions. An estimator of the approximating measure is then proposed
as well as a new discrete transform of the noisy moments that allows computing an estimate of the
unknown measure. A small simulation study is also performed to experimentally check the goodness of
the approximations.
c© 2008 Elsevier Inc. All rights reserved.
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0. Introduction

Let us consider the complex measure defined on a compact set D ⊂ C by

S(z) =
p∑

j=1

c jδ(z − ξ j ), ξ j ∈ int(D), ξ j 6= ξh ∀ j 6= h, c j ∈ C
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and let

sk =

∫
D

zk S(z)dz =
∫ ∫

D
(x + iy)k S(x + iy)dxdy, k = 0, 1, 2, . . .

the complex moments. It turns out that

sk =

p∑
j=1

c jξ
k
j . (1)

Assume we know an even number n ≥ 2p of noisy complex moments

ak = sk + νk, k = 0, 1, 2, . . . , n − 1

where νk is a complex Gaussian, zero mean, white noise, with finite known variance σ 2. In the
following all random quantities are denoted by bold characters. We want to estimate S(z) from
{ak}k=0,...,n−1. From Eq. (1) this is equivalent to estimate p, c j , ξ j , j = 1, . . . , p, which is the
well-known difficult problem of complex exponentials approximation.

The problem is central in many disciplines and appears in the literature in different forms
and contexts (see e.g. [8,14,23,25,29]). The assumptions about the noise variance (constant and
known) are made here to simplify the analysis. However in many applications the noise is an
instrumental one which is well represented by a white noise, zero mean, Gaussian process whose
variance is known or easy to estimate. A typical example is provided by NMR spectroscopy (see
e.g. [10]).

0.1. The noiseless case ν = 0

In the noiseless case the problem becomes the complex exponentials interpolation
problem [16]. Conditions for existence and unicity of the solution are [16, Th.7.2c]:

det U0(s) 6= 0, det U1(s) 6= 0

where

U (s0, . . . , s2p−2) =


s0 s1 . . . sp−1
s1 s2 . . . sp
. . . . . .

sp−1 sp . . . s2p−2


and

U0(s) = U (s0, . . . , s2p−2), U1(s) = U (s1, . . . , s2p−1).

In fact exactly n = 2p noiseless moments are sufficient to fully retrieve S(z), where

p = max
n∈N
{n | det(U (s0, . . . , sn−2)) 6= 0}.

Moreover ξ j , j = 1, . . . , p are the generalized eigenvalues of the pencil P = [U1(s),U0(s)]
i.e. they are the roots of the polynomial in the variable z

det[U1(s)− zU0(s)]
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and c j are related to the generalized eigenvector u j of P by c j = uT
j [s0, . . . , sp−1]

T. In fact from

Eq. (1) we have c = V−1
[s0, . . . , sp−1]

T where

V = Vander(ξ1, . . . , ξp)

is the square Vandermonde matrix based on (ξ1, . . . , ξp). But it easy to show (see e.g. [4]) that

U0(s) = V CV T, U1(s) = V C Z V T

where

C = diag{c1, . . . , cp} and Z = diag{ξ1, . . . , ξp}.

Therefore uk = V−T ek is the right generalized eigenvector of P corresponding to ξk , where ek
is the kth column of the identity matrix Ip of order p.

0.2. The pure noise case s = 0

Vice versa when sk = 0, ∀k it was proved in [17] that

det[U (a0, . . . , an−2)] = det[U0(a)] 6= 0 ∀n a.s.

and

det[U (a1, . . . , an−1)] = det[U1(a)] 6= 0 ∀n a.s.

Moreover associated to the random polynomial

det[U1(a)− zU0(a)] (2)

a condensed density hn(z) can be considered which is the expected value of the (random)
normalized counting measure on the zeros of this polynomial i.e.

hn(z) =
2
n

E

[
n/2∑
j=1

δ(z − ξ j )

]
.

It was proved in [3] that if z = reiθ , the marginal condensed density h(r)n (r) w.r.t. r of the
generalized eigenvalues is asymptotically in n a Dirac δ supported on the unit circle ∀σ 2.
Moreover for finite n the marginal condensed density w.r.t. θ is uniformly distributed on [−π, π].

0.3. Scope and organization of the paper

Starting from the generalized eigenvalues ξ j and generalized eigenvectors u j of the pencil

P = [U (a1, . . . , an−1),U (a0, . . . , an−2)]

we then define a family of random measures

Sn(z) =
n/2∑
j=1

c jδ(z − ξ j )

where c j = uT
j [a0, . . . , an/2−1]

T and we give conditions under which E[Sn(z)] approximates
S(z). Moreover we define a discrete transform (P-Transform) on a lattice of points on D, which
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is an unbiased and consistent estimator of E[Sn(z)] on the lattice thus providing a computational
device to solve the original problem.

In [6] the same problem was considered. The joint distribution of the coefficients of the
random polynomial (2) (when sk 6= 0,∀k) was approximated by a multivariate Gaussian
distribution and a theorem by Hammersley [9, Th. 8.1] was used to compute the associated
condensed density of its roots. A heuristic algorithm was then used to identify the main peaks
of the condensed density and to get estimates of p, ξ j and c j , j = 1, . . . , p based on them. In
the present work the ideas presented in [6] are put on a more rigorous mathematical framework.
A different approximation of the condensed density is considered and an automatic estimation
procedure is proposed.

The paper is organized as follows. In Section 1 we study the distribution of the generalized
eigenvalues of the random pencil P and we give an easily computable approximate expression
of the associated condensed density. In Section 2 we consider the identifiability problem for
S(z) given the data a. Conditions for identifiability are given and the approximation properties
of E[Sn(z)] are proved. In Section 3 the P-transform is defined and its statistical properties are
studied. In Section 4 the procedure for estimating the parameters p, {ξ j , c j , j = 1, . . . , p} of
the unknown measure from the P-transform is described. Finally in Section 5 some experimental
results on synthetic data are reported.

1. Distribution of the generalized eigenvalues of the pencil P

We start by making some technical assumptions on the noise model. When sk = 0 ∀k,
we noticed in the introduction that ξ j are, asymptotically on n, uniformly distributed on the
unit circle. Therefore, when sk 6= 0 is given by (1), we can assume that n p = n/2 − p
among the ξ j , j = 1, . . . , n/2 are related to noise and then they can be modeled for large n

by ξ̃ j = e
2π i j
n p i.e. by uniformly spaced deterministic generalized eigenvalues. Therefore the

Vandermonde matrix based on ξ̃ j , j = 1, . . . , n p is simply given by V =
√

n p · F ∈ Cn p×n p

where Fhk =
1
√

n p
e

2π ihk
n p is the discrete Fourier transform matrix. Hence

c̃ = V−1
[ν0, . . . , νn p−1]

T
=

1
√

n p
F H
[ν0, . . . , νn p−1]

T

and c̃ has a complex multivariate Gaussian distribution with

E[c̃ j ] = 0 and E[c̃ j c̃h] =
σ 2

n p
δ jh .

Based on these observations we define a new noise process as

ν̃k =


n p∑
j=1

c̃ j ξ̃
k
j , k < n p

νk, k ≥ n p

and we assume that c̃ is independent of νk, k ≥ n p. For technical reasons (see the proof of
Lemma 2) we also assume that ξ̃ j 6= ξh, ∀ j, h. But then E[ν̃k] = 0 and
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E[ν̃k ν̃h] =



1,n p∑
i, j

ξ̃ k
i ξ̃

h

j E[c̃i c̃ j ] =
σ 2

n p

n p∑
r=1

e
2π ir(k−h)

n p = σ 2δhk, k, h < n p

n p∑
j=1

E[c̃ jνh]ξ̃
k
j = 0, h ≥ n p, k < n p

E[νkνh] = σ
2δhk, h, k ≥ n p.

We have then proved the following

Lemma 1. The random vectors νk and ν̃k, k = 0, . . . , n − 1 are equal in distribution.

As a consequence in the following we will use ν̃k without loss of generality.

