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1. INTRODUCTION 

The object of this paper is to express an important result of Dade [2, 
Theorem 7.41, on equivalence of categories, from classical stable Clifford 
theory to one in pure ring theory. In fact, in [2], utilising the properties 
of fully group-graded rings and modules, Dade described an extended 
version of Cline’s stable Clifford theory [ I]. 

In the sequel we will work in the category of right d-modules, where d 
is an arbitrary ring. In our work no group action is involved and the rings 
and modules are free from any group-grading. Our work is based on a type 
of module, called a “static module related to a fixed d-module JY” or 
“d-static d-module” (Definition 2.1). 

If .d and S# are rings and p: .02 -+ 3 is an identity-preserving ring 
homomorphism, then we will be interested in those B-modules which are 
A-static as &‘-modules under the restriction of p. A source of interest is 
the following example: 

Let Y be a group, X a normal subgroup of 9, and F any field. Let J$! 
be a g-stable S[S]-module. Then the 9[?3]-modules of interest here 
are exactly those which are .X-static as F[X]-modules. Our first main 
theorem, Theorem 4.9, below shows that the category of all such modules 
is equivalent to a certain category of d-modules, where 

In many cases, the latter category is much easier to deal with. Our 
second main theorem, Theorem 5.5, below shows that the category whose 
objects are those F[ZJ]-modules which weakly divide & as B[X]- 
modules is equivalent to the category whose objects are those &-modules 
which are projective of finite type as %modules, where 

9 = End,,c.X ,(.M). 
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Dade and Cline have proved similar, but less general, equivalences. 
Dade’s work in particular, depends strongly on the fact that P[Y] and d 
are fully Y/Z-graded. But this is obviously not necessary, from the work 
here. Furthermore, the categories of modules dealt within Dade’s work 
appear to be less general than the categories we consider here. 

Notation. In this paper the term ring means associative ring with identity 
and module means unital right module. For any ring ,ol, MOD-,& means 
the category of all .d-modules and their homomorphisms. Finally, fully 
group-graded means strongly group-graded (see [3] for the change of 
terminology). 

2. STATIC MODULES 

Let S? be a ring, let J& be a fixed d-module, and let 9 = End,,(&) be 
the ring of endomorphisms of &Z’. 

DEFINITION 2.1. An d-module Y- is said to be a static .&-module 
related to A! or an A-static d-module if 

(2.1.a) 

via the natural isomorphism 

(2.1.b) .fC3m++.f(m) 

for all m E Jz’ and fe Hom,,(&, Y ). 

The category of all &‘-static .&-modules will be denoted by 

(2.2) MOD-s@‘# 

which is a full additive subcategory of MOD-z&‘. 

We will also denote by 

(2.3) MOD-S” 

the category of all S-modules -Iy- such that 

(2.4.a) 

via the natural isomorphism: 

(2.4.b) 
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where ,f,, is defined by 

(2.4.~) 

for all m E A! and u’ E W. 

.f,,.(m) = w 0 WI 

MOD-g,” is a full additive subcategory of MOD-g, and we will call it 
the companion category of MOD-,Q’~. 

The restrictions of functors HOM,,(.I, .) and .OP .A! form an equiv- 
alence of the categories MOD-.$, and MOD-S@. For, the composition of 
these functors in one direction, 

is naturally equivalent to the identity functor on MOD-&‘,, and in the 
other direction, 

HOM.,(d, .OLr A), 

is naturally equivalent to the identity functor on MOD-S”. Thus we have 
the following theorem: 

THEOREM 2.5. The restrictions of the additive ,functors 

MOD-.$, + MOD-S” 

H Hom,,(A, V) 

and 

form an equivalence of the categories MOD-S, and MOD-SU. 

EXAMPLES 2.6.1. A? itself is an A-static &-module. 

2. If an d-module V weakly divides A? in MOD-S?, then V^ is 
A-static (Corollary 3.2(i)). 

3. If A%! is of finite type, then every &‘-module V which divides some 
direct sum of copies of JZ in MOD-d is &‘-static (Corollary 3.2.(ii)). 

