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SUMMARY

Although genetically engineered mouse (GEM)
models are often used to evaluate cancer therapies,
extrapolation of such preclinical data to human can-
cer can be challenging. Here, we introduce an
approach that uses drug perturbation data from
GEM models to predict drug efficacy in human can-
cer. Network-based analysis of expression profiles
from in vivo treatment of GEM models identified
drugs and drug combinations that inhibit the activity
of FOXM1 and CENPF, which are master regulators
of prostate cancer malignancy. Validation of mouse
and human prostate cancer models confirmed the
specificity and synergy of a predicted drug combina-
tion to abrogate FOXM1/CENPF activity and inhibit
tumorigenicity. Network-based analysis of treatment
signatures from GEM models identified treatment-
responsive genes in human prostate cancer that
are potential biomarkers of patient response. More
generally, this approach allows systematic identifica-
tion of drugs that inhibit tumor dependencies,
thereby improving the utility of GEMmodels for prior-
itizing drugs for clinical evaluation.

INTRODUCTION

Recent large-scale genomic analyses have led to the identifica-

tion of ‘‘actionable’’ driver genes of specific cancers that are

therapeutically accessible, including oncogene and non-onco-

gene dependencies (Al-Lazikani et al., 2012; Garraway and

Lander, 2013; Luo et al., 2009; Rubio-Perez et al., 2015). How-

ever, the accurate and efficient identification of drugs and drug

combinations that inhibit such drivers within specific tumor con-

texts represents a major challenge, particularly for transcrip-
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tional regulators that, in general, are pharmacologically inacces-

sible. Genetically engineered mouse (GEM) models are well

suited to empower investigations of targeted inhibitors in the

context of the native tumor microenvironment in vivo (Abate-

Shen and Pandolfi, 2013; Politi and Pao, 2011; Sharpless and

Depinho, 2006). However, species differences with respect to tu-

mor histology, physiology, pharmacology, andmetabolism often

preclude direct extrapolation of preclinical findings from mouse

models to human cancer.

In the current study, we introduce an innovative regulatory-

network-based method that uses expression profiles from

drug-treated GEM models to predict drugs and drug combina-

tions that specifically inhibit the activity of established human

cancer dependencies. We focus this proof-of-concept study

on prostate cancer, a disease characterized by heterogeneity

of its causal mechanisms and range of disease outcomes

(Chang et al., 2014; Cooperberg et al., 2005; Roychowdhury

and Chinnaiyan, 2013; Shen and Abate-Shen, 2010). In partic-

ular, while most locally invasive prostate tumors are curable,

recurrent or aggressive tumors initially respond to androgen

deprivation therapy but ultimately relapse to castration-resistant

metastatic disease, which is nearly always fatal (Ryan and Tin-

dall, 2011; Scher and Sawyers, 2005). While treatment options

for castration-resistant metastatic prostate cancer have signifi-

cantly improved in recent years (Mukherji et al., 2014; Rathkopf

and Scher, 2013; Wong et al., 2014), none of the available treat-

ments are as yet curative.

We have recently generated genome-wide reverse-engi-

neered regulatory networks (henceforth ‘‘interactomes’’) for

both mouse and human prostate cancer (Aytes et al., 2014).

Interrogation of these interactomes identified FOXM1 and

CENPF as master regulators (i.e., key driver genes), which func-

tion synergistically to elicit synthetic lethality and are robust pre-

dictors of poor patient outcome (Aytes et al., 2014). Here, we

show that interrogation of in vivo drug perturbation signatures

from GEM models represents an effective strategy for system-

atic identification of specific drugs and drug combinations that
uthors
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Figure 1. Computational Prediction of Drugs that Inhibit FOXM1/CENPF Activity In Vivo

(A) Shown is the strategy for prediction of single drugs. Drug reversion scores were calculated based on the degree to which target genes that are activated (red)

by a master regulator (MR) are inhibited (blue) following drug treatment, and conversely, the degree to which target genes that are repressed (blue) by the MR are

activated (red) following drug treatment (see Supplemental Experimental Procedures).

(B) Heatmap representations of GSEA used to calculate drug reversion scores across a series of GEM models with a series of drugs, as indicated (see Sup-

plemental Experimental Procedures). GSEA were done using the mouse in vivo drug perturbation signatures as the reference and human or mouse FOXM1/

CENPF target genes inferred from their respective prostate cancer interactomes, as indicated, as the query gene set. Global reversion scores (GRSs) were

calculated for each drug by combining the individual NES for each GEM model using a metric based on the Stouffer integration formulation (see Supplemental

Experimental Procedures). Arrows point to the two drugs with the highest GRSs.

(C) Shown is the strategy for prediction of drug synergy. Pairwise combinations of data from individual drug treatments (as in A) were assessed to predict

drugs that effectively revert FOXM1/CENPF target genes when used in combination. Scenario 1 illustrates two drugs that inhibit (i.e., revert) many target

(legend continued on next page)
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inhibit the transcriptional activity of FOXM1/CENPF. Strikingly,

drug combinations that revert transcriptional activity of these

proteins are highly effective in abrogating tumorigenesis in vivo

and well correlated with patient outcome. We propose that this

computational method can be generalized for more effective uti-

lization of preclinical data from GEM models to predict optimal

drugs and drug combinations and thereby dramatically improve

the utilization of GEMmodels to prioritize compounds for clinical

investigation.

RESULTS

Systematic Inference of FOXM1/CENPF Inhibitors
In Vivo
The current methodology is predicated on our previous analyses

showing that expression of the target genes of a given master

regulator (MR) (its regulon) represents an effective reporter to

predict the activity of theMR for a given cancer phenotype (Aytes

et al., 2014; Carro et al., 2010; Chen et al., 2014). Here, we have

extended this concept to evaluate whether such regulon can be

used as a reporter to quantitatively measure the ability of a drug

or drug combination to inhibit the activity of the corresponding

MR. In general, reversion of MR activity would correspond to

the ability of a given drug to downregulate its activated target

genes and upregulate its repressed targets (Figure 1A). As a

proof of concept for this approach, we evaluated drugs for their

ability to inhibit the master regulator pair, FOXM1/CENPF, which

we have previously established to be a key synthetic lethal de-

pendency of prostate tumor malignancy (Aytes et al., 2014). In

particular, we tested whether candidate therapeutic agents

could be prioritized based on in vivo perturbation by assessing

their ability to ‘‘reverse’’ the FOXM1/CENPF regulon. We

focused on the activated shared targets of FOXM1/CENPF,

since the number of repressed targets is too few for analysis.

However, both activated and repressed targets may be used in

general.

