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Abstract

We study the general partitioning problem and the discrepancy problem in dense hypergraphs.
Using the regularity lemma (Szemer+edi, Problemes Combinatories et Theorie des Graphes (1978),
pp. 399–402) and its algorithmic version proved in Czygrinow and R2odl (SIAM J. Comput., to
appear), we give polynomial-time approximation schemes for the general partitioning problem
and for the discrepancy problem. ? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

For some NP-complete problems good approximation algorithms were developed
for the dense instances of the problems. A typical example is the Max-Cut problem
in which one tries to partition a vertex set of a graph into two subsets in such a way
that the number of edges that have the endpoints in di=erent sets is maximized. The
Max-Cut problem is known to be NP-complete [12] and, moreover, hardness results for
the corresponding approximation problem have been recently proved [3]. In contrast to
the diAculty of the general case, for the dense instances of the problem (graph (V; E)
has at least c|V |2 edges for some positive constant c) polynomial-time approximation
schemes were developed. Arora et al. [2] used the sampling method to design an
approximation algorithm that Bnds in O(|V |O(1=�2)) time a cut of value which is within
1−� factor of the optimal. Fernandez de la Vega [7] presented a O(21=�2+o(1)) algorithm
which Bnds a cut of value within 1 − � factor of the optimal. Using a version of the
regularity lemma Frieze and Kannan [10] gave an algorithm which Bnds in O(n2:376)
time, a cut with value which is within 1−� of the optimal. Other partitioning problems
were also considered in [10]. In addition, both sampling method and a version of
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regularity combined with sampling lead to fast randomized algorithms [10,11]. It should
be noted then in most of the applications of the regularity lemma a constant hidden
in big O depends on � and is enormous. However, version proposed by Frieze and
Kannan has constant which is relatively small. Many of the problems for which the
algorithmic version of the regularity lemma was successfully applied have interesting
generalizations to hypergraphs. The situation in hypergraphs is however much more
complicated and the obvious generalization of the concept of graph regularity (weak
regularity) does not always lead to the extensions of applications for graphs. Therefore,
di=erent approaches to measure the regularity of hypergraphs were developed (strong
regularity) [8,9].
We should also mention that the original proof of Szemer+edi [14] was not construc-

tive, in a sense that it did not provide a polynomial-time algorithm that would Bnd a
desired partition. The algorithmic version of graph regularity lemma was given by Alon
et al. in [1] and was applied to various problems [1,6,4,10,13] The algorithm from [1]
is based on the characterization of regularity which roughly states that a pair of sets is
�-regular with density d if and only if “most” of the vertices have degree around dn
and “most” of the pairs of vertices have co-degree around d2n. This characterization
does not have a natural generalization to hypergraphs, the algorithmic version of the
weak regularity lemma for hypergraphs was however proved recently in [5] (see also
[11]).
In this paper, we will be interested in applications of the algorithmic version of

hypergraph regularity lemma. We will discuss two applications, Brst we will concentrate
on the general partitioning problem and then we will discuss the discrepancy problem.
Let us start with deBnitions and notation.
An l-uniform hypergraph is a pair H = (V; E) where V is a nonempty Bnite set of

vertices and E is a set of l-element subsets of V called edges. We will use [k] =
{1; : : : ; k}.

De�nition 1. Let V1; V2; : : : ; Vk be pairwise disjoint nonempty subsets of the vertex set
V . An edge e ∈ E is called crossing in V1; V2; : : : ; Vk if for every i ∈ [k], |e ∩ Vi|61.
The number of crossing edges in V1; V2; : : : ; Vk will be denoted by e(V1; V2; : : : ; Vk).

For an l-uniform hypergraph H = (V; E), we will be interested in Bnding a parti-
tion of V into k (where k¿l) nonempty sets that maximizes the number of crossing
hyperedges.
For a partition V1 ∪ V2 ∪ · · · ∪ Vk of V deBne

f(V1; V2; : : : ; Vk) = |{e ∈ H : |e ∩ Vi|61; i = 1; : : : ; k}| (1)

and let

Qf(H) = maxf(V1; V2; : : : ; Vk); (2)

where the maximum is taken over all partitions of V into k nonempty sets (k is
Bxed and independent of the size of H). Finding the value of Qf(H) is NP-complete
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as even in the case l = k = 2, we get the well-studied Max-Cut problem. Using the
regularity lemma, we will device an approximation algorithm which Bnds a partition
V1 ∪ V2 ∪ · · · ∪ Vk , the value of which is within �nl of Qf(H).