Remark 1. We notice that when sk 6= 0, if the signal-to-noise ratio is defined as SN R =
1
σ

minh=1,p |ch | we have

E[|c̃ j |
2
] =

σ 2

n p
=

min
h=1,p

|ch |
2

n p SN R2 .

If SN R �
√

1
n p

then E[|c̃ j |
2
] � |ck |

2, ∀ j, k.

A basic result which will be used extensively in the following is given by

Lemma 2. Let T = (T (1), T (2)) be the transformation that maps every realization a(ω) of a
to (ξ(ω), c(ω)) given by ak(ω) =

∑n/2
j=1 c j (ω)ξ j (ω)

k, k = 0, . . . , n − 1, where ω ∈ Ω and Ω
is the space of events. Then T (a) is defined and one-to-one a.e. Moreover, for σ → 0 and for
j = 1, . . . , n/2

E[ξ j ] =

{
ξ j + o(σ ) j = 1, . . . , p
ξ̃ j−p + o(σ ), j = p + 1, . . . , n/2

E[c j ] =

{
c j + o(σ ), j = 1, . . . , p
o(σ ), j = p + 1, . . . , n/2.

Proof. From [17] we know that a.s. det[Uh(ν)] 6= 0, h = 0, 1. Moreover, with probability 1,
there is no functional dependence between ν and s. Therefore a.s. det[Uh(a)] 6= 0, h = 0, 1. But
then a.s. the complex exponentials interpolation problem for a has a unique solution ∀ω hence
T is a.s. one-to-one. The second part of the thesis is based on a Taylor expansion of T around a
suitable point x0. A natural candidate for x0 would be s. However we notice that T (1)(s) is not
defined if n > 2p, and, as a consequence, also T (2)(s) is not defined in this case. Therefore, by
using Lemma 1, without loss of generality, we assume that the noise is represented by ν̃k i.e.

ak =


p∑

j=1

c jξ
k
j +

n/2∑
j=p+1

c̃ j−p ξ̃
k
j−p, k = 0, . . . , n p − 1

p∑
j=1

c jξ
k
j + νk, k = n p, . . . , n − 1
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where n p = n/2− p. We then define a new sequence s̃k by

s̃k =

p∑
j=1

c jξ
k
j + σ

α
n/2∑

j=p+1

ξ̃ k
j−p, α ≥ 2, k = 0, . . . , n − 1

and we consider the process ak as a perturbation of s̃k . Therefore we choose x0 = s̃ and notice
that

T (1)(s̃) j =

{
ξ j j = 1, . . . , p
ξ̃ j−p, j = p + 1, . . . , n/2

T (2)(s̃) j =

{
c j j = 1, . . . , p
σα, j = p + 1, . . . , n/2.

We now prove that each component of T (1)(a) is an analytic function of a when a belong to a
small neighbor of s. The proof follows closely [27, Th.6.9.8]. For each fixed ω, the polynomial

φ(z, a) = det[U1(a)− zU0(a)]

is an analytic function of z and a. We notice that the zeros of φ(z, s̃) are ξ j , j =
1, . . . , p, ξ̃ j−p, j = p + 1, . . . , n/2. Therefore they are all distinct because ξ j 6= ξh, ∀ j 6= h
and ξ̃ j 6= ξ̃h, ∀ j 6= h and we assumed that ξ̃ j 6= ξh, ∀ j, h.

Let ξ̂ be a zero of φ(z, s̃) and

K = {ζ ||ζ − ξ̂ | = r}, r > 0

be a circle around ξ̂ not containing any other generalized eigenvalue of the pencil

P̃ = [U (s̃1, . . . , s̃n−1),U (s̃0, . . . , s̃n−2)].

We want to show that K does not pass through any zero of φ(z, a). In fact by the definition of K
it follows that

inf
ζ∈K
|φ(ζ, s̃)| > 0.

But φ(z, a) depends continuously on a, hence there exists B = {x ∈ Cn
||x − s̃| < ρ}, ρ > 0

such that

inf
ζ∈K
|φ(ζ, a)| > 0, ∀a ∈ B.

By the principle of argument, the number of zeros of φ(z, a) within K is given by

N (a) =
1

2π i

∮
K

φ′(z, a)

φ(z, a)
dz, φ′ =

∂φ

∂z

which is continuous in B; hence

1 = N (s̃) = N (a), a ∈ B.

Moreover the simple zero ξ(ω) of φ(z, a) inside K admits the representation (see e.g. [22])

ξ(ω) =
1

2π i

∮
K

zφ′(z, a)

φ(z, a)
dz.

For a ∈ B the integrand is an analytic function of a and therefore also ξ(ω) is an analytic function
of a when a ∈ B.
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We now consider T (2)(a). We notice that each component can be obtained as a rational
function of the components of T (1)(a) by the formula c j = eT

j V−H a, j = 1, . . . , n/2 where

V is the Vandermonde matrix based on T (1)(a). Therefore also c j is an analytic function of a
when a ∈ B.

As T (h) = T (h)R + iT (h)I , h ∈ {1, 2} is analytic for a ∈ B, T (h)R and T (h)I are real analytic
functions of aR, a I where a = aR + ia I , (e.g. [15, pg.99]). Therefore they admit a Taylor series
expansion around s̃ when a ∈ B:

T (h)Rk (a) = T (h)Rk (s̃)+
n−1∑
i=0

∂T (h)Rk (a)

∂aRi |a=s̃
[aRi − s̃Ri ] +

n−1∑
i=0

∂T (h)Rk (a)

∂aI i |a=s̃
[aI i − s̃I i ]

+
1
2

n−1∑
i=0

n−1∑
j=0

∂2T (h)Rk (a)

∂aRi∂aR j |a=s̃
[aRi − s̃Ri ][aR j − s̃R j ]

+
1
2

n−1∑
i=0

n−1∑
j=0

∂2T (h)Rk (a)

∂aI i∂aI j |a=s̃
[aI i − s̃I i ][aI j − s̃I j ]

+

n−1∑
i=0

n−1∑
j=0

∂2T (h)Rk (a)

∂aRi∂aI j |a=s̃
[aRi − s̃Ri ][aI j − s̃I j ] + · · ·

and analogously for T (h)I k (a). Taking expectations we get

E
[
(aRi − s̃Ri )

]
=
[
sRi − s̃Ri

]
= σα · Ci , Ci =

n/2∑
j=p+1

ξ̃ i
j−p

E
[
(aRi − s̃Ri )(aR j − s̃R j )

]
= E

[
(aRi − sRi + σ

αCi )(aR j − sR j + σ
αC j )

]
=
σ 2

2
δi j + σ

2αCi C j

and analogously for the other terms. Remembering the independence of the real and imaginary
parts of ak , we finally get

E[T (h)k (a)] = T (h)k (s̃)+ o(σ ). �

1.1. Qualitative study of the generalized eigenvalues

We start now the study of the distribution in C of the generalized eigenvalues of P by
making some qualitative statements already present in the literature. For each realization ω,
let {c j (ω), ξ j (ω)}, j = 1, . . . , n/2 be the solution of the complex exponentials interpolation
problem for the data ak(ω), k = 0, . . . , n − 1. It is well known that we can then define the Padé
approximant

[n/2− 1, n/2](z, ω) = z
n/2∑
j=1

c j (ω)

z − ξ j (ω)
= Qn/2−1(z

−1)/Pn/2(z
−1)

to the Z -transform of {ak(ω)} given by

f (z, ω) =
∞∑

k=0

ak(ω)z
−k
= fs(z)+ fν(z, ω)
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where

fs(z) =
∞∑

k=0

sk z−k
=

p∑
j=1

c j

∞∑
k=0

(ξ j/z)
k
= z

p∑
j=1

c j

z − ξ j
, |z| > 1

and, because of Lemma 1,

fν(z, ω) ≈ z
n p∑
j=1

c̃ j (ω)

z − ξ̃ j

f (z, ω) is then defined outside the unit circle and can be extended to D by analytic continuation.
We get then

f (z, ω) ≈ zq̃n/2−1(z)/ p̃n/2(z) = C(ω)

z
n/2−1∏

j=1
(z − δ j (ω))

p∏
j=1
(z − ξ j )

n p∏
j=1
(z − ξ̃ j )

and

g(z, ω) = log(z−1 f (z, ω))

= log(C(ω))+
n/2−1∑

j=1

log(z − δ j (ω))−

p∑
j=1

log(z − ξ j )−

n p∑
j=1

log(z − ξ̃ j ).