To assess this strategy, we used a drug perturbation dataset

that includes drugs with known prostate cancer relevance,

such as those that inhibit the androgen receptor, or key signaling

pathways such as phosphatidylinositol 3-kinase (PI3K)/mTOR or

MAP kinase or standard chemotherapy (Aytes et al., 2014; see

Supplemental Experimental Procedures). In vivo drug perturba-

tion studies were performed using multiple GEM models repre-

sentative of advanced prostate cancer (Aytes et al., 2014; see

Supplemental Experimental Procedures) to avoid potential bias

introduced by any individual model. The in vivo drug perturbation

data were analyzed by gene set enrichment analysis (GSEA)

(Subramanian et al., 2005) to assess the inhibition (i.e., reversion)

of FOXM1/CENPF shared target genes; analyses were per-
genes, thereby resulting in strong reversion. Scenario 2 illustrates two other drug

reversion.

(D) Heatmap representation depicting global synergistic reversion scores (GSRS

FOXM1/CENPF human target genes. GSRSs were calculated by combining the s

Supplemental Experimental Procedures). Heatmap intensity (blue) represents th

highest combined GSRS.

(E) Heatmap showing the relative expression levels of FOXM1/CENPF target ge

shown are genes that are not reverted (i.e., non-responsive) to these drugs.

Figure S1 is related to Figure 1; computational predictions of GRSs and GSRSs
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formed separately for the mouse and human targets (Figure 1B).

Using GSEA, we obtained a normalized enrichment score (NES)

for each drug signature and each GEM model, which we define

as the reversion score (RSFOXM1/CENPF), to assess the com-

pound’s ability to inhibit FOXM1/CENPF activity in a specific

GEM model (Table S1). From these analyses, a global reversion

score (GRSFOXM1/CENPF) was assigned for each drug by inte-

grating each of the GEM-specific RSFOXM1/CENPF scores, using

a metric based on Stouffer’s integration formulation (Whitlock,

2005) (Figure 1B; Figure S1; Supplemental Experimental Proce-

dures). Thus, drugs that most effectively inhibit FOXM1/CENPF

activity are those having the most negative GRSFOXM1/CENPF.

Notably, FOXM1/CENPF target genes from either mouse or hu-

man yielded equivalent GRSFOXM1/CENPF (Figure 1B; Table S1),

indicating conservation of the predicted drug response between

mouse and human prostate cancer.

Among the individual drugs tested in the GEMmodels, the two

with the most significant negative GRSFOXM1/CENPF were rapa-

mycin and PD0325901. These drugs inhibit the PI3K/mTOR

and MAP kinase signaling pathways, respectively, which are

frequently dysregulated in advanced prostate cancer (Aytes

et al., 2013; Kinkade et al., 2008; Taylor et al., 2010). Specifically,

the GRSs for rapamycin wereGRSH =�13.9 (human targets) and

GRSM =�16.9 (mouse targets) and for PD0325901 were GRSH =

�8.1 andGRSM =�9.9 (Figure 1B; Table S1). In contrast to rapa-

mycin and PD0325901, other drugs including docetaxel, a stan-

dard-of-care chemotherapy for advanced prostate cancer

(Pienta and Smith, 2005), were not predicted to be effective for

inhibiting the FOXM1/CENPF regulon (GRSH = 5.8 and GRSM =

5.6; Figure 1B; Figure S1).

Systematic Inference of Drug Synergy
Next, we tested whether this computational approach could be

extended to infer drug combinations that cooperate to inhibit

MR activity, again using FOXM1 and CENPF as a proof of

concept. These analyses are based on the hypothesis that effec-

tive drug combinations should induce a more significant reversal

of MR-specific regulon expression, compared to the individual

drugs (Figure 1C; Supplemental Experimental Procedures).

Notably, such logic can be implemented based on individual

drug signatures, without requiring in vivo signatures from drug

combinations, which vastly increases the experimental effi-

ciency for prioritizing drug combinations based on in vivo pre-

clinical data.

To estimate a global synergistic reversion score (GSRS) for

each drug pair, we assessed the predicted reversion score for

all possible combinations of two drug treatments across each

of the GEM models. First, the synergistic reversion score (SRS)

was calculated for each GEM model as an harmonic mean
s that inhibit (i.e., revert) relatively few target genes, thereby resulting in weak

s) for each possible pair of drugs across the series of GEM models based on

ynergistic reversion scores for targets affected by the drug combinations (see

e predicted degree of reversion (GSRS); arrows indicate drug pairs with the

nes reverted by treatment with rapamycin or PD0325901 versus vehicle; also

are provided in Tables S1 and S2, respectively.

uthors



Figure 2. Validation of Drug Efficacy, Synergy, and Specificity in Prostate Cancer Cells

(A) Real-time PCR of mRNA expression levels of FOXM1 and CENPF and their shared target genes following treatment with rapamycin and/or PD0325901 or

docetaxel in DU145 human prostate cancer cells (top) or NPK mouse prostate tumors (bottom).

(B and C) Colony formation assays in the indicated human prostate cancer cells, PC3, DU145, 22Rv1, and LNCaP, following treatment with rapamycin (Rap) and/

or PD0325901 (PD), or docetaxel (Doc). (B) Representative colony formation assays. (C) Quantification of independent assays performed in triplicate.

(legend continued on next page)
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(F-score) that first maximizes the number of unique targets

affected by each drug, and then the total number of targets

affected by both drugs (Figure 1C; Supplemental Experimental

Procedures). These analyses identified several combinations,

most of which included rapamycin or PD0325901, which were

predicted to be more effective than the individual compounds

based on their GSRSs (Figure 1D; Table S2). In particular, the ra-

pamycin + PD0325901 combination was predicted to have the

strongest global inhibition of the FOXM1/CENPF regulon, both

with respect to total number of targets affected by both drugs

and the number of unique targets affected by each drug, result-

ing in the most significant negative global synergistic reversion

score (GSRSH = �40.4; p value < 0.001 compared to a random

model; see Supplemental Experimental Procedures). This theo-

retical prediction was validated by assessment of FOXM1/

CENPF target genes that were reverted by rapamycin or

PD0325901 following drug treatment in vivo (Figure 1E).

Experimental Validation of Drug Specificity and Synergy
in Cell Culture
Based on these computational predictions, we performed exper-

imental validation to assess whether rapamycin and/or

PD0325901 specifically inhibit the FOXM1/CENPF regulon in

relevant mouse and human prostate cancer cell culture models,

and if so, whether these drugs affect cell growth and tumorige-

nicity in a FOXM1/CENPF-dependent manner. First, we vali-

dated the underlying computational prediction that treatment

with rapamycin and PD0325901 reverts the expression of shared

target genes of FOXM1/CENPF. Using real-time PCR, we found

that treatment with rapamycin and PD0325901, but not doce-

taxel, inhibited expression of both FOXM1 and CENPF as well

as their shared target genes in several human and mouse pros-

tate cancer models (Figure 2A; Figure S2A). This inhibition of

target genes was coincident with inhibition of the corresponding

signaling pathways, namely PI3K/mTOR and MAP kinase in the

mouse and human cells (Figures S2B and S2C). Notably, inhibi-

tion of colony formation was significantly greater when the

drugs were combined than when used individually (Figure 2B,

C), which supports the computational prediction of rapamycin +

PD0325901 synergy.