Theorem 2. For l and k¿l there is an algorithm which for every l-uniform hyper-
graph H = (V; E) with |V | = n and every 0¡�¡ 1 2nds in O(n2l−1 log2 n) time a
partition V1; : : : ; Vk of V such that

f(V1; V2; : : : ; Vk)¿ Qf(H)− �nl:
The algorithm of Theorem 2 can be used to approximate Qf(H) in case when the

number of edges in H is at least cnl for some positive constant c.
Our second application concerns the discrepancy of a coloring of l-element subsets

of [n]. Let � : ( [n]l ) → {−1;+1} be a {−1;+1}-coloring of l-element subsets of [n].
DeBne the discrepancy of a set S ⊂ [n] as

d(S) =

∣∣∣∣∣
∑
e⊂ S

�(e)

∣∣∣∣∣ ; (3)

where the sum is taken over all e ∈ ( [n]l ) which are contained in S and the discrepancy
of the coloring �

disc(�) = max
S
d(S): (4)

Our problem will be to Bnd a set S∗ ⊂ [n] that maximizes the value of d. Using
the algorithmic version of the regularity lemma for hypergraphs, we will show the
following hypergraph analog of the result in [4].

Theorem 3. For every l there is an algorithm which for a coloring of the l-element
subsets of [n]; �: ( [n]l )→ {−1;+1} and 0¡�¡ 1 2nds in O(n2l−1 log2 n) time a set
S∗ ⊂ [n] such that

d(S∗)¿disc(�)− �nl:
Clearly, the algorithm of Theorem 3 will give meaningful results only if disc(�)¿cnl

for some positive constant c. If in addition c is known in advance, the algorithm can
be easily modiBed to a polynomial-time approximation scheme.

2. Preliminaries

In this section, we will introduce the necessary notation and we will formulate the
regularity lemma. Let H = (V; E) be an l-uniform hypergraph.
For an l-tuple of pairwise disjoint nonempty sets V1; V2; : : : ; Vl, we deBne the density

of (V1; V2; : : : ; Vl) as

d(V1; V2; : : : ; Vl) =
e(V1; V2; : : : ; Vl)
|V1||V2| · · · |Vl| :
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An l-tuple (V1; V2; : : : ; Vl) is called �-regular if for every V ′
i ⊂Vi with |V ′

i |¿�|Vi|,
where i = 1; : : : ; l,

|d(V ′
1 ; V

′
2 ; : : : ; V

′
l )− d(V1; V2; : : : ; Vl)|6�:

De�nition 4. A partition V0 ∪ V1 ∪ · · · ∪ Vt of vertex set is called �-regular if the
following conditions are satisBed.
1. |V0|6�|V |.
2. For every i; j ∈ [t], |Vi|= |Vj|.
3. All but at most �tl of l-tuples (Vi1 ; : : : ; Vil) (i1; : : : ; il ∈ [t]) are �-regular.

The powerful lemma of Szemer+edi [12] states that for every 0¡�¡ 1 every hyper-
graph which is large enough admits an �-regular partition into a constant number of
classes.

Lemma 5. For every � ∈ (0; 1) and every positive integers l and m there exist two
integers N =N (�; m; l) and M =M (�; m; l) such that every l-uniform hypergraph with
at least N vertices admits an �-regular partition V0 ∪ V1 ∪ · · · ∪ Vt with m6t6M .

It is essential for our algorithms (as well as for most of other applications of the
regularity lemma) that the number of partition classes t + 1 depends on � but not on
the size of the hypergraph. Alon et al. [1] gave a O(|V |2:376) algorithm which Bnds
an �-regular partition of graphs, Czygrinow and R2odl [5] gave a O(|V |2l−1 log2 |V |)
algorithm that Bnds an �-regular partition of an l-uniform hypergraph. The result from
[5] can be stated as follows.

Lemma 6. For every l; m; and � there exist N; M and an algorithm which for any
l-uniform hypergraph H = (V; E) with |V | = n¿N 2nds in O(n2l−1 log2 n) time an
�-regular partition V0 ∪ V1 ∪ · · · ∪ Vt with m6t6M .

We will use the algorithmic version of the lemma in both our approximation algo-
rithms.