We want to study the location in C of ξ j (ω). To this aim, following [20,21], we remember
that pn(z) = zn Pn(z−1) satisfy the following orthogonality relation∫

Γ
z−1 f (z, ω)pn(z)z

kdz = 0, k = 0, . . . , n − 1

where Γ is a union of closed curves enclosing the poles of f (z, ω) i.e. the numbers
ξ j , j = 1 . . . , p and ξ̃ j , j = 1, . . . , n p. By using the Szegö integral representation of such
polynomials [28, (2.2.10), (2.2.11)] and a saddle point argument, it turns out that the Padé poles
ξ j (ω), j = 1, . . . , n/2, asymptotically on n, satisfy the following system of algebraic equations

2
1,n/2∑
j 6=k

1
(ξk(ω)− ξ j (ω))

+ g′(ξk(ω)) = 0 k = 1, . . . , n/2

or

2
1,n/2∑
j 6=k

1
(ξk(ω)− ξ j (ω))

+

n/2−1∑
j=1

1
(ξk(ω)− δ j (ω))

−

p∑
j=1

1
(ξk(ω)− ξ j )

−

n p∑
j=1

1

(ξk(ω)− ξ̃ j )
= 0, k = 1, . . . , n/2.

These equations can be interpreted as conditions of electrostatic equilibrium of a set of charges
in the presence of an electric external field corresponding to g′(z, ω). Therefore the Padé poles
ξk(ω) are attracted by ξ j , j = 1, . . . , p and ξ̃ j , j = 1, . . . n p and they are repelled by each other
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and by the zeros δ j (ω) of q̃n/2−1(z). However

q̃n/2−1(z) =
p∑

j=1

c j

1,p∏
k 6= j

(z − ξk)

n p∏
k=1

(z − ξ̃k) (3)

+

n p∑
j=1

c̃ j (ω)

p∏
k=1

(z − ξk)

1,n p∏
k 6= j

(z − ξ̃k). (4)

As ∀ω, |c̃ j (ω)|
2
� minh |ch |

2 if the SNR is sufficiently high (see remark after Lemma 1), we
can approximate q̃n/2−1(z) by

n p∏
k=1

(z − ξ̃k)

p∑
j=1

c j

1,p∏
k 6= j

(z − ξk)

hence n p zeros are close to ξ̃k , and the other p − 1 are close to the zeros of the polynomial

qp−1(z) =
p∑

j=1

c j

1,p∏
k 6= j

(z − ξk)

which is the numerator of z−1 fs(z). We notice that if |ch | � |ck |, ∀k 6= h then

qp−1(z) ≈
1,p∑
j 6=h

c j

1,p∏
k 6= j

(z − ξk) = (z − ξh)

p∑
j=1

c j

1,p∏
k 6= j,h

(z − ξk).

Hence, because of the continuous dependence of the roots on the coefficient of a polynomial,
qp−1(z) has a zero as close to ξh as |ch | is small with respect to |ck |, k 6= h. Therefore the Padé
poles ξk(ω)

• are attracted by ξ j , j = 1, . . . , p
• are attracted by ξ̃ j , j = 1, . . . n p
• are repelled from ξ j (ω), j 6= k
• are repelled from n p points close to ξ̃ j , j = 1, . . . n p
• are repelled from p − 1 points which are as close to ξ j as |c j | is small with respect to
|ch |, h 6= j .

Summing up a ξk with a large |ck | will attract a Padé pole without being disturbed by the
repulsion exerted by the zeros of q̃n/2−1(z). Moreover close to such a point a gap of Padé poles
can be expected because of the repulsion exerted by Padé poles to each other. A ξk with a
small |ck | will still attract a Padé pole but not so strongly because of the repulsion exerted by
a close zero. The Padé poles not related to the signal are expected to be attracted by ξ̃k and
are repelled by zeros close to ξ̃k . Moreover they are repelled by ξk hence they are likely to be
located in between ξ̃k and far from ξk . A picture of this behavior is given in Fig. 1. We notice
that the qualitative results discussed above are consistent with those obtained in [5] under a more
stringent hypothesis about the noise [12,13].

1.2. Quantitative study of the generalized eigenvalues

We now wish to define a mathematical tool to quantify these qualitative statements. To this
aim we remember that ξ k, k = 1, . . . , n/2 are the generalized eigenvalues of the pencil P and
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Fig. 1. Top left: location of Padé poles for 100 independent realizations of the noise; the circles are the estimated support
of the condensed density in a neighborhood of ξ j ; top right: zoom in a neighborhood of the 1st and 2nd components;
bottom left: zoom in a neighborhood of the 3rd and 4th components; zoom in a neighborhood of the 5th component (see
Section 4).

therefore they satisfy the equation

Pn/2(z
−1) = det[U1(a)− zU0(a)] = 0.

Then a condensed density hn(z) can be considered which is the expected value of the (random)
normalized counting measure on the zeros of this polynomial i.e.

hn(z) =
2
n

E

[
n/2∑
j=1

δ(z − ξ j )

]
.

The following theorem holds whose proof is the same as that of Theorem 1 in [3]:

Theorem 1. The condensed density of the zeros of the random polynomial Q(z) = Pn/2(z−1) is
given by

hn(z) =
1

4π
1un(z) (5)

where 1 denotes the Laplacian operator with respect to x, y if z = x + iy and

un(z) =
2
n

E
{

log(|Q(z)|2)
}
. (6)
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The condensed density provides the required quantitative information about the distribution
of the Padé poles in the complex plane. If the SNR is sufficiently high, after the qualitative
statements made above about the location of the Padé poles, a peak of hn(z) can be expected in
a neighborhood of each of the complex exponentials ξk, k = 1, . . . , p and the volume under the
peak gives the probability of finding a Padé pole in that neighborhood. This is confirmed by the
following

Theorem 2. If σ > 0, the condensed density hn(z, σ ) is a continuous function of z given by

hn(z, σ ) =
2

n(πσ 2)n

n/2∑
j=1

∫
Cn/2−1

∫
Cn/2

J ∗C (ζ
∗

j
, z, γ )

× e
−

1
σ2

n−1∑
k=0
|

1,n/2∑
h 6= j

γhζ
k
h+γ j zk

−sk |
2

dζ ∗
j
dγ (7)

where ζ ∗
j
= {ζh, h 6= j} and

J ∗C (ζ
∗

j
, z, γ ) =


γ if n = 2

(−1)n/2
1,n/2∏
j=1

γ j

∏
r<h,r 6= j

(ζr − ζh)
4
∏
r 6= j

(ζr − z)4 if n ≥ 4.

Moreover hn(z, σ ) converges weakly to the positive measure 2
n

∑p
j=1 δ(z − ξ j ) when σ → 0.

Proof. Let us consider the transformation Tn : α→ (ζ , γ ) defined in Lemma 2 given by

αk =

n/2∑
j=1

γ jζ
k
j

or

(T (1)n (α)) j = ζ j , (T (2)n (α)) j = γ j .

