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We present a method for coupling current phase field models of alloy solidification into general contin-
uum modelling. The advantages of this approach are to provide a generic framework for phase field mod-
elling, give a natural and thermodynamically consistent extension to non-isothermal modelling, and to
see phase field models in a wider context.
The bracket approach, introduced by Beris and Edwards, is an extension of the Poisson bracket of

Hamiltonian mechanics to include dissipative phenomena. This paper demonstrates the working of this
formalism for a variety of alloy solidification models including multi phase, multi species with thermal
and density dependency.
We present new models by deriving temperature equations for single and more general phase field

models, and give a density dependent formulation which couples phase field to flow.
� 2016 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The phenomena and process of alloy solidification, well
described in [1], is now routinely associated with the significant
successes of the modelling methods of phase field. Phase field
came into being as a computational convenience (if not necessity)
to capture the evolution of complex surface structures. More
recently it has become possible to compute with physically realis-
tic finite interface regions where the material is neither solid nor
liquid, in which case the phase field becomes a physical field in
the interface region.

Although it is well known that dissipative phenomena with
constant boundary temperature spontaneously change to accom-
modate a lowering of the Gibbs free energy, the details of such
transitions are still obscure for many complex materials. For
dynamic modelling, this complexity is reflected in the construction
of the Gibb’s free energy, which typically includes both physical
and non-physical states of matter – an example of the latter being
the Gibbs free energy of a solid significantly above its melting tem-
perature. Moreover, current computing resources andmethods still
struggle to grapple with the highly non-linear partial differential
equations that the phase field method produces. Yet, in principle,
the modelling of even complex materials using phase field is quite
straightforward in outline: specify the global free energy of the
physical system and allow the system to evolve spatially and tem-
porally in such a way as to optimally minimise this functional in a
thermodynamically consistent way. This manifests itself mathe-
matically by the underlying presence of variational derivatives
and diffusion parameters. To illustrate this, given a single phase

formulation of the free energy, F ¼ RX f ð/;r/; c; TÞd3x, in a domain
X for the thermal-solutal (T; c) solidification of a metal, where
/ 2 ½0;1� indicates bulk melt or bulk solid at the extremes, the
dynamical equations are typically given as, [2] a variational form
for the phase variable

_/ ¼ �M
dF
d/

; ð1Þ

a conserved variational form for the solute concentration variable, c,

_c ¼ r � Dr dF
dc

; ð2Þ

and a temperature diffusion equation

C _T ¼ r � jrT þ L _/: ð3Þ
In the above M is phase mobility, D a solute diffusion parameter, j
thermal conductivity, C, and L are the volumetric heat capacity and
volumetric latent heat parameters respectively - all prescribed. Also
arising in the right hand side of Eq. (2) can be r � j where j is an
anti-trapping current that compensates for non-physical effects in
isothermal simulations associated with the computationally conve-
nient use of a larger than realistic interface width, [3] – the anti-
trapping current is not currently derived from a variational proce-
dure and it is difficult to apply the mathematical analysis to general
materials.There is likely to be a problem with a non -variational
induced anti-trapping when applied to thermal models if the
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current is not entropically neutral. Thus generation of an anti-
trapping current from a variational procedure, if possible, which
guarantees zero entropy generation may be advantageous. How-
ever, further discussion of this is beyond the scope of this paper.

The presence of r/ in the free energy indicates a penalty in the
free energy, i.e. an increase of free energy if the interface becomes
too sharp. It is by no means obvious how three such different look-
ing equations come from a single underlying principle. The form of
these equations can be justified either by appeal to a sharp inter-
face model, [4], or by assuming a finite interface and seeking ther-
modynamic consistency, [5].

This paper is concerned with the application of a generic non-
equilibrium thermodynamic method to phase field modelling of
alloy solidification. Multiphase models have been described with-
out coupling to a temperature equation, for example by Nestler
et al. [6] and, although it might be perfectly feasible to start from
this formulation using the methods of, Penrose et al. [5], we are
here applying the generic methods of Beris and Edwards [7].
Generic, in the sense that these methods apply to any continuum
system with or without dissipative behaviour. Significant non-
dissipative examples being: Euler flow and Elasticity; and dissipa-
tive examples being: Navier-Stokes, complex fluid modelling and
visco-plasticity. This method has more in common with [5] than
with [4], keeps the formal structure and the particular physical
system concerned quite distinct, and brings to light differences
and clarification when compared with other models (including sin-
gle phase models) in the literature. The most obvious differences in
the model are shown here to be in the temperature equation,
which may be compared with single phase formulations as
described in, [12–15].