4. If J&’ is a generator of MOD-.&, then every d-module I” is 
A-static, and in this case MOD-&‘, coincides with MOD-.& [4, p. 2891. 

5. 2 is an object of MOD-g.N. 

6. Every projective $&module of finite type is an object of MOD-S+# 
(Corollary 3.4(i)). 

7. If A? is of finite type, then every projective Smodule is an object 
of MOD-g,# (Corollary 3.4(ii)). 
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3. DIVISIBILITY AND WEAK DIVISIBILITY 

Throughout this section we will continue to assume the notation of 
Section 2, i.e., & is a ring, JX is a fixed d-module, and 9 = End,(&). In 
this section we will prove a weak version (Theorem 3.7) of our second 
main result, Theorem 5.5. 

Recall that a right d-module @ divides a right &-module -Y- in 
MOD-d, if there is a right d-module %’ such that 

and that % weakly divides -Y in MOD-d if (8 divides a finite direct sum 
of copies of V in MOD-d. 

Since the functor .a9 JZ preserves arbitrary direct sums while the 
functor HOM~,(&, .) preserves finite direct sums, and even arbitrary 
direct sums if J%! has finite type (or “small,” in the sense of Proposition 
4.25C of [4]), it can immediately be observed that a finite direct sum of 
_&‘-static &-modules is an d-static &-module, and in case J# has finite 
type (or small), an arbitrary direct sum of A-static &-modules is an 
J-static d-module. The converse of this statement also holds, i.e., 

PROPOSITION 3.1. If ^y_ is an A-static &-module, then every direct 
summand of V is an A-static d-module. 

An immediate consequence of the above proposition and the definitions 
of divisibility and weak divisibility is the following: 

COROLLARY 3.2. (i) If an d-module V weakly divides A! in MOD-d, 
then Y is an A-static d-module. 

(ii) If J%’ is offinite type (or small), and ifV divides some direct sum 
of copies of 4 in MOD-d, then V is an A-static d-module. 

Similar to that of the objects of MOD-&‘,, it is straightforward to verify 
that a finite direct sum of objects of MOD-W is an object of MOD-g.&. 
If J%’ has finite type (or small) then an arbitrary direct sum of objects of 
MOD-9d is an object of MOD-@. Moreover, the converse of the above 
also holds, i.e., 

PROPOSITION 3.3. Every direct summand of an object of MOD-9V is an 
object of MOD-W. 

The following corollary gives examples of the companion category of 
MOD-&#. 
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COROLLARY 3.4. (i) If W is a projective Smodule of finite type, then 
W is an object of MOD-&@&. 

(ii) rf& is off mte type (or small) and W is a projective g-module, 
then W is an object of MOD-&%@. 

Proof. (i) Let $V be projective of finite type. Then there is a projective 
complement YY’ of w of finite type such that their direct sum 

is a free g-module of finite type. But a free g-module of finite type is a 
direct sum of a finite number of copies of 9, so we can find an integer k 
such that 

where k9 is the direct sum of k copies of 9. Clearly kg is an object of 
MOD-9.N. Hence, from Proposition 3.3, -Iy- is an object of MOD-g.*. 

(ii) Let A and -w^ be as in the hypothesis. Then there is a projective 
complement Y’Y of w such that 

is a free g-module, which is a direct sum of copies of 9 and so is an 
object of MOD-9”. Hence, from Proposition 3.3, %Y is an object of 
MOD-g.“. 1 

We define the subcategories MOD(&‘[A) and MOD(dj weak A!) of 
MOD-&’ as follows: 

DEFINITION 3.5. (a) MOD(z2 ~24) is the full additive subcategory of 
MOD-& having as objects all .&-modules V such that V divides some 
direct sum of copies of A in MOD-d. 

(b) MOD(zI (weak A!) is the full additive subcategory of MOD-d 
having as objects all &‘-modules V such that Y weakly divides A in 
MOD-&. 

Similarly we define full additive subcategories MOD(9 19) and 
MOD(9 1 weak 9) as follows: 

DEFINITION 3.6. (a) MOD(919) is the full additive subcategory of 
MOD-9 of all projective %modules. 