To address the specificity of the rapamycin + PD0325901 drug

combination for inhibition of FOXM1/CENPF activity, we as-

sessed whether this combination was preferentially more potent

in contexts having high levels of FOXM1/CENPF activity. First,

we surveyed the expression and activity of FOXM1/CENPF in a

series of human and mouse cell lines; ‘‘activity’’ was determined

experimentally by analyses of the expression of FOXM1/CENPF

shared target genes (Figure 2D; Figures S2D–S2F). These

studies revealed that PC3 cells have the highest levels of

FOXM1/CENPF activity, whereas LNCaP cells have lower levels

(Figure 2D). Correspondingly, human prostate cancer cells with

higher levels of FOXM1/CENPF activity had greater response
(D) (Left) Relative activity of FOXM1/CENPF in human prostate cancer cells lines. A

target genes (see Figure S2F). (Right) Relative drug response assessed for FO

treatment with rapamycin + PD0325901 (Rap + PD) or docetaxel (Doc). Differen

indicated, p values are represented as *p < 0.01, **p < 0.001, and ***p < 0.0001.

Figures S2 and S3 are related to Figure 2.
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to rapamycin + PD0325901 treatment, as evident from the strong

inhibition of activity and colony formation, whereas LNCaP cells,

which have low levels of FOXM1/CENPF activity, had a modest

response to rapamycin + PD0325901 (Figures 2B–2D). In

contrast, this relationship to FOXM1/CENPF activity was not

observed following docetaxel treatment of these cells (Figures

2B–2D). Similar findings were observed in mouse prostate can-

cer cells wherein response to rapamycin + PD0325901 treatment

was correlated with the relative levels of FoxM1/Cenpf activity

(Figures S2D and S2E).

Moreover, the dependence on FOXM1/CENPF in the human

prostate cancer cells was evident by the reduction in the

half maximal inhibitory concentration (IC50) for rapamycin +

PD0325901, but not docetaxel, following the silencing of both

FOXM1 and CENPF in human prostate cancer cell lines with

high levels of activity (Figure S3). Conversely, overexpression of

FOXM1 and CENPF in a non-prostate cancer cell line, HEK293,

resulted in an increase in the IC50 for rapamycin + PD0325901,

but not docetaxel (Figure S3). Taken together, these findings vali-

date the computational prediction that FOXM1/CENPF activity is

specifically inhibited by rapamycin + PD0325901.

Experimental Validation of Drug Efficacy and Specificity
In Vivo
The synergistic effects of combined treatment with rapamycin +

PD0325901 were even more dramatic in vivo. In particular, we

performed preclinical studies using NPK mice (Nkx3.1CreERt2;

Ptenflox/flox; KrasLSL-G12D/+), which model aggressive, metastatic

prostate cancer that is dependent on FOXM1/CENPF activity

(Aytes et al., 2013, 2014). Tumor-bearing NPKmice were treated

with rapamycin and/or PD0325901, or docetaxel, for 5 days (i.e.,

the dynamic response cohort) or 1 month (i.e., the therapeutic

response cohort) (Figure 3A; Table S3). Mice were then either

sacrificed for analysis or monitored for the effects of drug treat-

ment on survival and metastasis (i.e., the survival response

cohort) (Figure 3A; Table S3).

Whereas treatment with either drug individually had a modest

therapeutic benefit at the various endpoints, the combination of

rapamycin + PD0325901 had a profound effect at all tumor end-

points in the therapeutic response cohort (Figures 3B–3E). In

particular, treatment with rapamycin + PD0325901, but not do-

cetaxel, resulted in profound abrogation of the histological

phenotype, coincident with inhibition of relevant signaling path-

ways, as evident by immunohistochemistry (Figure 3B). More-

over, tumors treated with rapamycin + PD0325901, but not do-

cetaxel, displayed a significant decrease in cellular proliferation

(p < 0.0001) (Figure 3C), as well as significant reduction in tumor

burden, as measured by tumor weight (p = 0.003) and tumor vol-

ume using MRI (p < 0.01) (Figures 3D and 3E). Furthermore,

these effects on phenotype and tumor burden were accompa-

nied by a significant improvement in survival (p < 0.0001) (Fig-

ure 3F), as well as a 3-fold reduction in the incidence of
ctivity levels were calculated based on expression levels of 10 FOXM1/CENPF

XM1/CENPF activity levels in the human prostate cancer cell lines following

ces between treatment groups were assessed using Student’s t test. When

Bars represent mean ± SD.
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Figure 3. Validation of Drug Synergy and Specificity In Vivo

(A) Shown is the design of preclinical studies. NPKmice were induced to form tumors by delivery of tamoxifen at 2 months of age as in (Aytes et al., 2013). Mice

were treated with rapamycin and/or PD032590, or docetaxel for 5 days (dynamic response cohort) or 1 month, following which mice were sacrificed for analyses

(therapeutic response cohort) or monitored for survival (survival response cohort).

(B–E) Analysis of the therapeutic response cohort following treatment with rapamycin (Rap) and/or PD0325901 (PD) or docetaxel (Doc) as indicated (n = 5 mice/

treatment group). (B) Representative sections of H&E staining or immunohistochemical staining for the indicated markers of the PI3K/mTOR or MAP kinase

signaling pathways; scale bars represent 100 mm. (C) Relative cellular proliferation following drug treatment as determined by the percent of Ki67-positive cells

relative to total epithelial cells. (D) Prostate weight (in grams) following drug treatment. (E) Longitudinal MRI imaging showing representative images following drug

treatment with tumor volumes indicated. The panel to the right represents the net change in tumor volume following 1 month of drug treatment.

(F–H) Shown is analysis of the survival response cohort. (F) Survival analysis showing the improvement in survival following treatment with rapamycin and

PD0325901 (Rap + PD) compared with the vehicle-treated mice. (G) Percentage of mice with disseminated cells in the bone marrow and (H) percentage of mice

with lung metastases following treatment with vehicle (Veh) or rapamycin + PD0325901 (Rap + PD) (n = 10 mice/treatment group). Differences between groups

were assessed using Student’s t test; bars represent mean ± SD. In (F), p value corresponds to a log-rank test.
disseminated tumor cells in the bonemarrow and a 4-fold reduc-

tion in the incidence of lung metastases (Figures 3G and 3H).

Together, these findings validate the concept that treatment

with rapamycin + PD0325901 inhibits growth of FOXM1/

CENPF-dependent tumors.