In the following, to simplify notations, (T (1)n (α)) j will be denoted by ζ j (α). We have

hn(z, σ ) =
2
n

E

[
n/2∑
j=1

δ(z − ξ j )

]
(8)

=
2

n(πσ 2)n

n/2∑
j=1

∫
Cn
δ(z − ζ j (α))e

−
1
σ2

n−1∑
k=0
|αk−sk |

2

dα. (9)

The complex Jacobian of T−1
n is the product of the determinant of a generalized Vandermonde

matrix (see [11, Th. 1], [19, Th. 21]) and the determinant of the n×n diagonal matrix with entries
{1, . . . , 1︸ ︷︷ ︸

n/2

, γ1, . . . , γn/2} and it is given by:

JC (ζ , γ ) =


γ if n = 2

(−1)n/2
n/2∏
j=1

γ j

∏
j<h

(ζ j − ζh)
4 if n ≥ 4.
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Therefore, by making a change of variables, we have

hn(z, σ ) =
2

n(πσ 2)n

n/2∑
j=1

∫
Cn/2

∫
Cn/2

δ(z − ζ j )JC (ζ , γ )e
−

1
σ2

n−1∑
k=0
|

n/2∑
h=1

γhζ
k
h−sk |

2

dζdγ

=
2

n(πσ 2)n

n/2∑
j=1

∫
Cn/2−1

∫
Cn/2

J ∗C (ζ
∗

j
, z, γ )e

−
1
σ2

n−1∑
k=0
|

1,n/2∑
h 6= j

γhζ
k
h+γ j zk

−sk |
2

dζ ∗
j
dγ

where ζ ∗
j
= {ζh, h 6= j} and

J ∗C (ζ
∗

j
, z, γ ) =


γ if n = 2

(−1)n/2
n/2∏
j=1

γ j

∏
r<h,r 6= j

(ζr − ζh)
4
∏
r 6= j

(ζr − z)4 if n ≥ 4.

The integral above converges uniformly for z ∈ D, hence hn(z) is continuous in D. We prove
now that h2p(z, σ ) converges weakly to 1

p

∑p
j=1 δ(z − ξ j ) when σ → 0. Let Φ(z) ∈ C∞ be a

bounded test function supported on C. We have∫
C

h2p(z, σ )Φ(z)dz =
1

p(πσ 2)2p

p∑
j=1

∫
C

Φ(z)

×

∫
C2p

δ(z − ζ j (α))e
−

1
σ2

2p−1∑
k=0
|αk−sk |

2

dα

 dz

=
1

p(πσ 2)2p

p∑
j=1

∫
C2p

Φ(ζ j (α))e
−

1
σ2

2p−1∑
k=0
|αk−sk |

2

dα

=
1
p

p∑
j=1

∫
C2p

Φ(ζ j (yσ + s))
e
−

2p−1∑
k=0
|y

k
|
2

π2p
dy.

As Φ(z) is continuous and bounded and ζ j is analytic in a neighborhood of s by Lemma 2, by
the dominated convergence theorem we get

lim
σ→0

∫
Ω

h2p(z, σ )Φ(z)dz =
1
p

p∑
j=1

∫
C2p

lim
σ→0

Φ(ζ j (yσ + s))
e
−

2p−1∑
k=0
|y

k
|
2

π2p
dy

=
1
p

p∑
j=1

Φ(ζ j (s))
∫
C2p

e
−

2p−1∑
k=0
|y

k
|
2

π2p
dy

=
1
p

p∑
j=1

Φ(ζ j (s)) =
1
p

p∑
j=1

Φ(ξ j )

because (T (1)2p (s)) j = ξ j .
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Let us consider now the case n > 2p. We cannot use the same argument used for the case
n = 2p because ζ j (s) is not defined for j = p + 1, . . . , n/2 (see Lemma 2). However by
Lemma 1 without loss of generality, we can assume that the noise is represented by ν̃k i.e.

ak =


p∑

j=1

c jξ
k
j +

n/2∑
j=p+1

c̃ j−p ξ̃
k
j−p, k = 0, . . . , n p − 1

p∑
j=1

c jξ
k
j + νk, k = n p, . . . , n − 1

where n p = n/2− p. We then define a new process ãk by

ãk =

p∑
j=1

c jξ
k
j + ηk, k = 0, . . . , n − 1

where

ηk =

n/2∑
j=p+1

c̃ j−p ξ̃
k
j−p,

and we consider the process ak as a perturbation of the process ãk . Let us consider the pencils

P = [U (a1, . . . , an−1),U (a0, . . . , an−2)]

and

P̃ = [U (ã1, . . . , ãn−1),U (ã0, . . . , ãn−2)].

We can write

P = P̃+ σE

where

E =
1
σ
[U (0, . . . , 0, νn p+1 − ηn p+1, . . . , νn−1 − ηn−1),

U (0, . . . , 0, νn p − ηn p
, . . . , νn−2 − ηn−2)] = [E1,E0].

From [18], in the limit for σ → 0, a generalized eigenvalue ξ j of P can be expressed as a function

of a generalized eigenvalue ξ̂ j of P̃ and corresponding left and right generalized eigenvectors
v j , u j by

ξ j = ξ̂ j + σ
vH

j (E1 − ξ̂ j E0)u j

vH
j U0u j

+ O(σ 2)

= ξ̂ j + σ
eT

j V−1(E1 − ξ̂ j E0)V−T e j

ĉ j
+ O(σ 2)

where U0 = U (ã1, . . . , ãn−1) and, by construction,

ξ̂ j =

{
ξ j j = 1, . . . , p
ξ̃ j−p, j = p + 1, . . . , n/2

ĉ j =

{
c j j = 1, . . . , p
c̃ j−p, j = p + 1, . . . , n/2
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V = Vander(ξ̂1, . . . , ξ̂n/2), C = diag(ĉ1, . . . , ĉn/2)

and

v j = u j = V−H e j .

We notice that we can write

eT
j V−1(E1 − ξ̂ j E0)V

−T e j =

n/2+p∑
h=1

γ jhYn p+h

where γ jh are constants and Yh are i.i.d. zero mean, complex Gaussian variables with unit
variance identified with 1

√
2σ
[νh − ηh], h = n p, . . . , n − 1.

We have

hn(z, σ ) =
2
n

E

[
n/2∑
j=1

δ(z − ξ j )

]

=
2
n

E

[
p∑

j=1

δ(z − ξ j )

]
+

2
n

E

[
n/2∑

j=p+1

δ(z − ξ j )

]
= h(1)n (z, σ )+ h(2)n (z, σ ).

By the same argument used for the case n = 2p it follows that h(1)n (z, σ ) converges weakly to
2
n

∑p
j=1 δ(z − ξ j ) when σ → 0. We then consider h(2)n (z, σ ). We have

h(2)n (z, σ ) =
2
n

E

[
n/2∑

j=p+1

δ(z − ξ j )

]

=
2
n

E


n/2∑

j=p+1

δ

z − ξ̃ j−p − σ

n/2+p∑
h=1

γ jhYn p+h

c̃ j−p
− O(σ 2)


 .

By identifying
√

n p

σ
c̃ j−p, j = p + 1, . . . , n/2 with Yh, h = 1, . . . , n p, which are i.i.d. zero

mean, complex Gaussian variables with unit variance, we get

h(2)n (z, σ ) =
n/2∑

j=p+1

∫
Cn
δ

(
z − ξ̃ j−p −

√
n p

y j−p

n/2+p∑
h=1

γ jh yn p+h − O(σ 2)

)
e
−

1
σ2

n∑
k=1
|yk |

2

πn dy

=

n/2∑
j=p+1

∫
Cn−1

[∫
C
δ

(
z − ξ̃ j−p −

√
n p

y j−p

n/2+p∑
h=1

γ jh yn p+h − O(σ 2)

)
e−|y j−p |

2

π
dy j−p

]

×
e
−

n∑
k=1,k 6= j−p

|yk |
2

πn−1 dy′, {y′} = {y} \ {y j−p} (10)
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by making the change of variable

w = ξ̃ j−p +

√
n p

y j−p

n/2+p∑
h=1

γ jh yn p+h

we get∫
C
δ

(
z − ξ̃ j−p −

√
n p

y j−p

n/2+p∑
h=1

γ jh yn p+h − O(σ 2)

)
e−|y j−p |

2

π
dy j−p

= −
1
π

∫
C
δ
(

z − w − O(σ 2)
) √n p

n/2+p∑
h=1

γ jh yn p+h

(w − ξ̃ j−p)2
e

−

∣∣∣∣∣∣∣∣
√n p

n/2+p∑
h=1

γ jh yn p+h

w−ξ̃ j−p

∣∣∣∣∣∣∣∣
2

dw

= −
1
π

√
n p

n/2+p∑
h=1

γ jh yn p+h

(z − O(σ 2)− ξ̃ j−p)2
e

−

∣∣∣∣∣∣∣∣
√n p

n/2+p∑
h=1

γ jh yn p+h

z−O(σ2)−ξ̃ j−p

∣∣∣∣∣∣∣∣
2

.