The approach detailed here concerns a generalisation of the
Poisson bracket for continuous non-dissipative phenomena and
will be referred to as the ‘‘bracket” formalism. Application of the
bracket produces a variational formulation, which in turn produces
systems of coupled PDEs. In this sense there is a hierarchy:

Bracket ! Variational form ! PDEs:

Before embarking on a description of the bracket formalism as
applied to phase field dynamics we state some reasons why this
method may be preferable to other approaches, the main con-
tender perhaps being the methods of Linear Irreversible Thermo-
dynamics (LIT) [16]. The bracket formalism can be used to derive
evolution equations for systems involving any number of coupled
phenomena, and to guarantee that the couplings do not violate
any principles of mechanics or laws of thermodynamics by con-
struction. In LIT there is no provision for the inclusion of the kine-
matic of flow (as expressed by the Cauchy momentum equation)
and the stress tensor. LIT provides expressions for the viscous or
dissipative stresses, but cannot help with the conservative or elas-
tic stresses. The bracket structure dictates the stress that appears
in the Cauchy momentum equation, in terms of both conservative
and dissipative contributions. Furthermore, these contributions are
guaranteed to be mechanically and thermodynamically consistent
between all of the coupled evolution equations necessary for the
system description. In the bracket approach, the stress tensor field
is given via a specification of the free energy functional, which is
also something that does not come from LIT. In the phase field
application here, we may wish to include flow modelling in a ther-
modynamically consistent way that will include conservative as
well as dissipative phenomena. Indeed, the simple provision for
an associated density change with phase already begins this cou-
pling because conservation of mass implies the presence of flow.
It is the generality of the bracket that is key here. The bracket for-
malism encompasses all continuous phenomena and provides a
clear distinction between the conservative and dissipative contri-
butions. In Section 7.1 of [7], the authors state their assumption
that the Onsager/Casimir reciprocal relations are valid for systems
close to equilibrium and that this implies that the lowest order
representation of the dissipation bracket, as used here, must be a
symmetric bilinear functional. Taking this as our starting point,
we show, in agreement with [7], that the bracket formalism
appears considerably easier to apply and perhaps less prone to
error than other methods. Finally, even in the simplest phase field
applications as explored in this paper, by applying the bracket in
all generality there appear terms that have previously either been
overlooked or neglected. Possibly the most important example of
the latter is the correct construction of the temperature field
equation.

The structure of the paper is as follows: Section 2 introduces the
bracket and illustrates its application to a simple phase field model
of solidification and then extends to include a thermal field. The
temperature equations differ from the literature and so simulation
results are presented which show the effect of the postulated new
terms. Section 3 extends the bracket to apply to multi phase and
multi species models of alloy solidification. Section 4 discusses
previously neglected terms (postulated by a more general dissipa-
tive bracket) as providing additional enrichment for alloy mod-
elling. Section 5 extends the single phase and multiphase model
to include density. The key feature of this section is the introduc-
tion of the Poisson bracket alongside the dissipative bracket. The
introduction of density implies a flow field so as to maintain mass
conservation, an associated stress tensor, and additional terms to
the pressure and temperature field.

The additional terms due to density modelling are easily
extended to multiphase field formulations.

2. The bracket and phase field solidification

In this section we review the bracket and illustrate the formal-
ism with single phase solidification modelling.

The bracket formalism is an extension of the Poisson bracket
methodology of conservative, discrete particle systems to include
dissipative and continuous systems. As is well known for conserva-
tive particle systems, dynamical equations are given once the
Hamiltonian is prescribed in terms of the position and momentum.
For example, for a single particle of massm in a potential well V the
Hamiltonian energy is given in terms of the momentum, p and
position, x by

Hðp; xÞ ¼ p � p
2m

þ VðxÞ; ð4Þ

and the equations of motion for any variable, Q, by

_Q ¼ fQ ;Hg: ð5Þ
In particular when Q represents the position and momentum of the
particle:

_xi ¼ fxi;Hg;

_pi ¼ fpi;Hg: ð6Þ
Here the Poisson bracket is specified by the antisymmetric operator
(for arbitrary variables A, B)

fA;Bg �
X3
j

@A
@xj

@B
@pj

� @A
@pj

@B
@xj

 !
: ð7Þ

This gives as expected

_xi ¼ pi

m
; ð8Þ

_pi ¼ � @V
@xi

; ð9Þ
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but also, for example, because of antisymmetry in the definition of
Eq. (7),