(b) MOD(9 1 weak 9) is the full additive subcategory of MOD-9 of 
all projective %modules of finite type. 
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Let V be an object of MOD(& 1 weak A) (resp. of MOD(& / ~2’) if ~2’ 
is of finite type (or small)). In other words V weakly divides (resp. divides 
some direct sum of copies of) A in MOD-d. Then Hom,JA, V), which 
now becomes a direct summand of a free G&module of finite type (resp. a 
direct summand of a free B-module), is a projective g-module of finite 
type (resp. a projective g-module), and so is an object of MOD(9 1 weak 9) 
(resp. of MOD(9 19)). 

Conversely, let W be an object of MOD(9 1 weak 9) (resp. of 
MOD(919) if .M is of finite type (or small)). In other words W is a 
projective %module of finite type (resp. a projective a-module). Then 
W O2 A weakly divides (resp. divides some direct sum of copies of) A. 
So W@, A! is an object of MOD(dl weak 4) (resp. of MOD(&I A)). 

Hence we conclude that: 

THEOREM 3.7. The restrictions of the additive functors 

HOM,,(A, .): MOD(& ( weak .X) -+ MOD(9 1 weak 9) 

and 

. Ou A: MOD(9 I weak 9) -+ MOD(& I weak ~2’) 

f orm an equivalence of the categories MOD(&l weak A’) and 
MOD(9 ( weak 9). Zf .A is of finite type (or small) then the restrictions of 
those ,functors form an equivalence of MOD(& I A) and MOD(9 / $3). 

4. INDUCTION AND RESTRICTION 

In the remaining part of this paper we will adopt the following axioms 
and notation: 

(4.1.a) & and 23 are rings with identities I, and I,, respectively. 
(4.1.b) p: d -+ !?8 is an identity-preserving ring homomorphism: 

p(l,,) = I,#, which we use to define both the induction functor, 

from MOD-& to MOD-9 and the restriction functor, 

“fy-,~l.d3 

from MOD-G? to MOD-&. 



STATIC MODULES 503 

(4.1.~) .A is a fixed &‘-module such that 

is an object of MOD-,&‘,. 

(4.1.a) 3 and d are endomorphism rings End,,(A) and End,#(.A @,d S?), 
respectively, while 

is the natural identity-preserving ring homomorphism determined by the 
formula 

for all dEg,rnEA, and bE%?. 

We define restricted categories MOD(L@ rest. Hc9,) and MOD(b rest. 
S”), which are full additive subcategories of MOD-B and MOD-b 
respectively, as follows: 

DEFINITION 4.2. MOD(&I rest. gcgK) is the category of all those 
&J-modules -Y- for which Y 1 ,r’ is an object of MOD-S!,. 

DEFINITION 4.3. MOD(I rest. 9,“) is the category of all those 6 
modules $F for which w 1 y is an object of MOD-G??“. 

In this section our main object is to show that the categories defined in 
4.2 and 4.3 are equivalent categories. This will be proved in our first main 
theorem, Theorem 4.9. But before this we will determine what these 
categories are. We answer this question in Propositions 4.6 and 4.8. 

By using the adjoint associativity theorem [4, p. 4241 we can get the 
following isomorphism of C&modules, 

defined by the formula 

(4.4.b) CW)l(m) =.f(m 0 I.,) 

for all m E A%! and f~ 6. The inverse isomorphism is defined by 

(4.4.c) cP(g)(mOb)=g(m)b, 

for all b E g, m E A’, and g E Hom,,(A, .A @.,J s#), 
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Tensoring both sides of (4.4.a) by J%! we will get the d-module 
isomorphism 

where q and cp are as defined above in (4.4.b) and (4.4.~) and I,, is the 
identity map on &‘. 

According to our assumption (4.1.~) and by Definition 4.2, JZ @,& W is 
an object of MOD(g rest. .J&‘~). Hence, we have the following natural 
isomorphism of &‘-modules, 

where 

w-o m) =f(m), 

for all m E JZ and f~ Hom,,(&, &OA 93) and L-i is the inverse of the 
isomorphism 1. 