Inserting this expression in (10) we get

h(2)n (z, σ ) = −
n/2∑

j=p+1

√
n p

(z − O(σ 2)− ξ̃ j−p)2

×

n/2+p∑
r=1

γ jr
1
πn

∫
Cn−1

yn p+r e

−

∣∣∣∣∣∣∣∣
√n p

n/2+p∑
h=1

γ jh yn p+h

z−O(σ2)−ξ̃ j−p

∣∣∣∣∣∣∣∣
2

−

n∑
k=1,k 6= j−p

|yk |
2

dy′

and therefore

lim
σ→0

h(2)n (z, σ ) = −
n/2∑

j=p+1

√
n p

(z − ξ̃ j−p)2

×

n/2+p∑
r=1

γ jr
1
πn

∫
Cn−1

yn p+r e

−

∣∣∣∣∣∣∣∣
√n p

n/2+p∑
h=1

γ jh yn p+h

z−ξ̃ j−p

∣∣∣∣∣∣∣∣
2

−

n∑
k=1,k 6= j−p

|yk |
2

dy′ = 0

because

1

πn−1

∫
Cn−1

yn p+r e

−

∣∣∣∣∣∣∣∣
√n p

n/2+p∑
h=1

γ jh yn p+h

z−ξ̃ j−p

∣∣∣∣∣∣∣∣
2

−

n∑
k=1,k 6= j−p

|yk |
2

dy′

=
1

πn−1

∫
Cn−1

yn p+r e−y′H Ay′dy′ = 0, for a suitable hermitian matrix A, ∀r. �

Remark. When the SNR is large the exponential part dominates the integrand as the Jacobian
does not depend on σ . Moreover the exponential part has relative maxima close to ξ j as expected.
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In general the integral (7) does not admit a closed form expression. However when n = 2,
remembering that the Jacobian with respect to the real and imaginary part of a complex variable
is JR = |JC |

2, the integral (7) becomes

h2(z, σ ) =
1

(πσ 2)2

∫
C
γ e−

|γ−s0|
2
+|γ z−s1|

2

σ2 dγ

=
1

(πσ 2)2

∫
R2
|γ |2e−

|γ−s0|
2
+|γ z−s1|

2

σ2 dRγ d=γ

=
σ 2(1+ |z|2)+ |zs1 + s0|

2

πσ 2(1+ |z|2)3
e
−
|zs0−s1|

2

σ2(1+|z|2) .

We notice that limσ→0 h2(z, σ ) = δ(z − s1/s0) = δ(z − ξ1). Moreover, when s0 = s1 = 0 we
have h2(z, σ ) = 1

π(1+|z|2)2
which is independent of σ 2, confirming the result obtained in [3] for

the pure noise case.

1.3. Approximation of the condensed density

The condensed density has an important role in the following. Therefore we look for an
easily computable approximation. The following theorem provides a basis for building such an
approximation:

Theorem 3. Let be F(z, z) = (U1(a)− zU0(a))(U1(a)− zU0(a)) then

E[log(det{F(z, z)})] − log(det{E[F(z, z)]}) = o(σ )

for σ → 0, independently of z. Moreover

E[F(z, z)] = (U1(s)− zU0(s))(U1(s)− zU0(s))+
nσ 2

2
A(z, z) (11)

where A(z, z) ∈ Cn/2×n/2 is a tridiagonal hermitian matrix with 1+|z|2 on the leading diagonal
and −z and −z on the diagonals respectively below and above the leading one.

Proof. Let us denote by λ j the eigenvalues of F(z, z) and by µ j those of E[F(z, z)], dropping
for simplicity the dependence on z, z. Note that µ j 6= E[λ j ], see e.g. [7, Theorem 8.5]. We have

E[log(det{F(z, z)})] =
∑

j

E[log(λ j )]

and

log(det{E[F(z, z)]}) =
∑

j

log(µ j )

hence it is sufficient to study the difference

E[log(λ j )] − log(µ j ).

We then denote by f the vector obtained by stacking the real and imaginary parts of the elements
(Fhk, h, k = 1, . . . , n/2) of F and consider the function

g(f) = log(λ j )
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and its Taylor expansion around E[f]:

g(f) = g(E[f])+
∑

h

∂g

∂fh
|E[f](fh − E[fh])

+
1
2

∑
hk

∂2g

∂fh∂fk
|E[f](fh − E[fh])(fk − E[fk])+ · · ·

which can be rewritten as

log(λ j )− log(µ j ) =
∑

h

βh(fh − E[fh])+
1
2

∑
hk

γhk(fh − E[fh])(fk − E[fk])+ · · ·

and, taking expectations,

E[log(λ j )] − log(µ j ) =
1
2

∑
hk

γhk E[(fh − E[fh])(fk − E[fk])] + · · · .

But

F(z, z) = (U1(s)− zU0(s))(U1(s)− zU0(s))+ (U1(ν)− zU0(ν))(U1(ν)− zU0(ν))

− (U1(s)− zU0(s))(U1(ν)− zU0(ν))− (U1(ν)− zU0(ν))(U1(s)− zU0(s))

and

E[F(z, z)] = (U1(s)− zU0(s))(U1(s)− zU0(s))

+ E[(U1(ν)− zU0(ν))(U1(ν)− zU0(ν))]

= (U1(s)− zU0(s))(U1(s)− zU0(s))+
nσ 2

2
A(z, z)

by a straightforward computation similar to that given in [3, Th. 3] for the pure noise case.
Therefore

F(z, z)− E[F(z, z)] = (U1(ν)− zU0(ν))(U1(ν)− zU0(ν))

− (U1(s)− zU0(s))(U1(ν)− zU0(ν))

− (U1(ν)− zU0(ν))(U1(s)− zU0(s))

−
nσ 2

2
A(z, z)

hence E[(fh−E[fh])(fk−E[fk])] is a linear combination of functions of z and z with coefficients
equal to either σ 2 or σ 4 because the odd moments of a Gaussian are zero. By a similar argument
all the dropped terms in the Taylor expansion above will depend on even powers of σ . Hence

E[log(λ j )] − log(µ j ) = o(σ )

independently of z, z. �

By noticing that |Q(z)|2 = det{F(z, z)}, an approximation of the condensed density is then
given by

h̃n(z, σ ) =
1

2πn
1

∑
µ j (z)>0

log(µ j (z))
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whereµ j (z) are the eigenvalues of E[F(z, z)]. Unfortunately h̃n(z, σ ) is not a probability density
as it can eventually assume negative values. However the following results hold

Theorem 4. The function h̃n(z, σ ) is continuous in σ and in z. In the limit cases σ = 0 and
{ck = 0, k = 1, . . . , p} it is given respectively by

h̃n(z, 0) =
2
n

p∑
j=1

δ(z − ξ j )

and by

h̃n(z, σ ) =
1

4π
1wn(z)

where

wn(z) =
1
n

log
n∑

j=0

|z|2 j .

Moreover, in this second case, limn→∞ h̃n(z, σ ) = δ(|z| − 1).

Proof. h̃n(z, σ ) is continuous in σ and in z because of the continuous dependence of the
eigenvalues on the elements of the corresponding matrix. When σ = 0, let V ∈ Cn/2,p be
the Vandermonde matrix such that U0(s) = V CV T and U1(s) = V C Z V T. Let V = Q R be the
Q R decomposition of V . Then

E[F(z, z)] = Q RC(Z − z I )RT QT Q R(Z − z I )C RH Q H .