Relationship of Mouse Drug-Treatment Signatures to
Human Cancer
Given the striking reduction in tumor and metastatic burden

following treatment with rapamycin + PD0325901, we evaluated
Cell Rep
whether this combination might be sufficient to broadly inhibit

molecular processes associated with advanced, FOXM1/

CENPF-dependent prostate cancer. We addressed this ques-

tion by analyzing signatures obtained by differential gene

expression analysis of NPK prostate tumors treated with vehicle

or rapamycin + PD0325901 for 1 month (i.e., the therapeutic

response cohort; Table S3), which resulted in extensive abroga-

tion of the tumor phenotype (see Figure 3). We compared this

‘‘therapeutic response’’ signature to a reference mouse ‘‘tumor’’

signature, corresponding to differential gene expression
orts 12, 2060–2071, September 29, 2015 ª2015 The Authors 2065



between phenotypically wild-type prostates and NPK prostate

tumors, which captures the transition from normal prostate to

fully malignant prostate cancer (Table S3). Strikingly, genes

that were differentially expressed in the therapeutic response

signature were strongly negatively enriched in the mouse tumor

signature (NES = �8.58; p < 0.001) (Figure S4A). Further evi-

dence that rapamycin + PD0325901 treatment results in broad

inhibition beyond their respective target signaling pathways

was provided by biological pathway analysis. In particular, path-

ways that were significantly inhibited (i.e., reverted) following

treatment of the NPK tumors with rapamycin + PD0325901,

but not docetaxel, include several that are important for tumor

progression and are not directly related to mTOR/PI3K/MAP ki-

nase signaling (Figure 4A; Table S4).

To evaluate molecular processes that are inhibited immedi-

ately following drug treatment, we analyzed a ‘‘dynamic

response’’ signature, representing a time point wherein the

drugs are active but the tumor phenotype has not yet been abro-

gated (Figure 3A; Table S3; and data not shown). In particular,

this short-term treatment with rapamycin + PD0325901 resulted

in reversion of FOXM1/CENPF targets, as predicted by our

computational approach (Figure S4B; see Figure 1E). Compari-

son of this ‘‘dynamic response’’ signature to a reference mouse

‘‘malignancy signature,’’ based on comparison of non-malignant

prostate tumors from NP mice to fully malignant NPK tumors

(Aytes et al., 2013), revealed a striking negative enrichment

(i.e., strong reversion) (NES = �8.34; p < 0.001) (Figure 4B), sug-

gesting that the rapamycin + PD0325901 combination inhibits

molecular processes associated with NPK tumor malignancy

even prior to their overt effects on the tumor phenotype.

To assess conservation of these molecular changes with

human prostate cancer, we performed GSEA to compare a hu-

manized version of the mouse dynamic response signature

with human prostate cancer signatures (see Supplemental

Experimental Procedures). We used three independent human

prostate cancer signatures, each of which is based on distinct

clinical endpoints (Table S3): (1) a malignancy signature based

on the Taylor dataset (Taylor et al., 2010), which compares pa-

tients having low Gleason score and no biochemical recurrence

(n = 39) to those with high Gleason score and a short time to

biochemical recurrence (n = 10) (Aytes et al., 2013); (2) a metas-

tasis signature based on the Balk dataset (Stanbrough et al.,

2006), which compares hormone-naive prostate tumors (n =

22) to bone metastases from castration-resistant prostate can-

cer (n = 29) (Aytes et al., 2014); and (3) a survival signature based

on the Sboner dataset (Sboner et al., 2010), which compares

transurethral resections from patients who survived for nearly

200 months (n = 12) to those who died of prostate cancer within

12 months (n = 6) (Wang et al., 2013). Strikingly, the mouse dy-

namic response signature was strongly negatively enriched

when compared with each of these human signatures, indicating

that genes that are consistently overexpressed in aggressive

prostate cancer are inhibited following drug treatment (Taylor

signature NES = �5.48, p < 0.001; Balk signature NES =

�5.26, p < 0.001; and Sboner signature NES = �6.40, p <

0.001) (Figure 4C). In contrast, the docetaxel treatment response

signature was eitherminimally or not negatively enriched in these

human signatures (Figure S4C).
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We then asked whether the mouse dynamic response signa-

ture could reverse a ‘‘FOXM1/CENPF activity’’ signature in hu-

man prostate cancer. This FOXM1/CENPF activity signature,

defined using the Sboner dataset (Sboner et al., 2010), corre-

sponds to differential gene expression between patient samples

having low versus high levels of FOXM1/CENPF activity, which

was measured by enrichment of the FOXM1/CENPF regulon in

each patient using single-sample master regulator inference al-

gorithm (ssMARINa) as in Aytes et al. (2014) (see Supplemental

Experimental Procedures). GSEA comparing the ‘‘FOXM1/

CENPF’’ activity signature with the mouse ‘‘dynamic response’’

signature showed strong negative enrichment (NES = �6.43,

p < 0.001) (Figure 4D), which supports the concept that patients

with high levels of FOXM1/CENPF activity should respond more

effectively to rapamycin + PD0325901 treatment. Notably,

similar comparison with a docetaxel treatment response signa-

ture did not indicate such relationship (NES = 0.37, p = 0.77)

(Figure S4D).

We further evaluated the correlation between FOXM1/CENPF

activity levels and predicted treatment response in each patient

in the Sboner dataset estimated using ssMARINa and GSEA,

respectively. We found that inferred FOXM1/CENPF activity

levels and predicted treatment response were strongly corre-

lated (Spearman’s rho = 0.51, p < 2.23 10�16) (Figure 4E), which

was not the case for the docetaxel treatment response (Fig-

ure S4E). Taken together, these computational analyses suggest

that the molecular programs (i.e., genes and pathways) specif-

ically inhibited (reverted) by rapamycin + PD0325901 in the

mousemodel are conserved with those that drive aggressive hu-

man prostate cancer, and in particular in patients having high

levels of FOXM1/CENPF activity.

Conservation of Treatment Response in Mouse
and Human Prostate Cancer
Given the conservation in the molecular programs affected by

drug treatment in the GEM models and human prostate cancer,

we next asked whether we could use the mouse treatment

response signature to identify genes predicted to be associated

with treatment response in humans. First, we identified candi-

date rapamycin + PD0325901-responsive genes by interro-

gating the mouse prostate cancer interactome (Aytes et al.,

2014) with the dynamic response signature using the standard

MARINa algorithm to identify MRs of treatment response in the

mouse (Lefebvre et al., 2010). We then compared these MRs

with the orthologous human genes to identify those predicted

both to be regulated by FOXM1/CENPF in human prostate can-

cer and to be downregulated by drug treatment; we refer to these

as ‘‘predicted treatment-responsive genes’’ and distinguish

them from other FOXM1/CENPF target genes that are not pre-

dicted to be responsive to the treatment (Figure 5A). Notably,

real-time PCR analyses confirmed that the expression levels of

these predicted treatment-responsive genes were indeed in-

hibited by rapamycin + PD0325901 in human prostate cancer

cell lines, whereas the expression levels of the predicted

non-responsive genes were not inhibited by such treatment

(Figure 5B).