The composition of the isomorphisms (4.4.d) and (4.4.e) gives us the 
following isomorphism: 

LEMMA 4.5. &‘@+,A’? 
? ’ 

A?Q, B (as d-modules), where 

a=io(qQZ.,) 

and 

a! -‘=(‘pQz,,)~i-‘, 

where q, cp, A, and 2 ’ are as defined above. 

In the following proposition we will demonstrate that MOD(!B rest. ~2~) 
is precisely the category of all .,k‘@, W-static G&modules. 

PROPOSITION 4.6. 9’” is an object of MOD(B rest. MM) if and only if V 
is an JVT @.d B-static &I-module, i.e., 

(4.6.a) Hom,(A @,, 39, V) OR. (JZZ @,d 93) g -Y- (as .%!I-modules ) 

via the natural isomorphism 

(4.6.b) fQ x +-+.0x) 

for aN x E A @,& 93 andfE Hom,#(&Z @,d 98, V:‘). 
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ProoJ: Let V be an object of MOD-B’. Then, from (4.l.b), considering 
Y an object of MOD-&, we have the following sequence of .&-module 
isomorphisms, 

where the first isomorphism is by Lemma 4.5, the second isomorphism is 
by associativity and by the canonical isomorphism 

and the third isomorphism is by the adjoint associativity theorem 
[4, p. 4241. 

If ^I“ is an object of MOD(g rest. .d,), then by Definition 4.2, V ] ,cr’ is 
an object of MOD-.&,., and so from (2.1.a) and (4.6.~) 

as &-modules. Indeed, this is a g-module isomorphism, for 

(.fox)b=fo(xb)~f(xb)=f(x) b, 

for all b ES?, XE A! @& 8, and f~ Hom,(A@~, 99, V). Hence Y is an 
A%’ @,d B-static B-module. 

Conversely, assume that -Y is an A @,, g-static .S%module, i.e., (4.6.a) 
and (4.6.b) hold. Then, from (4.6.c), V I.& is an A-static d-module. Hence, 
from Definition 4.2, V is an object of MOD(93 rest. J$~). 1 

LEMMA 4.7. For any d-module TV-, 

(4.7.a) w@,Jl~wo,(JHo.,L8) (as &‘-modules) 

via the natural map 

(4.7.b) 1 wi@mik-+ C w,Om,@I,, 
tinate finite 

for all m,EA! and M’~EW. 
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Proqf: 

where the first two isomorphism are the obvious ones and the last 
isomorphism is by Lemma 4.5. 1 

In the next proposition we will show that MOD(I rest. 9”) is precisely 
the companion category, MOD-b& @.d9, of the category of all .A? @.& B- 
static g-modules. 

PROPOSITION 4.8. W is an object of MOD(b rest. ~3~) if and only if 

(4.8.a) W g Hom,(A’ @,d 99, W OR A%! @,d a’) (as b-modules) 

via the map 

(4.8.b) w c+ p,,, 

such that 

(4.8.~) P,>(X) = w 0 x, 

for all weW andxEA?Q ,dB. 

ProoJ: Let W be an object of MOD(b rest. W); then we have the 
following Smodule isomorphisms: 

WgHom,,(A,W@,A) 

E HomAd, W Qe (4 Q.& B)) 

z Hom,(& O.d 9S’, W OI (A O& 99)). 

The first isomorphism is by Definition 4.3, the second is by Lemma 4.7, 
and the last one is due to the adjoint associativity theorem [4, p. 4241. 
Composition of these isomorphisms is an isomorphism which is the 
required b-module isomorphism. 