But R =
(

R̃
0

)
,therefore RT R = R̃T R̃; moreover QT Q = I , hence the eigenvalues of E[F(z, z)]

are the same as those of the matrix

RC(Z − z I )RT R(Z − z I )C RH
=

(
R̃C(Z − z I )R̃T R̃(Z − z I )C R̃H 0

0 0

)
.

The non-zero eigenvalues of E[F(z, z)] are then the same of those of the matrix

R̃C(Z − z I )R̃T R̃(Z − z I )C R̃H .

We then have

h̃n(z, 0) =
1

2πn
1

∑
µ j (z)>0

log(µ j (z))

=
1

2πn
1 log

(
p∏

j=1

|z − ξ j |
2
· |det(R̃)|4

p∏
j=1

c2
j

)

=
2

4πn

p∑
j=1

1 log |z − ξ j |
2
=

2
n

p∑
j=1

δ(z − ξ j )

because 1
4π1 log(|z|2) = δ(z) (see e.g. [26, pg. 47]). When {ck = 0, k = 1, . . . , p}

h̃n(z, σ ) =
1

2πn
1 log(det{A(z, z)}) =

1
2πn

1 log

(
n∑

j=0

|z|2 j

)
.
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The last part of the thesis follows by the same argument as used in the proof of Theorem 3
in [3]. �

Corollary 2. h̃n(z, σ )− hn(z, σ ) converges weakly to 0 when σ → 0

Proof. Let Φ(z) be a nonnegative test function supported on C. Denoting by h∗n(z) =
2
n

∑p
j=1 δ(z − ξ j ), from Theorems 2 and 4 we have ∀ν > 0, ∃σ1 and σ2 > 0 such that∣∣∣∣∫
C

Φ(z)
(
hn(z, σ )− h∗n(z)

)
dz

∣∣∣∣ < ν

2
, ∀σ < σ1

and ∣∣∣∣∫
C

Φ(z)
(

h̃n(z, σ )− h∗n(z)
)

dz

∣∣∣∣ < ν

2
, ∀σ < σ2

hence, if σν = min{σ1, σ2}, we have ∀σ < σν∣∣∣∣∫
C

Φ(z)
(

hn(z, σ )− h̃n(z, σ )
)

dz

∣∣∣∣
≤

∣∣∣∣∫
C

Φ(z)
(
hn(z, σ )− h∗(z)

)
dz

∣∣∣∣+ ∣∣∣∣∫
C

Φ(z)
(

h̃n(z, σ )− h∗(z)
)

dz

∣∣∣∣ ≤ ν. �

2. Identifiability of S(z) and approximation properties of E[Sn(z)]

We want now to exploit the information about the location in the complex plane of the Padé
poles, provided by the condensed density hn(z), to prove some properties relating Sn(z) =∑n/2

j=1 c jδ(z − ξ j ) to the true measure S(z).
Before affording the problem of estimating S(z) from the data a we need to check that the

data provide enough information to solve it. Precise conditions that must be met to solve the
problem are well known in the noiseless case and are reported in the introduction. When noise is
present the identifiability problem is an open one. Its solvability can depend on the amount of “a
priori” information available [8] and/or on the ability to devise smart algorithms. In the following
a definition of identifiability is given and, based on it, some properties of Sn(z) are proved.

Definition 1. The measure S(z) is identifiable from the data ak, k = 0, . . . , n − 1 if ∃ rk >

0, k = 1, . . . , p such that

• hn(z) is unimodal in Nk = {z | |z − ξk | ≤ rk}

•
⋂p

k=1 Nk = ∅.

The idea is that S(z) can be identified from the data a if the random generalized eigenvalues
have a condensed density with separate peaks centered on ξ j , j = 1, . . . , p. As, by Theorem 2,
hn(z, σ ) converges weakly to 2

n

∑p
j=1 δ(z − ξ j ) when σ → 0, there must exist a σ ′ > 0 small

enough to make S(z) identifiable ∀ σ < σ ′.
In order to apply the proposed method one should check that the identifiability conditions are

verified. As hn(z, σ ) depends on the unknown quantities p, c j , ξ j this is of course impossible.
However in most real problems we have some prior information about the unknown measure S(z)
that we can exploit to get reasonable interval estimates for p, c j , ξ j . Moreover in many instances
either n or σ or both can be freely chosen. By Theorem 3, Eq. (11), n should not be as large as
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possible to get the best estimates of S(z). In fact too many data will convey too much noise which
could mask the signal sk . We can therefore properly design an experiment by computing hn(z, σ )
for many values of n and σ and choose nopt and σopt (optimal design) that make identifiable the
measures corresponding to prior estimates of p, c j , ξ j . To identify the unknown measure S(z)
we then hopefully need to measure nopt data affected by an error with s.d. σopt . Unfortunately
hn(z) does not admit a closed form expression and to compute the expectation that appears in
its definition we need to perform a time consuming Monte Carlo experiment. This is why we
proposed an approximation h̃n(z) of hn(z) which can be quickly computed by solving hermitian
eigenvalue problems.

Let us consider the function

Sn(z) = E[Sn(z)] =
n/2∑
j=1

E[c jδ(z − ξ j )]

where {c j , ξ j }, j = 1, . . . , n/2 are the solution of the complex exponentials interpolation
problem for the data {ak, k = 0, . . . , n − 1}.

The relation between Sn(z) and the unknown measure S(z) is given by the following

Theorem 5. If S(z) is identifiable from a then∫
Nh

Sn(z)dz = ch + o(σ )

and ∫
A

Sn(z)dz = o(σ ), ∀A ⊂ D −
p⋃

j=1

N j .

Proof. From the identifiability hypothesis we know that∫
Nk

hn(z)dz =
2
n

n/2∑
j=1

Prob[ξ j ∈ Nk] > 0, k = 1, . . . , p.

Therefore there exist ξ jk such that Prob[ξ jk ∈ Nk] > 0. Among the ξ jk let us denote by ξ k̂ the
one such that Prob[ξ jk ∈ Nk] is maximum. From the identifiability hypothesis the ξ k̂ are distinct.
Moreover all the ξ j , j = 1, . . . , n/2 can be sorted in such a way that ξ j = ξ ĵ , j = 1, . . . , p
and, by Lemma 2, ck corresponds to ξ k such that

E[ck] =

{
ck + o(σ ), k = 1, . . . , p
o(σ ), k = p + 1, . . . , n/2.

But then for k = 1, . . . , p∫
Nk

Sn(z)dz =
n/2∑
j=1

∫
Nk

E[c jδ(z − ξ j )]dz

=

n/2∑
j=1

∫
Nk

(∫
C2
γ δ(z − ζ )dµγ ζ

)
dz

=

n/2∑
j=1

∫
C2
γ

(∫
Nk

δ(z − ζ )dz

)
dµγ ζ
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where µγ ζ is the joint distribution of c j and ξ j . We have∫
Nk

δ(z − ζ )dz =

{
1 if ζ ∈ Nk
0 otherwise

hence,∫
Nk

Sn(z)dz =
n/2∑
j=1

E[c jδ jk] = E[ck] = ck + o(σ ).

By a similar argument the second part of the thesis follows. �

3. The P-transform

In order to solve the original moment problem we need to compute

Sn(z, σ
2) =

n/2∑
j=1

E[c jδ(z − ξ j )].