3. The general partitioning problem

In this section, we prove Theorem 2. Let H = (V; E) be an l-uniform hypergraph.
Before the formal description let us give an idea of the algorithm. The algorithm will
proceed in two steps. In the Brst step, it Bnds an �-regular partition U0 ∪U1 ∪ · · · ∪Ut
of the hypergraph. In the second step, it checks exhaustively all partitions into k sets
which are the unions of Ui’s and chooses one that maximizes a function f∗ which is
an “approximation” of f.
It will be convenient to assume that we are searching for a partition with at most k

sets rather than exactly k. In case, a partition with less than k classes is found, one can
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increase the number of classes to k (arbitrarily) without loosing any of the crossing
edges.

Algorithm 1.
1. Set � = �=2(k + 4). Find an �-regular partition U0 ∪ U1 ∪ · · · ∪ Ut of H with
t¿max{1=�; k}.

2. Check all partitions V1 ∪V2 ∪ · · · ∪Vk that satisfy the following property: for every
j = 0; : : : ; t there is exactly one i ∈ [k] such that Uj ⊂Vi. Choose within these
partitions a partition V1 ∪ V2 ∪ · · · ∪ Vk that maximizes
f∗(V1; : : : ; Vk)=

∑
16i1¡···¡il6k

∑
16j1¡···¡jl6t

d(Uj1 ; : : : ; Ujl)|Vi1 ∩ Uj1 | · · · |Vil ∩ Ujl |:

Note that in the second step we check less than kt partitions, where both k and t
are constants independent of n. Thus, the complexity of the algorithm is determined
by the Brst step and is O(n2l−1 log2 n).
First, we will show that f∗ is maximized for partitions considered in the second

step of the algorithm.

Fact 7. For every partition V1 ∪ · · · ∪ Vk and for every j ∈ [t] there exists i ∈ [k]
such that

f∗(V1; : : : ; Vk)6f∗(V1\Uj; : : : ; Vi−1\Uj; Vi ∪ Uj; Vi+1\Uj; : : : ; Vk\Uj):

Proof. By deBnition,

f∗(V1; : : : ; Vk)=
∑

16i1¡···¡il6k

∑
16j1¡···¡jl6t

d(Uj1 ; : : : ; Ujl)|Vi1∩Uj1 | · · · |Vil∩Ujl |:

(5)

Divide the summation on the right-hand side of (5) into two sums.

f∗(V1; : : : ; Vk) = f∗
1 (V1; : : : ; Vk) + f

∗
2 (V1; : : : ; Vk) (6)

where f∗
1 and f

∗
2 are deBned as

f∗
1 (V1; : : : ; Vk) =

k∑
i=1

∑
d(Uj; Uj1 ; : : : ; Ujl−1 )|Vi∩Uj||Vi1∩Uj1 | · · · |Vil−1∩Ujl−1 |;

(7)

where the second sum is taken over all (i1; : : : ; il−1) such that 16i1¡ · · ·¡il−16k
with i� �= i and all (j1; : : : ; jl−1) such that 16j1¡ · · ·¡jl−16t with j� �= j.

f∗
2 (V1; : : : ; Vk)

=
∑

16i1¡···¡il6k

∑
16j1¡···¡jl6t; j� �=j

d(Uj1 ; : : : ; Ujl)|Vi1 ∩ Uj1 | · · · |Vil ∩ Ujl |: (8)
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Then (7) can be written as

f∗
1 (V1; : : : ; Vk)=

k∑
i=1

|Vi∩Uj|
∑

d(Uj; Uj1 ; : : : ; Ujl−1 )|Vi1∩Uj1 | · · · |Vil−1∩Ujl−1 |:
(9)

Since
∑k

i=1 |Vi ∩ Uj|= |Uj| there exists i ∈ [k] such that
f∗
1 (V1; : : : ; Vk)6 |Uj|

∑
16i1¡···¡il−16k; i� �=i

∑
16j1¡···¡jl−16t; j� �=j

d(Uj; Uj1 ; : : : ; Ujl−1 )

|Vi1∩Uj1 | · · · |Vil−1∩Ujl−1 |; (10)

and the right-hand side of (10) is equal to f∗
1 (V1\Uj; : : : ; Vi−1\Uj; Vi ∪ Uj;

Vi+1\Uj; : : : ; Vk\Uj). Since the right-hand side (8) does not involve Uj at all, we
have

f∗
2 (V1; : : : ; Vk) = f

∗
2 (V1\Uj; : : : ; Vi−1\Uj; Vi ∪ Uj; Vi+1\Uj; : : : ; Vk\Uj):

Therefore, by (5),

f∗(V1; : : : ; Vk)6f∗(V1\Uj; : : : ; Vi−1\Uj; Vi ∪ Uj; Vi+1\Uj; : : : ; Vk\Uj):

In our next lemma, we will show that f∗(V1; : : : ; Vk) is a “good” approximation of
f(V1; : : : ; Vk).

