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Abstract Previously, we created a paclitaxel-sensitive strain of
Saccharomyces cerevisiae by mutating five amino acid residues
in b-tubulin in a strain that has a decreased level of the ABC mul-
tidrug transporters. We have used site-directed mutagenesis to
examine the relative importance of the five residues in determin-
ing sensitivity of this strain to paclitaxel. We found that the
change at position 19 from K (brain b-tubulin) to A (yeast b-
tubulin) and at position 227 from H (brain b-tubulin) to N (yeast
b-tubulin) had no effect on the activity of paclitaxel. On the other
hand, the changes V23T, D26G and F270Y, drastically reduced
sensitivity of AD1-8-tax to paclitaxel. Molecular modeling and
computational studies were used to explain the results.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Paclitaxel (Taxol) (Fig. 1) is an anti-mitotic drug that has

been shown to be effective against a variety of tumors, includ-

ing breast, ovarian, lung and head and neck cancers [1,2].

It binds to the b-subunit of tubulin in microtubules, stabilizes

the microtubules against depolymerization and decreases the

dynamic nature of these polymers, leading to mitotic arrest

and apoptosis [3]. Although paclitaxel is a successful anti-tu-

mor agent, it does suffer from delivery problems due to poor

aqueous solubility and to problems associated with the devel-

opment of resistance. Because of these problems, there is inter-

est in developing analogues that can overcome resistance due

to the overexpression of multidrug transporters and analogues

with more favorable aqueous solubility. The rational design of

new analogues requires that the binding interactions between

the drug molecule and tubulin be known in detail.

An electron microscopic crystal structure of tubulin at a

3.5 Å resolution has been obtained from a polymer induced

to form by zinc ions and stabilized by paclitaxel [4,5].

Although this polymer consists of flat sheets of protofilaments

rather than true microtubules, information obtained from this

structure has provided valuable insights into the nature of the
*Corresponding author. Fax: +1 785 864 5321.
E-mail address: himes@ku.edu (R.H. Himes).

0014-5793/$34.00 � 2008 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2008.06.013
amino acid residues in b-tubulin that are in close proximity to

the taxane molecule. This information, together with modeling

studies and data from experiments using various physical tech-

niques, have led to models of the conformation of bound pac-

litaxel as well as to speculation pertaining to the interaction of

specific amino acids in b-tubulin with paclitaxel [6–9].

Tubulin from the budding yeast Saccharomyces cerevisiae

does not bind paclitaxel [10,11]. Upon comparing the amino

acid sequences of mammalian brain and S. cerevisiae b-tubulin

we observed five differences at sites in b-tubulin purported to

be important in paclitaxel binding. Changing these residues

in yeast b-tubulin to those that occur in mammalian brain

b-tubulin resulted in a mutated yeast tubulin that bound pac-

litaxel [12]. However, the strain carrying the mutated b-tubulin

is not sensitive to paclitaxel, most likely because of the pres-

ence of multiple ABC drug transporters in the yeast plasma

membrane. Subsequently, we introduced the mutated b-tubu-

lin gene into a yeast strain that has diminished multidrug

transporter activity and created a strain, AD1-8-tax, which is

sensitive to paclitaxel [13]. In order to determine the relative

importance of the five amino acid residues to paclitaxel bind-

ing, we have now created new strains that contain different

combinations of the five mutations, A19K, T23V, G26D,

N227H, and Y270F. We tested the sensitivity of these strains

to paclitaxel and found that the N227H and A19K mutations

were not necessary to maintain sensitivity to paclitaxel. On the

other hand, the T23V, G26D, and Y270F mutations were

essential for maximum activity. Molecular modeling and com-

putational studies afforded explanations for these findings.
2. Materials and methods

2.1. Construction of mutant strains
Mutations were introduced into strain AD 12345678 (AD1-8) [14]

having the genotype MATa, PDR1-3, ura3, his1, Dyor1::hisG,
Dsnq2::hisG, Dpdr5::hisG, Dpdr10::hisG, Dpdr11::hisG, Dycf1::hisG,
Dpdr3::hisG, Dpdr15::hisG. Two plasmids, pMG1, which contains the
S. cerevisiae TUB2 gene with a His6 tag at the C-terminus [15], and
pMG1-tax, which contains the tub2-His6-A19K-T23V-G26D-N227H-
Y270F gene [12], were used to make the other strains used in this work.
Appropriate restriction enzymes were used to cut the plasmids, the
appropriate fragments were purified and ligated to a PCR product with
the desired mutations producing new plasmids. These plasmids were
amplified in Escherichia coli XL1-Blue. A SacI/SphI fragment of each
plasmid containing the tub2 gene of interest as well as the URA3 gene,
was used to transform AD1-8 by homologous recombination using the
lithium acetate method [16] as described previously [15]. Transfor-
mants were selected in S.D. medium (2% glucose, 0.67% yeast nitrogen
blished by Elsevier B.V. All rights reserved.



Fig. 1. Structure of paclitaxel.
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base without amino acids, and 0.001% histidine). Mutations were ver-
ified by DNA sequencing. Yeast strains were grown on YPD medium
(2% glucose, 1% yeast extract, and 2% peptone) at 30 �C.