These treatment-responsive genes (including TOP2A,UHRF1,

ASF1B, MCM4, WHSC1, MCM2, SUV39H1, BLM, BRCA1,
uthors



Figure 4. Cross-Species Analyses of Drug-Treatment Response

(A) Heatmap depiction showing representative pathways that are significantly changed following treatment with rapamycin + PD0325901 (Rap + PD) or docetaxel

(Doc) relative to vehicle treatment (Veh). Pathway analysis was done by GSEA using a ‘‘humanized’’ version of the dynamic response allograft tumor signature

(see Table S3 and Supplemental Experimental Procedures). A complete list of pathways is provided in Table S4.

(B–D) GSEA using as the query gene set themouse rapamycin + PD0325901 dynamic treatment response signature (B) or a ‘‘humanized’’ version of this signature

(C and D); normalized enrichment score (NES) and associated p values are shown. In (B), the reference is mouse ‘‘malignancy’’ signature, which represents

differentially expressed genes from NP versus NPKmouse tumors as reported previously (Aytes et al., 2013). In (C), the references are three independent human

tumor signatures (i.e., Taylor, Balk, or Sboner), each of which compare differentially expressed genes representing less aggressive versus more aggressive

prostate cancer specimens (Table S3). In (D), the reference signature represents differentially expressed genes in patients from the Sboner dataset having low

versus high levels of FOXM1/CENPF activity, which was inferred using single sample MARINa (ssMARINa) (see Supplemental Experimental Procedures).

(E) Heatmap showing the correlation in human patients from the Sboner dataset of FOXM1/CENPF activity levels (top) with the corresponding predicted drug-

treatment response for rapamycin + PD0325901 (bottom). As above, FOXM1/CENPF activity was estimated for each patient using ssMARINa. The treatment

response for each patient was inferred using a ‘‘humanized’’ version of the mouse dynamic treatment signature using GSEA (see Supplemental Experimental

Procedures). Correlation coefficient (rho) and associated p value were estimated using Spearman’s correlation.

Figure S4 and Tables S3 and S4 are related to Figure 4.
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Figure 5. Conservation of Treatment Responsive Genes in Human Prostate Cancer

(A) FOXM1/CENPF subnetwork of human target genes predicted to be responsive or non-responsive to treatment with rapamycin + PD0325901 based on

comparison with treatment response for themousemodel. Relative change in activity following drug treatment is indicated by levels of ‘‘blue’’ for genes predicted

to be reverted by the drugs and levels of ‘‘red’’ for those predicted to be activated or unaffected (i.e., non-responsive).

(B) Real-time PCR showing the actual change in expression levels of FOXM1/CENPF target genes following treatment with vehicle or rapamycin + PD0325901.

The ‘‘predicted treatment-responsive genes’’ correspond to those represented by the blue circles in (A), and the ‘‘predicted non-responsive genes’’ to the other

genes. PCR was done using DU145 cells; differences were assessed using t test (p values are represented as *p < 0.01, **p < 0.001, and ***p < 0.0001) and bars

represent mean ± SD.

(C–E) Association of predicted treatment-responsive genes with lethal prostate cancer and disease outcome. (C) Summary table showing the significance of

elevated expression levels in metastases versus primary tumors in the Taylor and Balk datasets (columns on the left; p value was calculated using t test). The

column on the right shows a COX regression model indicating the association based on master regulator activity levels of the predicted treatment-responsive

genes with prostate cancer-specific survival estimated for patients in the Sboner dataset; COX p value was calculated using Wald test (NA, sufficient targets not

represented; NS, not significant). (D) Oncoprint visualization from cBioportal showing the percent of alterations of the predicted treatment-responsive genes in

metastases samples from the Taylor dataset. (E) Heatmap showing the master regulator activity levels of treatment-responsive genes in primary tumors versus

bone metastases from the Balk dataset.

(F) Heatmap comparing themaster regulator activity levels of the treatment-responsive genes (upper rows) across each patient in the Sboner dataset with inferred

treatment response for each patient (Rap +PD, bottom row). The activity levels and the treatment response for each patient were estimated using single-sample

MARINa (ssMARINa) and GSEA, respectively (see Supplemental Experimental Procedures). The correlation between the average activity levels of all treatment-

responsive genes and the predicted response was estimated using Spearman’s correlation.

(G) Kaplan-Meier survival analysis based on the master regulator activity levels of predicted treatment-responsive genes in the Sboner dataset using prostate

cancer-specific survival as the endpoint. The p value was estimated using a log-rank test of the difference in outcome between patients with higher activity levels

(red) and those with lower/no activity (blue).
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CCNA2, E2F1, andMYBL2) have known functions in DNA repair,

epigenetic modifications, cell cycle, proliferation, and/or sur-

vival, which are all associated with cancer malignancy. Notably,

each of these is overexpressed in advanced human prostate

cancer, and their activity levels are associated with disease

outcome, as shown by univariate analyses using a COX propor-

tional hazard model on the Sboner dataset (Figures 5C and 5D).

Moreover, analyses based on the Balk dataset revealed robust

activity levels of the treatment-responsive genes in metastatic

samples compared to primary tumors (Figure 5E).

We further demonstrated the association of the activity levels

of the treatment-responsive genes with drug response on a pa-

tient-by-patient basis, estimated using ssMARINa and GSEA,

respectively, on the Sboner dataset (Figure 5F). In particular,

the average activity levels of treatment-responsive genes were

strikingly correlated with the rapamycin + PD0325901 drug

response (Spearman rho = 0.57, p < 2.2 3 10�16) (Figure 5F),

similar to that observed for the FOXM1/CENPF activity (see Fig-

ure 4D). Most notably, multivariate Kaplan-Meier survival anal-

ysis on the Sboner dataset to evaluate disease-specific survival

revealed that patients with higher activity levels of the treatment-

responsive genes have a shorter time to prostate cancer-spe-

cific death compared to patients with lower activity levels

(log-rank p value = 1.7 3 10�5) (Figure 5G). Importantly, the ac-

tivity of the treatment-responsive subnetwork of the FOXM1/

CENPF regulon was more significant than the FOXM1/CENPF

regulon (log-rank p value = 1.3 3 10�4) and also outperformed

a random comparable set of genes with respect to the COX pro-

portional hazard model (p value for improvement < 0.001) and

Kaplan-Meier survival analysis (p value for improvement <

0.015) (see Supplemental Experimental Procedures). Taken

together, these findings suggest that computationally predicted

treatment-responsive genes can be used to identify patients that

are likely to benefit from treatment with drugs that co-target the

PI3K/mTOR and MAP kinase signaling pathways and provide a

proof of concept for the overall approach.