Lemma 8. For every partition V1 ∪ V2 ∪ · · · ∪ Vk of V; we have

f(V1; : : : ; Vk)6f∗(V1; : : : ; Vk) + �(4 + k)nl:

Proof. Let F be the set of crossing edges in V1 ∪ V2 ∪ · · · ∪ Vk , that is
F = {e ∈ E: |e ∩ Vi|61; i = 1; : : : ; k} (11)

To show that f∗ is an �-approximation of f we will use a Bve step process. In
each step, we deBne the set Fi and fi = |{e ∈ Fi}| and show that fi is a “good”
approximation of fi−1 (with f0 = f).
Let F1 be the subset of F of the edges that are crossing in U1; U2; : : : ; Ut and let

f1(V1; : : : ; Vk) = |F1|.

Fact 9. f(V1; : : : ; Vk)6f1(V1; : : : ; Vk) + �nl.

Proof. Clearly, the number of edges that are non-crossing in U1; : : : ; Ut is at most
t · tl−2(n=t)l6nl=t6�nl.

Let F2⊂F1 be the set of the edges that are not adjacent to the exceptional class U0
and let f2(V1; : : : ; Vk) = |{e ∈ F2}|.

Fact 10. f1(V1; : : : ; Vk)6f2(V1; : : : ; Vk) + �nl:
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Proof. The total number of edges that are adjacent to U0 is at most |U0|nl−16�nl.

Let F3⊂F2 be the set of edges that are the crossing edges of �-regular l-tuples and
let f3(V1; : : : ; Vk) = |{e ∈ F3}|.

Fact 11. f2(V1; : : : ; Vk)6f3(V1; : : : ; Vk) + �nl.

Proof. Indeed, the number of edges that occur in �-irregular l-tuples is at most
�tl(n=t)l6�nl, as we have at most �tl irregular l-tuples.

Let R be the set of (j1; : : : ; jl) which are such that (Uj1 ; : : : ; Ujl) is �-regular and
16j1¡ · · ·¡jl6t. Note that

f3(V1; : : : ; Vk) =
∑

16i1¡···¡il6k

∑
( j1 ;:::; jl)∈R

e(Vi1 ∩ Uj1 ; : : : ; Vil ∩ Ujl): (12)

In the next fact, we exclude the edges that are adjacent to “small intersections”, that is
adjacent to Vi�∩Uj� such that |Vi�∩Uj� |¡�|Uj� |. Let F4={e ∈ F3: ∀i�;j�(e∩(Vi�∩Uj�) �=
∅ → |Vi� ∩ Uj� |¿�|Uj� |)} and f4(V1; : : : ; Vk) = |{e ∈ F4}|.

Fact 12. f3(V1; : : : ; Vk)6f4(V1; : : : ; Vk) + �knl.

Proof. If |Vi� ∩ Uj� |¡�|Uj�|6�n=t then the number of crossing edges adjacent to
Vi� ∩ Uj� is at most |Vi� ∩ Uj� |nl−16�nl=t. Since we have t · k intersections Vi� ∩ Uj�
the number of edges e ∈ F3\F4 is at most t · k · �(nl=t) = �knl.

In the next fact, we will approximate f4(V1; : : : ; Vk) with f∗(V1; : : : ; Vk).

Fact 13. f4(V1; : : : ; Vk)6f∗(V1; : : : ; Vk) + �nl.