2.2. Proliferation assays
The proliferation assays were performed in liquid medium in 96-well

plates. Each well contained 100 ll of YPD supplemented with 100 U/
ml of penicillin, 100 lg/ml of streptomycin, and paclitaxel at concen-
trations ranging from 0 to 25 lM. In other experiments benomyl was
present at concentrations of 0 to 80 lM. The wells were inoculated
with 2000 cells in a 20 ll volume. The plates were placed in a humid-
ified chamber on a shaker and incubated at 30 �C for 24–27 h. The
plates were then agitated on a vortex plate shaker to ensure yeast cells
were completely suspended in solution and the optical density read at
620 nm in a 96-well plate reader (Bio-tek Instruments Inc., Winooski,
VT). Experiments were done in triplicate.

2.3. Molecular modeling
To help explain the different effects of the b-tubulin mutations on

paclitaxel activity we modeled the T-taxol conformation [6] into the
binding sites of the mutated proteins. We assumed that the basic con-
formation for paclitaxel would be largely conserved relative to the pos-
ited T-taxol structure. Thus, we constructed our models by projecting
T-taxol onto the taxol-stabilized bovine tubulin crystal structure [4],
and obtained preliminary models of the relevant complexes after
applying the pertinent modifications to the original crystal structure.
To allow for relaxation effects specific to each complex, the ligand plus
all residues within 8.0 Å of the ligand were permitted to relax for 100
molecular mechanics steps, with the remainder of the tubulin structure
held fixed. The position of paclitaxel was further optimized by allowing
it to relax to molecular mechanics convergence with the entire receptor
held fixed.

All of the above simulations were performed via SYBYL (SYBYL
7.3, the Tripos Associates, St. Louis, MO, 2007) with the Tripos force
field [17] and Gasteiger–Marsili electrostatics [18] within a non-bond-
ing threshold of 8.0 Å. All other energetic and convergence parameters
were left at default values. Free energies of paclitaxel binding to tubu-
lin for each of the mutants and wild-type strains were computed using
the PMF scoring function [19].
Table 1
Growth inhibition by paclitaxel

Strain Percenta ID50 (lM)

BBBBB 97 6.3
YYYYY 0 –
YBBBB 92 4.5
BYBBB 0 –
BBYBB 0 –
BBBYB 100 4.5
BBBBY 0 –

aAt 25 lM paclitaxel. Growth was for 23–27 h.
3. Results and discussion

3.1. Effect of mutations on doubling time and benomyl sensitivity

In order to determine the relative contributions of the five

mutations to paclitaxel binding we have now constructed

new strains with different combinations of the five mutations

(K19A, V23T, D26G, H227N, and F270Y). For simplicity,

we refer to the five positions as either B for brain or Y for

yeast. For example, strain BBBBB would have amino acids

found in brain b-tubulin at the five positions, whereas strain

YYYYY would have amino acids found in yeast b-tubulin at
the five positions. To determine whether any of the combina-

tions of mutations had major effects on cellular microtubules

we determined the doubling times of the strains at 30 �C and

15 �C and the sensitivity to the microtubule destabilizing drug

benomyl. A change in microtubule stability would be expected

to alter the doubling time at 15 �C compared to the wild-type

since microtubules depolymerize at low temperatures. An

increase in microtubule stability would result in a larger ID50

value for benomyl while a decrease in stability would lower

the ID50. The doubling times ranged from 2.1 h to 2.4 h at

30 �C and 9.9 to 12.3 h at 15 �C. The ID50 values for benomyl

ranged from 20 lM to 30 lM. Thus, based on these criteria,

there was not a large difference in microtubule stability

amongst the mutant and wild-type strains.

3.2. Effect of mutations on cytotoxicity of paclitaxel

The sensitivity to paclitaxel was tested in a liquid assay

(Table 1). The drug was as potent against the BBBYB and

YBBBB strains as it was against strain BBBBB. The other

strains were not affected by paclitaxel up to a paclitaxel con-

centration of 25 lM. Limited solubility of paclitaxel precluded

the use of higher concentrations. These results indicate that

paclitaxel cytotoxicity is diminished substantially by mutations

at positions 23, 26, and 270. On the other hand, the K19A and

H227N mutations had no apparent effect on paclitaxel activity.

3.3. Molecular modeling

Several models have been proposed for the conformation of

the tubulin bound form of paclitaxel, but evidence appears to

support the so-called T-taxol conformation [6,20–23]. The ori-

ginal modeling of the T-taxol conformer in the binding site

showed close interactions of the CH2 groups of K19 and

D26 and the isopropyl side chain of V23 with the 3 0-benzamido

phenyl ring [6]. These results are consistent with photoaffinity

labeling studies with a paclitaxel analogue bearing an azido

group in the 3 0-benzamido ring that labeled the b-tubulin pep-

tide containing amino acids 1–31 [24]. F270 also plays a role in

paclitaxel binding. The side chain of this amino acid is part of

a hydrophobic basin that accommodates the baccatin III ring.