DISCUSSION

In this study, we introduce a generalizable computational

approach to extrapolate in vivo preclinical treatment data from

GEMmodels to inform on human cancer treatment. Our method

infers drug efficacy based on the ability of a given drug to revert

the transcriptional regulon of key dependencies that drive the tu-

mor phenotype. Importantly, we show that this method can be

used to prioritize drug combinations based on analysis of individ-

ual compounds, which greatly enhances the value of in vivo pre-

clinical analyses of compounds in mice. We demonstrate this

approach with a proof-of-concept study based on identification

of drugs and drug combinations that inhibit the activity of

FOXM1/CENPF, which were chosen for their established rele-

vance for lethal prostate cancer (Aytes et al., 2014). However,

this approach should be applicable to identify candidate drugs

and drug combinations for many other driver gene(s) of interest

and not limited to prostate cancer. Notably, the molecular pro-

grams affected by drug treatment in the GEM model are well

conserved with human prostate cancer, which supports the

concept that analyses of drug-treatment data from mouse
Cell Rep
models can be used to identify treatment-responsive genes for

human prostate cancer. Thus, we have described a method to

identify drugs and drug combinations that specifically inhibit

cancer driver genes, as well as to identify potential biomarkers

to predict the efficacy of drug treatments for individual patients.

Several features of our approach distinguish it from other stra-

tegies previously used to screen for drug response in human

cancer. First, most other approaches have been based on ana-

lyses of cancer cell lines in culture (e.g., Barretina et al., 2012;

Garnett et al., 2012), whereas our study is based on drug pertur-

bation of GEMmodels in vivo. Thus, we evaluate drug efficacy in

the context of the native tumor microenvironment and intact im-

mune system, which are now widely recognized as being essen-

tial for drug response in vivo, particularly given recent advances

in immunotherapy. Although the tumor context of any individual

GEMmodel is unlikely to fully recapitulate that of human cancer,

we address this limitation by analyzing multiple distinct GEM

models to avoid idiosyncratic GEM-specific biology. Indeed,

we have observed a remarkable concordance of the molecular

consequences of drug treatment between our ‘‘consensus’’ an-

alyses of mouse models and human prostate cancer.

A second distinguishing feature of our approach is its ability to

identify synergistic drug combinations based on single-agent

treatment data. From a practical standpoint, the number of drugs

that can be feasibly evaluated using in vivo perturbations in a se-

ries of GEM models is limited. Therefore, the ability to evaluate

the efficacy of drug combinations by profiling a relatively small

number of single drugs (e.g., the 100 most relevant compounds)

would allow assessment of a very large potential combination

therapy space (e.g., 4,950 combinations), thus affording signifi-

cant economy of scale.

A third important feature is that our computational method

identifies drugs based on their ability to inhibit specific drivers

of the tumor phenotype, rather than on overall toxicity or inhibi-

tion of more general tumor-related parameters. In particular,

the method evaluates the efficacy of drug response based on in-

hibition of the transcriptional regulon of specific master regula-

tors of interest. Furthermore, our computational analysis of treat-

ment response in the GEM models in vivo has also identified

treatment-responsive genes that are conserved in human pros-

tate cancer. We propose that such treatment-responsive genes

may serve as surrogate biomarkers to infer the potential efficacy

of drug treatments in patients. In particular, our current findings

suggest that previous analyses may have underestimated the

value of molecular inference of preclinical data from GEM

models for not only predicting optimal drug combinations but

also identifying molecular markers for predicting treatment

response to such drugs.

The PI3K/mTOR and MAP kinase signaling pathways are

known to be dysregulated in many advanced prostate cancers

(Aytes et al., 2013; Kinkade et al., 2008; Taylor et al., 2010).

Currently, drugs that target these pathways (albeit not rapamycin

and PD0325901) are being evaluated in numerous clinical trials

for prostate cancer and many other solid tumors, including com-

bination-therapy regimes. Results from the current study as well

as previous work (Aytes et al., 2014) suggest that aberrant levels

of FOXM1 and CENPF, as assessed by immunostaining of tumor

samples, may identify patients who would likely benefit from
orts 12, 2060–2071, September 29, 2015 ª2015 The Authors 2069



treatment with agents that target the PI3K/mTOR and/or MAP ki-

nase signaling pathways. In addition, our study suggests that the

treatment-responsive genes we have identified could provide

intermediate biomarkers to assess short-term efficacy of combi-

nation therapy in patients, a strategy that can be readily general-

ized to other targets and therapies. Thus, our studies may inform

or modulate the design of clinical trials or help provide a mech-

anistic basis for clinical findings.

Beyond prostate cancer, our computational methodologymay

be beneficial to identify drugs that target key actionable targets

in vivo for a wide range of tumor types, oncogene and non-onco-

gene dependencies, and therapeutic agents, including both US

Food and Drug Administration-approved and experimental com-

pounds. Since many cancer types now have relevant GEM

models that are being used in many preclinical studies, it would

be advantageous to use our approach to apply these preclinical

data from GEMs to analyze treatment response in human

cancer.

EXPERIMENTAL PROCEDURES

Computational Prediction of Drug Synergy

Computational inference of drugs that inhibit FOXM1 and CENPF activity was

done using their shared target genes predicted from the mouse or human

prostate cancer interactomes and using in vivo drug perturbation data, which

were described previously (Aytes et al., 2014). Target gene reversion (i.e., inhi-

bition) was assessed using GSEA for each drug across each GEM model.

GRSs for each drug were then inferred by integrating the reversion scores

across each GEM model using a metric based on the Stouffer integration

formulation (Whitlock, 2005). Optimal drug combinations were predicted

from the single-agent in vivo drug perturbation data by determining the

SRSs for each drug using an harmonic mean (F1 statistical measure), which

maximizes the number of unique targets affected by each drug as well as

the total number of targets affected by two drugs. GSRSswere then estimated

as an average SRS weighted by the number of mouse models in which a drug

pair was estimated to be effective (i.e., to share a non-zero SRS). Details of the

computational methods used to compute GRSs and GSRSs are provided in

Supplemental Experimental Procedures, and the data are provided in Tables

S1 and S2.