Proof. Let (Uj1 ; : : : ; Ujl) be an �-regular l-tuple. If for (Vi1 ; : : : ; Vil) we have

|Uj� ∩ Vi� |¿�|Uj� | (13)

then by the �-regularity,

e(Vi1 ∩ Uj1 ; : : : ; Vil ∩ Ujl) = d(Vi1 ∩ Uj1 ; : : : ; Vil ∩ Ujl)|Vi1 ∩ Uj1 | · · · |Vil ∩ Ujl |

6 (d(Uj1 ; : : : ; Ujl) + �)|Vi1 ∩ Uj1 | · · · |Vil ∩ Ujl |:
Thus by (12) and the fact that for the terms in f4(V1; : : : ; Vk) condition (13) is always
satisBed, we have

f4(V1; : : : ; Vk)

6
∑∑

d(Uj1 ; : : : ; Ujl)|Vi1 ∩ Uj1 | · · · |Vil ∩ Ujl |

+�
∑∑

|Vi1 ∩ Uj1 | · · · |Vil ∩ Ujl |
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6
∑

16i1¡···¡il6k

∑
16j1¡···¡jl6t

d(Uj1 ; : : : ; Ujl)|Vi1 ∩ Uj1 | · · · |Vil ∩ Ujl |+ �nl

=f∗(V1; : : : ; Vk) + �nl:

Combining Facts 9–13 gives

f(V1; : : : ; Vk)6f∗(V1; : : : ; Vk) + �(4 + k)nl:

Similarly, one can show the following lemma.

Lemma 14. For every partition V1 ∪ V2 ∪ · · · ∪ Vk
f∗(V1; : : : ; Vk)6f(V1; : : : ; Vk) + �(4 + k)nl:

Proof of Theorem 2. Let QV 1 ∪ · · · ∪ QV k be an optimal partition, that is

Qf(H) = f( QV 1; : : : ; QV k);

and let V1 ∪ · · · ∪ Vk be the partition found by Algorithm 1. Then by Lemma 8

f( QV 1; : : : ; QV k)6f∗( QV 1; : : : ; QV k) + �(4 + k)nl: (14)

Using Fact 7, we have

f∗( QV 1; : : : ; QV k)6f∗(V1; : : : ; Vk) (15)

and by Lemma 14

f∗(V1; : : : ; Vk)6f(V1; : : : ; Vk) + �(4 + k)nl: (16)

Combining (14) with (15) and (16) gives

f( QV 1; : : : ; QV k)6f(V1; : : : ; Vk) + 2�(4 + k)nl:

Since �= �=(2(4 + k)), we have

f(V1; : : : ; Vk)¿ Qf(H)− �nl:

4. Discrepancy

In this section, we consider the algorithmic approach to the discrepancy problem
for hypergraphs. Our main aim is to prove Theorem 3, that is, we want to present an
algorithm which for every 0¡�¡ 1 Bnds S∗ such that

d(S∗)¿disc(�)− �nl: (17)

Proof of Theorem 3. Let us deBne the following hypergraphs.

H1 = ([n]; �−1(1)); (18)
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H−1 = ([n]; �−1(−1)): (19)

Clearly �−1(−1) ∪ �−1(1) = ( [n]l ).
It will be convenient to introduce some additional notation. For S ⊂ [n] let h1(S) be

the number of e ∈ ( [n]l ), such that e⊂ S and �(e) = 1, and similarly let h−1(S) be the
number of e ∈ ( [n]l ) such that e⊂ S and �(e) =−1. Then

d(S) = |h1(S)− h−1(S)|: (20)

For an l-tuple of pairwise disjoint sets (V1; V2; : : : ; Vl) we will denote by h1(V1; : : : ; Vl)
the number of crossing edges e in V1; : : : ; Vl such that �(e) = 1, h−1(V1; : : : ; Vl) is
deBned in the analogous way. Similarly as in Section 3, the algorithm proceeds in
two steps. In the Brst step, it Bnds an �-regular partition (where � depends on �) of
H1 and in the second step it Bnds a set S∗ that maximizes an appropriately deBned
approximation of d.

Algorithm 2.
1. Set �= �=18. Find an �-regular partition U0; U1; : : : ; Ut with t¿1=� of H1.
2. Check all of the sets S =

⋃
j∈L Uj where L⊂ [t] and choose one that maximizes

d∗(S) =

∣∣∣∣∣∣
∑

16j1¡···¡jl6t
(2dj1 ;j2 ;:::;jl − 1)|S ∩ Uj1 ||S ∩ Uj2 | · · · |S ∩ Ujl |

∣∣∣∣∣∣ ;
where dj1 ;j2 ;:::;jl is the density of (Uj1 ; : : : ; Ujl) in H1.
Note that the complexity of the procedure is O(n2l−1log2 n) as in the second step,

we check 2t sets S and t is a constant which depends only on �. The proof of the
correctness of the algorithm will be divided into two steps. Similarly as in [4], we will
Brst establish a combinatorial fact which shows there is a set S∗ which is the union
of Ui’s and for which d∗(S∗) = maxS⊂ [n] d∗(S) and then we will show that d∗ is a
“good” approximation of d.