In order to estimate the expected value we build independent replications of the data
(pseudosamples) by defining

a(r)k = ak + ν
(r)
k , k = 0, . . . , n − 1; r = 1, . . . , R

where {ν(r)k } are i.i.d. zero mean complex Gaussian variables with variance σ ′2 independent of
ah,∀h. Therefore

E[a(r)k ] = sk, E[(a(r)k − sk)(a
(s)
h − sh)] = σ̃

2δhkδrs

where σ̃ 2
= σ 2

+ σ ′
2. For r = 1, . . . , R, we define the statistics

Ŝn,r (z, σ̃
2) =

n/2∑
j=1

c(r)j δ(z − ξ
(r)
j )

where c(r)j , ξ
(r)
j are the solution of the complex exponentials interpolation problem for the data

a(r)k , k = 0, . . . , n − 1. As, by Lemma 2, the transformation

T : {a(r)k , k = 0, . . . , n − 1} → {[c(r)j , ξ
(r)
j ], j = 1, . . . , n/2}

is a.s. one-to-one, Ŝn,r (z, σ̃ 2) are i.i.d. with mean Sn(z, σ̃ 2) and finite variance ζ(z, σ̃ 2) because
{ν
(r)
k } are i.i.d. Therefore the statistic

Ŝn,R(z, σ̃
2) =

1
R

R∑
r=1

Ŝn,r (z, σ̃
2)

has mean Sn(z, σ̃ 2) = E[Ŝn,r (z, σ̃ 2)] and variance 1
R ζ(z, σ̃

2).

Let us consider the statistic

Ŝn(z, σ
2) =

n/2∑
j=1

c jδ(z − ξ j )
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where c j , ξ j are the solution of the complex exponentials interpolation problem for the data
ak, k = 0, . . . , n − 1 and the conditioned statistic

Ŝ
c
n,R(z, σ̃

2) = Ŝn,R(z, σ̃
2)|a

which are both computable from the observed data a. We have

Lemma 3. For n and σ > 0 fixed and ∀z and σ̃ ,

E[Ŝ
c
n,R(z, σ̃

2)] = Sn(z, σ̃
2)

lim
R→∞

var[Ŝ
c
n,R(z, σ̃

2)] = 0.

Proof. From the conditional variance formula [24] we have

E[Ŝ
c
n,R(z, σ̃

2)] = E[Ŝn,R(z, σ̃
2)] = Sn(z, σ̃

2)

and

var[Ŝ
c
n,R(z, σ̃

2)] ≤ var[Ŝn,R(z, σ̃
2)] =

1
R
ζ(z, σ̃ 2). �

It follows that ∀z the risk of Ŝ
c
n,R(z, σ̃

2) as an estimator of S(z) with respect to the loss

function given by the absolute difference could be smaller than the risk of the estimator Ŝn(z, σ 2)

if R and σ̃ are suitably chosen, despite the fact that its bias is larger because σ̃ > σ and
Theorem 5 holds. As a matter of fact this possibility is always verified provided that σ ′ and
R are suitably chosen as proved in the following

Theorem 6. Let M(z) and Mc(z) be the mean squared error of Ŝn(z, σ 2) and Ŝ
c
n,R(z, σ̃

2)

respectively. In the limit for σ → 0, there exist σ ′ and R(σ ′) such that ∀R ≥ R(σ ′),
Mc(z) < M(z) ∀z.

Proof. Let Mc(z) = vc + b2
c and M(z) = v + b2 be the decomposition of the mean squared

errors in the sum of variance plus squared bias. Then Mc(z) − b2
= vc + (b2

c − b2). By
Lemma 3, bc is equal to the bias of Ŝn(z, σ̃ 2) and, by Theorem 5, it is o(σ̃ ) for σ̃ → 0. Then
limσ ′→0+(b

2
c − b2) = 0. Moreover, by Lemma 3, limR→∞ vc = 0. Therefore ∀v > 0, ∃σ ′v and

R(σ ′v) such that ∀σ ′ < σ ′v, vc + (b2
c − b2) < v and then Mc(z) < M(z). �

In order to define a discrete transform, we evaluate Ŝ
c
n,R(z, σ̃

2) on a lattice L = {(xi , yi ), i =
1, . . . , N } such that

min
j

Rξ j > min
i

xi ; max
j

Rξ j < max
i

xi

min
j
=ξ j > min

i
yi ; max

j
=ξ j < max

i
yi .

In order to cope with the Dirac distribution appearing in the definition of Ŝ
c
n,R(z, σ̃

2) it is
convenient to use an alternative expression given by

Ŝ
c
n,R(z, σ̃

2) =
1

2πR
1

(
R∑

r=1

n/2∑
j=1

[c(r)j |a] log(|z − [ξ (r)j |a]|)

)
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which can be obtained by the former one by remembering that 1
4π1 log(|z|2) = δ(z) (see

e.g. [26, pg. 47]). In this way the problem of discretizing the Dirac δ is reduced to discretizing the
Laplacian operator, which is easier to cope with. We then get a random matrix P(σ̃ 2) ∈ R

(N×N )
+

such that P(h, k, σ̃ 2) = Ŝ
c
n,R(xh + iyk). We call this matrix the P-transform of the vector

[a0, . . . , an−1].

4. Estimation procedure

The P-transform gives a global picture of the measure S(z). However an estimate of the
unknown parameters p, {ξ j , c j , j = 1, . . . , p} are usually of interest. An automatic procedure
to get such estimates is now described. Let P(σ̃ 2) be the P-transform computed by using
R pseudosamples with variance σ̃ 2. The proposed procedure is the following (dropping for
simplicity the conditioning to a):

• memorize all the Padé poles ξ (r)j and the corresponding residuals c(r)j , r = 1, . . . , R used for

computing P(σ̃ 2)

• identify the local maxima of P(σ̃ 2) and sort them in increasing order with respect to the local
maxima values. The local maxima are candidate estimates of {ξ j , j = 1, . . . , p}
• for each candidate a cluster of (previously memorized) Padé poles was estimated by including

all the poles closest to the current candidate until the cluster cardinality equals a predefined
percentage (e.g.>50%) of the number R of pseudosamples. The rationale is that if the
candidate is close to one of the ξ j most of the pseudosamples should provide a Padé pole close
to it. Notice that spurious clusters – i.e. not centered close to some ξ j – can be expected [5]
• all the candidates whose associated cluster does not have the prescribed cardinality are

eliminated. The number p̂ of left candidates is then an estimate of p
• for each of the p̂ clusters the Padé poles and the corresponding residuals (previously

memorized) were then averaged and provided estimates ξ̂ j , ĉ j , j = 1, . . . , p̂ of the unknown
parameters. Hopefully to ξ̂ j associated to spurious clusters should correspond relatively
small ĉ j .

5. Numerical results

In this section some experimental evidence of the claims made in the previous sections is
given. A model with p = 5 components given by

ξ =
[
e−0.1−i2π0.3, e−0.05−i2π0.28, e−0.0001+i2π0.2, e−0.0001+i2π0.21, e−0.3−i2π0.35

]
c = [6, 3, 1, 1, 20] , σ = 0.2, n = 80

is considered. We notice that SN R = 5 and the frequencies of the 3rd and 4th components
are closer than the Nyquist frequency (0.21 − 0.20 = 0.01 < 1/n = 0.0125). Hence a
superresolution problem is involved in this case. The quality of the approximation of h̃(z) to the
condensed density is first addressed, h̃(z) is then computed along a line which passes through
ξ j and the closest among the (ξh, h 6= j). If the model is identifiable h̃(z) should have a local
maximum close to ξ j along this line. The interquartile range r̂ j of a restriction of h̃(z) to a
neighbor of this maximum is then considered as an estimate of the radius of the local support of
h̃(z) assumed circular. Then M = 100 independent data sets a(m) of length n were generated and
the Padé poles ξ (m),m = 1, . . . ,M were plotted in Fig. 1 where circles of radii r̂ j centered on ξ j
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Table 1

Statistics of the parameters p̂, ξ̂ j , j = 1, . . . , p and ĉ j , j = 1, . . . , p.

p bias( p̂) s.d.( p̂) MSE( p̂)

5 0.0500 1.0000 1.0025

j ξ j bias(ξ̂ j ) s.d.ξ̂ j MSE(ξ̂ j )

1 −0.2796− 0.8606i −0.0006+ 0.0004i 0.0230 0.0005
2 −0.1782− 0.9344i −0.0005− 0.0004i 0.0125 0.0002
3 0.3090+ 0.9510i 0.0057− 0.0009i 0.0171 0.0003
4 0.2487+ 0.9685i −0.0005+ 0.0024i 0.0145 0.0002
5 −0.4354+ 0.5993i −0.0054+ 0.0018i 0.0290 0.0009

j c j bias(ĉ j ) s.d.(ĉ j ) MSE(ĉ j )

1 6.0000 0.1545 1.7154 2.9663
2 3.0000 −0.1617 1.2865 1.6812
3 1.0000 −0.1037 0.3295 0.1193
4 1.0000 −0.0981 0.3193 0.1116
5 20.0000 −0.1759 2.5101 6.3317

have been represented too. We notice that the circles are reasonable estimates of the Padé poles
clusters which provide an estimate of the support of the peaks of the true condensed density
corresponding to ξ j , j = 1, . . . , p. We conclude that h̃(z) is a reliable approximation of the
condensed density and therefore, with the choice of n and σ made above, the model is likely to
be identifiable.