_H ¼ fH;Hg ¼ 0; ð10Þ
the conservation of energy. In moving from discrete particle sys-
tems to a continuum, the Hamiltonian energy function, being a
summation of contributions from each particle, is extended by spec-
ifying a Hamiltonian energy functional and the discrete Poisson
bracket has its continuous counterpart in an antisymmetric func-
tional, see the final chapter Goldstein Classical Mechanics, [21]
and also the review, [19]. Key applications of the continuous
bracket are non-viscous flow and conservative elasticity. A major
contribution of the authors in [7] has been to extend the continuous
Poisson bracket in Chapter 5 to include continuous dissipative phe-
nomena by the introduction of a dissipative bracket in Chapter 7.
The dissipative bracket is similar to the Poisson bracket but with
symmetric terms and the inclusion of a number of diffusion param-
eters. We illustrate the bracket approach using the well known
phase field equations given in Eqs. (1) and (2).

Following [7] we: extend the Hamiltonian function of Eq. (4)
with a specification of a free energy functional, F, of a set of n field
variables, hi, i 2 ½1; n�; generalise the relations Eq. (5) to the func-
tional relation

_A ¼ ½A; F�; ð11Þ

where A is an arbitrary functional of hi, i 2 ½1;n�; and, finally, gener-
alise the Poisson bracket of Eq. (7) by the specification of a dissipa-
tive bracket ½A; F�. In its simplest form, this consists of the linear
functional:

½A; F� ¼ �
Z
X
Mij

dA
dhi

dF
dhj

d3x�
Z
X
Dijr dA

dhi
� r dF

dhj
d3x; ð12Þ

where summation is implied by repeated suffixes and X is a domain
that we assume is large enough to exhibit natural boundary condi-
tions. The matrices Mij and Dij are strictly positive definite in order
that the system globally and optimally minimises F when used with
Eq. (11). Indeed, we have, on replacing A with F, the relation,

_F ¼ ½F; F� < 0; ð13Þ
where the inequality replaces the equality of Eq. (10).

As a footnote to the above, multiphase fields, /i, are most con-
veniently given with a constraint,

Pn
i¼1/i ¼ 1, which leads to the

diffusion matrices having a vanishing eigenvalue and, indeed, can
have more than one. An example of the latter can be found in
[8], which adopts a matrix first postulated in [11]. This is because,
unlike single phase models, /i are not order parameters (see [8]).
The implication here is that, for a set of true order parameters, hi.
describing alloys, the matrices Mij and Dij are positive definite.

An example of modelling using non-conserved order parame-
ters can be found in [9]. But there are examples, [10], which
describe physical order parameters which, by definition sum to
unity and so, by implication have a positive semi-definite dynamic
matrix.

2.1. Bracket calculations for phase field alloys

A simple illustration of the bracket method is most easily
achieved with an isothermal system of the two field variables, /
and c, where the dynamical equations follow from a specification
of the free energy functional, F½/; c�, and the bracket

½A; F� � �
Z
X
M

dA
d/

dF
d/

d3x�
Z
X
Dr dA

dc
� r dF

dc
d3x: ð14Þ

This is a reduction of relation Eq. (12), where
h1
h2

� �
¼ /

c

� �
; M ¼ M 0

0 0

� �
; D ¼ 0 0

0 D

� �
: ð15Þ

In Section 4 we consider more general models.
To make progress we require an extension of the chain rule to

variational derivatives

_A ¼
Z
X

dA
d/

_/þ dA
dc

_c
� �

d3x ð16Þ

and, by choosing the domain large enough so that variations of c
and / vanish on the boundary, we use integration by parts to give

�
Z
X
Dr dA

dc
� r dF

dc
d3x ¼

Z
X

dA
dc

r � Dr dF
dc

d3x: ð17Þ

Using Eqs. (11), (14), (16) and (17) and the arbitrariness of A allows
us, by equating coefficients of dA

d/ and dA
dc, to recover the isothermal

phase field equations Eqs. (1) and (2).
It should be noted that the specification of the bracket Eq. (14)

is designed to return the given equations and in this sense is differ-
ent to the Poisson bracket. In this case agreement with Eqs. (1) and
(2) was achieved by the particular specification of the diffusion
parameters, D and M in Eq. (12). The general guiding principles
being that the bracket should be ideally (but not necessarily) linear
in F, the coefficientsM and D be positive, and the bracket should be
symmetric in A and F. Following these principles leads to the more
general bracket Eq. (12), which, as shown, includes Eq. (14) as a
subset. There are, though, examples where the bracket includes
antisymmetric terms [7]. These allow the possibility of including
non-dissipative diffusive phenomena.