Fact 15. For any 16j6t; and set S ⊂ [n];
d∗(S)6max(d∗(S ∪ Uj); d∗(S\Uj)):

Proof. First assume that∑
16j1¡···¡jl6t

(2dj1 ;j2 ;:::;jl − 1)|S ∩ Uj1 ||S ∩ Uj2 | · · · |S ∩ Ujl |¿0: (21)

Then ∑
16j1¡···¡jl6t

(2dj1 ;j2 ;:::;jl − 1)|S ∩ Uj1 ||S ∩ Uj2 | · · · |S ∩ Ujl |= d∗1 + d∗2 ;

where

d∗1 =
∑

16j1¡···¡jl−16t; j� �=j
(2dj;j1 ;:::;jl−1 − 1)|S ∩ Uj||S ∩ Uj1 | · · · |S ∩ Ujl−1 | (22)
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and

d∗2 =
∑

16j1¡···¡jl6t; j� �=j
(2dj1 ;j2 ;:::;jl − 1)|S ∩ Uj1 ||S ∩ Uj2 | · · · |S ∩ Ujl |: (23)

Then

d∗1 = |S ∩ Uj|
∑

16j1¡···¡jl−16t; j� �=j
(2dj;j1 ;:::;jl−1 − 1)|S ∩ Uj1 | · · · |S ∩ Ujl−1 |: (24)

If ∑
16j1¡···¡jl−16t; j� �=j

(2dj;j1 ;:::;jl−1 − 1)|S ∩ Uj1 | · · · |S ∩ Ujl−1 |¿0

then

|S ∩ Uj|
∑

16j1¡···¡jl−16t; j� �=j
(2dj;j1 ;:::;jl−1 − 1)|S ∩ Uj1 | · · · |S ∩ Ujl−1 |

6|Uj|
∑

16j1¡···¡jl−16t; j� �=j
(2dj;j1 ;:::;jl−1 − 1)|S ∩ Uj1 | · · · |S ∩ Ujl−1 |:

In this case,

d∗(S)6d∗(S ∪ Uj): (25)

If ∑
16j1¡···¡jl−16t; j� �=j

(2dj;j1 ;:::;jl−1 − 1)|S ∩ Uj1 | · · · |S ∩ Ujl−1 |¡ 0;

then

|S ∩ Uj|
∑

16j1¡···¡jl−16t; j� �=j
(2dj;j1 ;:::;jl−1 − 1)|S ∩ Uj1 | · · · |S ∩ Ujl−1 |60; (26)

and so

d∗(S)6d∗(S\Uj): (27)

Combining (25) with (27) gives

d∗(S)6max(d∗(S ∪ Uj); d∗(S\U )):
In case, the term on the right-hand side of (21) is negative the proof can be repeated
with minor changes.

We will next show that d∗ is a “good” approximation of d.

Lemma 16. For every set S ⊂ [n]; we have

|d(S)− d∗(S)|69�nl:
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Proof. Let us Brst estimate the number of edges incident to U0 and the number of
edges that are not crossing in U1; : : : ; Ut . Since d(S) = |h1(S)− h−1(S)|, we have∣∣∣∣∣∣d(S)−

∣∣∣∣∣∣
∑

16j1¡j2¡···¡jl6t
(h1(S ∩ Uj1 ; : : : ; S ∩ Ujl)− h−1(S ∩ Uj1 ; : : : ; S ∩ Ujl))

∣∣∣∣∣∣
∣∣∣∣∣∣

6|U0|nl−1 + t
(

n
t

c2

)
nl−2: (28)

Since 1=t6� and |U0|6�n, we can further estimate the right-hand side of (28)∣∣∣∣∣∣d(S)−
∣∣∣∣∣∣

∑
16j1¡j2¡···¡jl6t

(h1(S ∩ Uj1 ; : : : ; S ∩ Ujl)− h−1(S ∩ Uj1 ; : : : ; S ∩ Ujl))
∣∣∣∣∣∣
∣∣∣∣∣∣

6
3�
2
nl: (29)