We want now to show by means of a small simulation study the quality of the estimates of the
parameters ξ and c which define the unknown measure S(z). To this aim the bias, variance and
mean squared error (MSE) of each parameter separately will be estimated. M = 500 independent
data sets a(m) of length n were generated by using the model parameters given above. For
m = 1, . . . ,M the P-transform P(m) was computed based on R = 100 pseudosamples with
σ ′

2
= 10−4σ 2 on a square grid of dimension N = 200. The estimation procedure is then applied

to each of the P(m),m = 1, . . . ,M and the corresponding estimates ξ̂ (m)j , ĉ(m)j , j = 1, . . . , p̂(m)

of the unknown parameters were obtained. As we know the true value p, if less than p local
maxima were found in the second step or if p̂(m) < p in the fourth step of the procedure, the
corresponding data set a(m) was discarded.

In Table 1 the bias, variance and MSE of each parameter including p is reported. They were
computed by choosing among the ξ̂ (m)j , j = 1, . . . , p̂(m) the one closest to each ξk, k = 1, . . . , p

and the corresponding ĉ(m)j . If more than one ξk is estimated by the same ξ̂ (m)j the mth data set

a(m) was discarded. In the case considered 65% data sets were accepted. Looking at Table 1 we
can conclude that the true measure can be estimated quite accurately in 65% of cases.

When p̂(m)j > p we computed also the average residual amplitude

ares =
1

|M̃ |

∑
m∈M̃

1

( p̂(m) − p)

p̂(m)∑
j=p+1

ĉ(m)j , where M̃ = {m| p̂(m)j > p}

which represents the contribution to Ŝ
c
n,R(z, σ̃

2) of all the components which give rise to spurious
clusters. In the case considered its value is ares = 1.165 which should be compared with the true
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Fig. 2. MSE of the standard estimator of the parameters (ξ j , c j ), j = 1, . . . , p (dashed); MSE of the averaged estimator
(solid).

amplitudes c. We can conclude that even when more components then the true ones are detected
their relative importance is very low.

In order to appreciate the advantage of the estimator Ŝ
c
n,R(z, σ̃

2) with respect to Ŝn(z, σ 2),
the same M = 100 independent data sets a(m) of length n generated before were considered.
The corresponding Padé poles and weights (ξ̂ (m)j , ĉ(m)j , j = 1, . . . , n/2) were computed and
ordered for each m in decreasing order w.r.t. the absolute value of the weights. The true
(ξ j , c j , j = 1, . . . , p) were ordered in the same way and the error

e0(m) =
p∑

j=1

(ξ̂
(m)
j − ξ j )

2
+

p∑
j=1

(ĉ(m)j − c j )
2

was computed for m = 1, . . . ,M and plotted in Fig. 2. Then to each of the M data sets a(m)

previously generated R = 100 i.i.d. zero mean Gaussian samples with variance σ ′2 = 0.64σ 2

were added and (ξ̂ (m,r)j , ĉ(m,r)j , j = 1, . . . , n/2, r = 1, . . . , R) were computed and ordered as
before for each m and r . Finally the error

eR(m) =
p∑

j=1

(
1
R

R∑
r=1

ξ̂
(m,r)
j − ξ j

)2

+

p∑
j=1

(
1
R

R∑
r=1

ĉ(m,r)j − c j

)2

was computed for m = 1, . . . ,M and plotted in Fig. 2. We notice that eR(m) � e0(m)
for almost all m and it is much less dispersed around its mean. Therefore the estimates of
(ξ j , c j , j = 1, . . . , p) obtained by averaging over the R pseudosamples are better than those
obtained by the original samples. Finally we notice that in this simulation we used a variance
σ̃ 2 much larger than the one used to produce the results in Table 1. This large value gives the
best mean squared error over all the five parameters but not necessarily the best reconstruction
of each single parameter, as we looked for in the previous simulation.

6. Conclusions

A new approach for solving the complex exponentials approximation problem in a stochastic
framework is proposed. The problem is considered as a noisy complex moments problem.
A random measure is defined whose expectation approximates the unknown measure whose
complex moments are measured in noise. An estimator of the approximating measure is then
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proposed, as well as a discrete transform based on it, and its statistical properties are analyzed.
A computational method based on the discrete transform is then described and used to provide
some evidence of the usefulness of the proposed approach.

Several points related to the numerical and computational aspects are not addressed here
because they are quite involved and require separate treatment. A basic problem is the choice
of the lattice which the discrete transform is based on. In [1] a closed form estimator of the
condensed density of the generalized eigenvalues of the pencil P is described. It is based on the
Q R decomposition of P and depends on a parameter which can be tuned in order to smooth
out the noise without destroying the information about the unknown measure conveyed by the
condensed density. The choice of the lattice (location) can then be reduced to the problem of
finding the region where the condensed density estimate is significantly different from zero.
Moreover the minimum distance between two relative maxima of the estimated condensed
density can be related to the mesh size.

The computation of the Padé poles and residuals is the most involved part of the algorithm
from the numerical point of view because estimates of close poles can be very sensitive to noise.
Also the computational burden can become a problem because R estimates of each pole have
to be computed. Many alternative methods can be used. In [2] several of them are compared
both in terms of numerical accuracy and computational burden and a fast procedure for the
specific problem is proposed. Moreover the clustering problem is also discussed and a stable and
fast method is provided. In [2] the hyperparameters (e.g. N , R, σ ′) estimation problem is also
addressed, by defining a performance criterion through residual analysis. Finally the proposed
method was tested on several sets of real and synthetic data and comparisons with existing
methods were successfully performed.

One could argue that a good estimate of the condensed density should provide a solid basis to
solve directly the complex exponentials approximation problem as shown in [1], without using
pseudosamples and without computing Padé poles and residuals as proposed here and in [2].
This is apparently true only for easy or moderately difficult problems while pseudosamples are
required to cope with real difficult ones. Work is in progress to support this claim.
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functions, relevant for modal analysis, IEEE Trans. Signal Process. 46 (1998) 2448–2457.

[6] P. Barone, A. Ramponi, A new estimation method in modal analysis, IEEE Trans. Signal Process. 48 (2000)
1002–1014.

[7] A.T. Bharucha-Reid, M. Sambandham, Random Polynomials, Academic Press, New York, 1986.
[8] D.L. Donoho, Superresolution via sparsity constraints, SIAM J. Math. Anal. 23 (5) (1992) 1309–1331.

http://arxiv.org/0801.3352
http://arxiv.org/0801.4172


P. Barone / Journal of Approximation Theory 155 (2008) 1–27 27

[9] J.M. Hammersley, The zeros of a random polynomial, in: Proc. Berkely Symp. Math. Stat. Probability, 3rd, vol. 2,
1956, pp. 89–111.

[10] T.C. Farrar, Introduction To Pulse NMR Spectroscopy, Farragut Press, Chicago, 1987.
[11] R.P. Flowe, G.A. Harris, A note on generalized Vandermonde determinants, SIAM J. Matrix Anal. Appl. 14 (4)

(1993) 1146–1151.
[12] J.L. Gammel, Effect of random errors (noise) in the terms of a power series on the convergence of the Padé
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