Efficacy of Drug Treatment

All experiments using animals were performed according to protocols

approved by the Institutional Animal Care and Use Committee at Columbia

University Medical Center. Cell culture studies were done as described previ-

ously (Aytes et al., 2014) using human prostate cancer cell lines obtained from

ATCC and mouse cell lines derived from the GEM models used herein (Aytes

et al., 2013; unpublished date). Rapamycin and docetaxel were purchased

from LC Laboratories, and PD0325901 was provided by Pfizer. Cell culture as-

says were performed in a minimum of two independent experiments each

done in triplicate; data are presented by the mean ± SD. For in vivo studies, tu-

mor-bearing NPK mice (Aytes et al., 2013) or allografted NPK tumors were

treated with vehicle or rapamycin (10 mg/kg) and/or PD0325901 (10 mg/kg)

or docetaxel (10 mg/kg) as described previously (Kinkade et al., 2008). At

the time of sacrifice, tissues were collected for histopathological and molecu-

lar analysis as described elsewhere (Aytes et al., 2013; Kinkade et al., 2008).

GraphPad Prism software (version 5.0) was used for statistical analyses and

to generate data plots. A complete list of primers used in this study is provided

in Table S5.

Cross-Species Computational Analysis of Drug-Treatment

Signatures

Gene expression profiles based on Illumina expression arrays as in Aytes et al.

(2014) were used to generate drug-treatment signatures for the mouse tumors

or allografts, as detailed in Table S3. For comparison of mouse treatment sig-
2070 Cell Reports 12, 2060–2071, September 29, 2015 ª2015 The A
natures with human signatures, the mouse genes were mapped to their corre-

sponding human orthologs. Single-sample computation of FOXM1/CENPF

activity levels or drug treatment across human patients was inferred for each

patient sample using single-sample MaRINA (ssMARINa) and GSEA, respec-

tively (Aytes et al., 2014) (see Supplemental Experimental Procedures). COX

proportional hazard model and Kaplan-Meier analysis were done using the

‘‘surv’’ and ‘‘coxph’’ functions from the survcomp package in R v2.14.0.

ACCESSION NUMBERS

The accession numbers for the gene expression profiling data reported in this

study are GEO: GSE69211 and GEO: GSE69213.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and five tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2015.08.051.

AUTHOR CONTRIBUTIONS

A.M. performed all of the computational analyses, and A.A. performed all of the

experimental analyses. M.Z. provided the new mouse cell lines described

herein. A.M., A.A., M.M.S., C.A.-S., and A.C. designed experiments, analyzed

the data, and wrote the paper.

CONFLICTS OF INTEREST

A.C. is a founder and stockholder of Darwin Health and Therasis and a consul-

tant for Dow AgroSciences, Thermo Fisher Scientific, and Cancer Genetics

Inc.

ACKNOWLEDGMENTS

This work was supported by grants CA173481 (to C.A.-S.), U01 CA084294

(to C.A.-S., M.M.S., and A.C.), U54 CA121852 (to A.C., C.A.-S., M.M.S.),

P01 CA154293 (to M.M.S. and C.A.-S.), U01HL111566-02S2 (to A.C.) and

U01CA168426 (to A.C.). A.A. was a recipient of a Marie Curie International

Outgoing Fellowship (PIOF-GA-2009-253290), co-sponsored with the

Catalan Institute of Oncology-Bellvitge Institute for Biomedical Research,

Barcelona, Spain, and a recipient of a pilot award from the Irving Institute

for Clinical and Translational Research at Columbia University supported

by the National Center for Advancing Translational Sciences, NIH (UL1

TR000040). A.M. is a recipient of a Prostate Cancer Foundation Young Inves-

tigator Award. C.A.-S. is an American Cancer Society Research Professor

supported in part by a generous gift from the F.M. Kirby Foundation.

Received: December 16, 2014

Revised: June 2, 2015

Accepted: August 17, 2015

Published: September 17, 2015

REFERENCES

Abate-Shen, C., and Pandolfi, P.P. (2013). Effective utilization and appropriate

selection of genetically engineered mouse models for translational integration

of mouse and human trials. Cold Spring Harb. Protoc. 2013, 2013.

Al-Lazikani, B., Banerji, U., and Workman, P. (2012). Combinatorial drug ther-

apy for cancer in the post-genomic era. Nat. Biotechnol. 30, 679–692.

Aytes, A., Mitrofanova, A., Kinkade, C.W., Lefebvre, C., Lei, M., Phelan, V., Le-

Kaye, H.C., Koutcher, J.A., Cardiff, R.D., Califano, A., et al. (2013). ETV4 pro-

motesmetastasis in response to activation of PI3-kinase and Ras signaling in a

mouse model of advanced prostate cancer. Proc. Natl. Acad. Sci. USA 110,

E3506–E3515.

Aytes, A., Mitrofanova, A., Lefebvre, C., Alvarez, M.J., Castillo-Martin, M.,

Zheng, T., Eastham, J.A., Gopalan, A., Pienta, K.J., Shen, M.M., et al.
uthors

http://dx.doi.org/10.1016/j.celrep.2015.08.051
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref1
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref1
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref1
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref2
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref2
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref3
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref3
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref3
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref3
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref3
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref4
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref4


(2014). Cross-species regulatory network analysis identifies a synergistic inter-

action between FOXM1 and CENPF that drives prostate cancer malignancy.

Cancer Cell 25, 638–651.

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim,

S., Wilson, C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer

Cell Line Encyclopedia enables predictive modelling of anticancer drug sensi-

tivity. Nature 483, 603–607.

Carro, M.S., Lim, W.K., Alvarez, M.J., Bollo, R.J., Zhao, X., Snyder, E.Y., Sul-

man, E.P., Anne, S.L., Doetsch, F., Colman, H., et al. (2010). The transcriptional

network for mesenchymal transformation of brain tumours. Nature 463,

318–325.

Chang, A.J., Autio, K.A., Roach, M., 3rd, and Scher, H.I. (2014). High-risk pros-

tate cancer-classification and therapy. Nat. Rev. Clin. Oncol. 11, 308–323.

Chen, J.C., Alvarez, M.J., Talos, F., Dhruv, H., Rieckhof, G.E., Iyer, A., Diefes,

K.L., Aldape, K., Berens, M., Shen, M.M., and Califano, A. (2014). Identification

of causal genetic drivers of human disease through systems-level analysis of

regulatory networks. Cell 159, 402–414.

Cooperberg, M.R., Moul, J.W., and Carroll, P.R. (2005). The changing face of

prostate cancer. J. Clin. Oncol. 23, 8146–8151.

Garnett, M.J., Edelman, E.J., Heidorn, S.J., Greenman, C.D., Dastur, A., Lau,

K.W., Greninger, P., Thompson, I.R., Luo, X., Soares, J., et al. (2012). System-

atic identification of genomic markers of drug sensitivity in cancer cells. Nature

483, 570–575.

Garraway, L.A., and Lander, E.S. (2013). Lessons from the cancer genome.

Cell 153, 17–37.

Kinkade, C.W., Castillo-Martin, M., Puzio-Kuter, A., Yan, J., Foster, T.H., Gao,

H., Sun, Y., Ouyang, X., Gerald, W.L., Cordon-Cardo, C., and Abate-Shen, C.