The converse is an immediate consequence of Lemma 4.7. 1 

From Propositions 4.6 and 4.8 and Theorem 2.5 we conclude the 
following interesting fact: 



STATIC MODULES 507 

THEOREM 4.9. THE FIRST MAIN THEOREM. The restrictions of additive 
functors 

HOM,(A @,d a, .): MOD(B rest. J&) -+ MOD(& rest. 9”) 

and 

. @,(A OLd 93): MOD(b rest. 9,“) + MOD(LB rest. ~2~) 

form an equivalence of the full additive subcategories 

MOD(g rest. J&‘~) and MOD(6 rest. 9”) of MOD-B and MOD-I, 

respectively. 1 

5. THE SECOND MAIN THEOREM 

Finally, we prove our second main theorem which, indeed, is a worthy 
extension of Cline’s [l] and Dade’s [2] work. Throughout this section we 
will continue to assume the hypotheses of Section 4.1. 

Define full additive subcategories MOD(Bl&) and MOD(Bl weak A) 
of MOD-B as follows: 

DEFINITION 5.1. (a) MOD(gl .A) is the full additive subcategory of 
MOD-B having as objects all g-modules V such that V 1-d divides some 
direct sum of copies of A’ in MOD-d. 

(b) MOD(!B I weak A) is the full additive subcategory of MOD-B 
having as objects all B-modules Y such that Y I,& weakly divides A! in 
MOD-A!. 

Similarly, we define full additive subcategories MOD(b 1~3) and 
MOD(b 1 weak 9) of MOD-I as follows: 

DEFINITION 5.2. (a) MOD(I 163) is the full additive subcategory of 
MOD-b having as objects all b-modules W such that Wit, is projective. 

(b) MOD(bI weak ~3) is the full additive subcategory of MOD-b 
having as objects all d-modules W such that Wlv is projective of finite 
type. 

(These subcategories can be compared with the subcategories as defined 
in [2, Sect. 71.) 
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(5.3.a) Let -Y- be an object of MOD(B 1 weak A) (resp. of MOD(?+?l&) 
if J%? is of finite type (or small)). Then by Definition 5.1(a) and 5.1(b) and 
by Corollary 3.2, Y 1 ,rB is an object of MOD-dI,, and by Definition 4.2 
MOD(W 1 weak JR?“) (resp. MOD(99 I&‘)) becomes a full additive sub- 
category of MOD(&I rest. &“). 

(5.3.b) Similarly, if ^Iy- is an object of MOD(&I weak 9) (resp. of 
MOD(b 19) if JZ is of finite type (or small)), then by Definitions 5.2(a) 
and 5.2(b) and by Corollary 3.4, WI9 is an object of MOD-g&. From 
Definition 4.3 MOD(&‘I weak 9) becomes a full additive subcategory of 
MOD(8 rest. 9”). 

(5.4.a) An object V of MOD(G? I weak JZ) (resp. MOD(9J I J+!) if A is 
of finite type (or small)) weakly divides (resp. divides some direct sum of 
copies of) .&Z in MOD-d, and so Hom,(A, Y I &) is a projective 
g-module of finite type (resp. a projective g-module). By the adjoint 
associativity theorem [4, p. 4241, 

as $modules. Hence we deduce that if V is an object of 
MOD(99lweak JV) (resp. of MOD(8 I A) if JV is of finite type (or small)) 
then Horn&&@& W, Y) is an object of MOD(bI weak 9) (resp. of 
MOD(& 19)). 

(5.4.b) An object EIY of MOD(b 1 weak 9) (resp. of MOD(b 19) if J is 
of finite type (or small)) is projective as a g-module of finite type (resp. 
projective as a $&module). So YV@~ JZ weakly divides (resp. divides some 
direct sum of copies of) &? in MOD-d. But from Lemma 4.7 

as $modules. Hence we deduce that if %‘” is an object of 
MOD(b I weak 9) (resp. of MOD(Q I9)), then w@, (A@, ,!8) is an 
object of MOD(g I weak A) (resp. of MOD(g I A)). 

We conclude from the above paragraphs that: 

THEOREM 5.5. The restrictions of the additivefunctors HOM,(A Q,& 99, . ) 
and . Q& (A Q& 99) form an equivalence 

MOD(9 ( weak &!) z MOD(b ) weak 9). 

Zf .A is offinite type (or small) then the restrictions of those functors form 
an equivalence 

MOD(a I A) z MOD(b ( 9). 
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