Now, we will disregard edges in irregular l-tuples and edges adjacent to “small inter-
sections”. We have

|h1(S ∩ Uj1 ; : : : ; S ∩ Ujl)− h−1(S ∩ Uj1 ; : : : ; S ∩ Ujl)|6|S ∩ Uj1 | · · · |S ∩ Ujl |;

which in case when for some j�, |S ∩ Uj� |6�|Uj� | gives

|h1(S ∩ Uj1 ; : : : ; S ∩ Ujl)− h−1(S ∩ Uj1 ; : : : ; S ∩ Ujl)|6�
nl

tl
: (30)

Since we have at most �tl, �-irregular l-tuples (Uj1 ; : : : ; Ujl), the right-hand side of (29)
can be further estimated as follows.∣∣∣d(S)− ∣∣∣∑ (h1(S ∩ Uj1 ; : : : ; S ∩ Ujl)− h−1(S ∩ Uj1 ; : : : ; S ∩ Ujl))

∣∣∣∣∣∣
6�tl

nl

tl
+ tl

�nl

tl
+
3�
2
nl; (31)

where the summation is taken over set R of all l-sets {j1; : : : ; jl} such that
1. (Uj1 ; : : : ; Ujl) is �-regular, and
2. |S ∩ Uj1 |¿�|Uj1 |; : : : ; |S ∩ Ujl |¿�|Ujl |.
Thus, we have∣∣∣∣∣d(S)−

∣∣∣∣∣
∑
R

(h1(S ∩ Uj1 ; : : : ; S ∩ Ujl)− h−1(S ∩ Uj1 ; : : : ; S ∩ Ujl))
∣∣∣∣∣
∣∣∣∣∣67�

2
nl: (32)

In the similar way, we can show that∣∣∣∣∣d∗(S)−
∑
R

(2dj1 ;:::;jl − 1)|S ∩ Uj1 | · · · |S ∩ Ujl |
∣∣∣∣∣67�

2
nl: (33)
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Note that if (Uj1 ; : : : ; Ujl) is �-regular in H1 with density dj1 ;:::;jl then it is also �-regular
in H−1 with density 1− dj1 ;:::;jl . Thus,

h1(S ∩ Uj1 ; : : : ; S ∩ Ujl)− h−1(S ∩ Uj1 ; : : : ; S ∩ Ujl)
=d(S ∩ Uj1 ; : : : ; S ∩ Ujl)|S ∩ Uj1 | · · · |S ∩ Ujl |
− (1− d(S ∩ Uj1 ; : : : ; S ∩ Ujl))|S ∩ Uj1 | · · · |S ∩ Ujl |

=(2d(S ∩ Uj1 ; : : : ; S ∩ Ujl)− 1)|S ∩ Uj1 | · · · |S ∩ Ujl |:
In case {j1; : : : ; jl} ∈ R,

|d(S ∩ Uj1 ; : : : ; S ∩ Ujl)− dj1 ;:::;jl |6�:
Therefore,∣∣∣∣∣

∣∣∣∣∣
∑
R

(2d(S ∩ Uj1 ; : : : ; S ∩ Ujl)− 1)|S ∩ Uj1 | · · · |S ∩ Ujl |
∣∣∣∣∣

−
∣∣∣∣∣
∑
R

(2dj1 ;:::;jl − 1)|S ∩ Uj1 | · · · |S ∩ Ujl |
∣∣∣∣∣
∣∣∣∣∣

6

∣∣∣∣∣
∑
R

2(d(S ∩ Uj1 ; : : : ; S ∩ Ujl)− dj1 ;:::;jl)|S ∩ Uj1 | · · · |S ∩ Ujl |
∣∣∣∣∣

62�tl
(n
t

)l
= 2�nl: (34)

Combining (32), (33), with (34) yields

|d(S)− d∗(S)|69�nl:

To Bnish the proof of Theorem 3, we observe that if S∗ is the set found by Algorithm
2 then by Fact 15; d∗(S∗)¿d∗(S) for every set S ⊂ [n]. We denote by QS an optimal
set, that is

d( QS) = disc(�): (35)

Then

d(S∗)¿d∗(S∗)− |d∗(S∗)− d(S∗)|;
which by Lemma 16 gives

d(S∗)¿d∗(S∗)− 9�nl: (36)

Using Fact 15; we have

d(S∗)¿d∗( QS)− 9�nl; (37)

and so by applying Lemma 16 again, we get

d(S∗)¿d( QS)− 18�nl = disc(�)− �nl:
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