(2008). Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-re-

fractory prostate cancer in a preclinical mouse model. J. Clin. Invest. 118,

3051–3064.

Lefebvre, C., Rajbhandari, P., Alvarez, M.J., Bandaru, P., Lim, W.K., Sato, M.,

Wang, K., Sumazin, P., Kustagi, M., Bisikirska, B.C., et al. (2010). A human B-

cell interactome identifies MYB and FOXM1 as master regulators of prolifera-

tion in germinal centers. Mol. Syst. Biol. 6, 377.

Luo, J., Solimini, N.L., and Elledge, S.J. (2009). Principles of cancer therapy:

oncogene and non-oncogene addiction. Cell 136, 823–837.

Mukherji, D., Omlin, A., Pezaro, C., Shamseddine, A., and de Bono, J. (2014).

Metastatic castration-resistant prostate cancer (CRPC): preclinical and clinical

evidence for the sequential use of novel therapeutics. Cancer Metastasis Rev.

33, 555–566.

Pienta, K.J., and Smith, D.C. (2005). Advances in prostate cancer chemo-

therapy: a new era begins. CA Cancer J Clin 55, 300–318, quiz 323-305.

Politi, K., and Pao, W. (2011). How genetically engineered mouse tumor

models provide insights into human cancers. J. Clin. Oncol. 29, 2273–2281.
Cell Rep
Rathkopf, D., and Scher, H.I. (2013). Androgen receptor antagonists in castra-

tion-resistant prostate cancer. Cancer J. 19, 43–49.

Roychowdhury, S., and Chinnaiyan, A.M. (2013). Advancing precision medi-

cine for prostate cancer through genomics. J. Clin. Oncol. 31, 1866–1873.

Rubio-Perez, C., Tamborero, D., Schroeder, M.P., Antolı́n, A.A., Deu-Pons, J.,

Perez-Llamas, C., Mestres, J., Gonzalez-Perez, A., and Lopez-Bigas, N.

(2015). In silico prescription of anticancer drugs to cohorts of 28 tumor types

reveals targeting opportunities. Cancer Cell 27, 382–396.

Ryan, C.J., and Tindall, D.J. (2011). Androgen receptor rediscovered: the new

biology and targeting the androgen receptor therapeutically. J. Clin. Oncol. 29,

3651–3658.

Sboner, A., Demichelis, F., Calza, S., Pawitan, Y., Setlur, S.R., Hoshida, Y.,

Perner, S., Adami, H.O., Fall, K., Mucci, L.A., et al. (2010). Molecular sampling

of prostate cancer: a dilemma for predicting disease progression. BMC Med.

Genomics 3, 8.

Scher, H.I., and Sawyers, C.L. (2005). Biology of progressive, castration-resis-

tant prostate cancer: directed therapies targeting the androgen-receptor

signaling axis. J. Clin. Oncol. 23, 8253–8261.

Sharpless, N.E., and Depinho, R.A. (2006). The mighty mouse: genetically en-

gineered mouse models in cancer drug development. Nat. Rev. Drug Discov.

5, 741–754.

Shen, M.M., and Abate-Shen, C. (2010). Molecular genetics of prostate can-

cer: new prospects for old challenges. Genes Dev. 24, 1967–2000.

Stanbrough, M., Bubley, G.J., Ross, K., Golub, T.R., Rubin, M.A., Penning,

T.M., Febbo, P.G., and Balk, S.P. (2006). Increased expression of genes con-

verting adrenal androgens to testosterone in androgen-independent prostate

cancer. Cancer Res. 66, 2815–2825.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gil-

lette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Me-

sirov, J.P. (2005). Gene set enrichment analysis: a knowledge-based approach

for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA

102, 15545–15550.

Taylor, B.S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B.S.,

Arora, V.K., Kaushik, P., Cerami, E., Reva, B., et al. (2010). Integrative genomic

profiling of human prostate cancer. Cancer Cell 18, 11–22.

Wang, Z.A., Mitrofanova, A., Bergren, S.K., Abate-Shen, C., Cardiff, R.D., Cal-

ifano, A., and Shen, M.M. (2013). Lineage analysis of basal epithelial cells

reveals their unexpected plasticity and supports a cell-of-origin model for

prostate cancer heterogeneity. Nat. Cell Biol. 15, 274–283.

Whitlock, M.C. (2005). Combining probability from independent tests: the

weighted Z-method is superior to Fisher’s approach. J. Evol. Biol. 18, 1368–

1373.

Wong, Y.N., Ferraldeschi, R., Attard, G., and de Bono, J. (2014). Evolution of

androgen receptor targeted therapy for advanced prostate cancer. Nat. Rev.

Clin. Oncol. 11, 365–376.
orts 12, 2060–2071, September 29, 2015 ª2015 The Authors 2071

http://refhub.elsevier.com/S2211-1247(15)00948-1/sref4
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref4
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref4
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref5
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref5
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref5
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref5
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref6
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref6
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref6
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref6
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref7
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref7
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref8
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref8
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref8
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref8
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref9
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref9
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref10
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref10
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref10
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref10
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref11
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref11
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref12
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref12
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref12
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref12
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref12
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref13
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref13
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref13
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref13
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref14
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref14
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref15
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref15
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref15
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref15
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref16
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref16
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref17
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref17
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref18
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref18
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref19
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref19
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref20
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref20
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref20
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref20
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref21
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref21
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref21
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref22
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref22
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref22
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref22
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref23
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref23
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref23
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref24
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref24
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref24
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref25
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref25
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref26
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref26
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref26
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref26
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref27
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref27
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref27
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref27
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref27
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref28
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref28
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref28
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref29
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref29
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref29
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref29
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref30
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref30
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref30
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref31
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref31
http://refhub.elsevier.com/S2211-1247(15)00948-1/sref31

	Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models
	Introduction
	Results
	Systematic Inference of FOXM1/CENPF Inhibitors In Vivo
	Systematic Inference of Drug Synergy
	Experimental Validation of Drug Specificity and Synergy in Cell Culture
	Experimental Validation of Drug Efficacy and Specificity In Vivo
	Relationship of Mouse Drug-Treatment Signatures to Human Cancer
	Conservation of Treatment Response in Mouse and Human Prostate Cancer

	Discussion
	Experimental Procedures
	Computational Prediction of Drug Synergy
	Efficacy of Drug Treatment
	Cross-Species Computational Analysis of Drug-Treatment Signatures

	Accession Numbers
	Supplemental Information
	Acknowledgments
	References