The phenyl ring of F270 is in van der Waals contact with the

methyl group of the C-4 acetate and the 3 0-phenyl group [6]. In

the T-taxol conformation, H227 plays a prominent role with

its imidazole ring positioned between the 2-benzoyl phenyl

and the 3 0-benzamido phenyl rings of paclitaxel [6].

Our current study was undertaken to dissect out the relative

contributions of the five residues (K19, V23, D26, H227, and

F270) to the effectiveness of paclitaxel in inhibiting the prolif-

eration of a yeast strain. The cytotoxicity results show that

K19 plays little or no role in paclitaxel activity. Modeling of



Fig. 3. Binding model comparison for paclitaxel binding to brain b-
tubulin and the corresponding H227N mutant. For the wild-type
complex, carbon atoms in the ligand and in His227 are rendered in
grey, while for the mutation the corresponding carbons are green. All
other atoms are rendered according to standard CPK coloring. Other
receptor features are indicated according to underlying secondary
structure as follows: magenta helices, yellow sheets, and cyan coils.

Table 2
Free energies of bindinga

Strain Free energy (kcal/mol)

BBBBB �75.4
YYYYY �21.1
YBBBB �70.5
BYBBB �75.6
BBYBB �66.5
BBBYB �85.6
BBBBY �34.2

aCalculated using the PMF method.
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the paclitaxel site (Fig. 2) places the side chain of this residue

far from paclitaxel (the closest K19 side chain atom is the b-

carbon and it is 8.5 Å from the center of the 3 0-benzamido

ring) and it also does not appear to be a key component of

any important intra-protein stabilizing features (salt bridges

or H-bonds). The decrease in paclitaxel sensitivity that oc-

curred in the V23T mutant is probably due to the loss of

van der Waals interaction between the valine side chain and

the benzamido phenyl ring. A D26G mutation would be ex-

pected to affect paclitaxel affinity because it would result in

the loss of modest van der Waals interaction between the benz-

amido phenyl ring and the b-carbon of the D26 side chain. The

importance of D26 to paclitaxel activity has also been demon-

strated in a study that showed that a D26E mutation in a tu-

mor cell line gave rise to paclitaxel resistance [25]. The

F270Y mutation also led to a large decrease in the cytotoxicity

of the taxane. F270 is in a hydrophobic pocket and is in close

proximity to the 3 0-phenyl ring (the p-carbon in the phenyl ring

approaches within 3.5 Å of the nearest F270 ring carbon). The

steric clash created by the added bulk of the OH group, to-

gether with its hydrophilic nature, undoubtedly explain the ef-

fect of the F270Y mutation. A F270V mutation has been

associated with cell resistance to paclitaxel and with a decrease

in the ability of paclitaxel to stimulate tubulin assembly [26].

The insensitivity of the strain with a H227N mutation to pac-

litaxel (Table 1) was surprising given the prominent role H227

plays in current models of the tubulin–paclitaxel complex.

Obviously a substitution of aspargine for histidine at position

227 is tolerated. Molecular modeling and computations dem-

onstrate that, although the van der Waals forces are weaker

between the asparagine side chain and the 3 0-benzamido ring

of paclitaxel than between the histidine side chain and the

benzamido ring, the asparagine side chain can form a H-bond

with the benzamido carbonyl (distance = 2.22 Å) (Fig. 3).

PMF binding free energies for paclitaxel complexed to wild-

type and each of the mutated tubulins are reported in Table

2. In general, the trend of the values is consistent with the cyto-

toxicity studies. BBBBB has a much higher negative free en-

ergy of binding than YYYYY. BBBYB and YBBBB have
Fig. 2. Binding mode for paclitaxel (CPK colored sticks) complexed
with its brain b-tubulin receptor (solvent accessible surface). Surface
coloring is as follows: red = O; blue = polar N; cyan = donatable H;
white = polar (but not donatable) H, C; yellow = non-polar H, C.
Residues subjected to mutation in this study are labeled, and their
surface extent is rendered with black dots.
values in the same region as BBBBB. BBBBY shows a large

drop in the negative value while BBYBB shows a smaller

change. Only BYBBB does not seem to fit the trend. This could

be a result of the fact that the PMF scoring function does not

explicitly account for desolvation effects. The side chains of

Val and Thr are similar in size and shape but in its predicted

conformation (but in the absence of paclitaxel) Thr can form

direct H-bonds to two water molecules that would have mini-

mal commensurate interaction with Val. Thus, the paclitaxel

binding event would incur a greater desolvation penalty in

the case of BYBBB than for the BBBBB receptor.

The creation of the various yeast strains carrying mutations

at five amino acid sites known to be important in paclitaxel

binding has provided us with a useful experimental tool with

which we can assess the relative importance of these five resi-

dues in paclitaxel binding. However, we are aware that muta-

tions can affect microtubule stability as well as paclitaxel

binding and that changing microtubule stability can affect sen-

sitivity of cells to anti-mitotic agents [26,27]. The lack of appre-

ciable effects on doubling times and benomyl sensitivity argues

against effects on microtubule stability. However, we plan to

follow up these studies with studies related to the effects of

the mutations on microtubule dynamics in vivo and in vitro.
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