To include a temperature field, T, the free energy is specified as
the functional, F ¼ F½/; c; T�. However, it is more convenient to
specify the bracket using an enthalpy functional, E ¼ E½/; c; s�,
where s is the entropy density, and use

_A ¼ ½A; E�: ð18Þ
in place of Eq. (11). For this extension the n variable bracket Eq. (12)
(with 2n2 terms), is supplemented by terms linear in dE

ds and 2ðnþ 1Þ
quadratic terms, which are prescribed once the linear terms are
specified

½A; E� ¼ �
Z
X
Mij

dA
dhi

dE
dhj

d3xþ
Z
X

Mij

T
dA
ds

dE
dhi

dE
dhj

d3x

�
Z
X
Dijr dA

dhi
� r dE

dhj
d3xþ

Z
X

Dij

T
dA
ds

r dE
dhi

� r dE
dhj

d3x ð19Þ

where, in the above, hnþ1 ¼ s. By, once again, neglecting off diagonal
(cross) terms we produce the more manageable bracket for single
phase binary alloy solidification:

½A; E� ¼ �
Z
X
M

dA
d/

dE
d/

d3xþ
Z
X

M
T

dA
ds

dE
d/

dE
d/

d3x�
Z
X
Dr dA

dc

� r dE
dc

d3xþ
Z
X

D
T
dA
ds

r dE
dc

� r dE
dc

d3x�
Z
X

j
T
r dA

ds

� r dE
ds

d3xþ
Z
X

j
T2

dA
ds

r dE
ds

� r dE
ds

d3x: ð20Þ

The reduction to Eq. (20) coming from the diffusion matrices
specification:

h1
h2
h3

0B@
1CA ¼

/

c

s

0B@
1CA; M ¼

M 0 0
0 0 0
0 0 0

0B@
1CA; D ¼

0 0 0
0 D 0
0 0 j=T

0B@
1CA:

ð21Þ
The bracket is written in terms of enthalpy, E½/; c; s�, rather than

Gibbs free energy, F½/; c; T�, so that we can more easily specify the
non-linear terms that guarantee the generation of entropy is
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thermodynamically admissible, i.e. the three non-linear terms pro-
duce three strictly positive sources of entropy. This has the disad-
vantage, though, that the equation for the temperature field is
derived less directly. In deriving the temperature equation we
make use of generalised thermodynamic identities which bear an
obvious resemblance to equilibrium identities.

The generalised thermodynamic potentials are related by

F ¼
Z
X
f d3x ¼

Z
X
ðe� TsÞd3x ¼ E�

Z
X
Tsd3x; ð22Þ

where T is temperature and the enthalpy and free energy densities
are respectively e and f. From Eq. (22), following the methods of [7],
we can deduce the following generalised thermodynamic relations:

dF
d/

����
c;T

¼ dE
d/

����
c;s

;
dF
dc

����
/;T

¼ dE
dc

����
/;s

: ð23Þ

Eqs. (1) and (2) are recovered by using the chain rule for functionals

_A ¼
Z
X

dA
d/

_/þ dA
dc

_c þ dA
ds

_s
� �

d3x; ð24Þ

and matching coefficients of variational derivatives of the arbitrary
functional, A, as before. We also derive an equation for entropy
change by matching coefficients of dA

ds:

_s ¼ r � j
T
r dE

ds

� �
þM

T
dE
d/

dE
d/

þ j
T2 r

dE
ds

� r dE
ds

þ D
T
r dE

dc
� r dE

dc
:

ð25Þ
To form an equation for T alone we require the generalised thermo-
dynamic relations (also following the methods of [7])

T � dE
ds

����
c;/

; s � � dF
dT

����
c;/

; ð26Þ

which together with Eq. (23) gives

_sþr � Js ¼ r; ð27Þ
where

r ¼ M
T

dF
d/

dF
d/

þ j
T2 rT � rT þ D

T
r dF

dc
� r dF

dc
: ð28Þ

We see that there is a positive entropy source, r and a flux,
Js ¼ � j

T rT. Thus the flow of s is seen to be thermodynamically
admissible.

By assuming s ¼ � dF
dT ¼ � @f

@T the chain rule for the entropy den-
sity variables in terms of /, r/, c and T is

@s
@t

¼ _/
@s
@/

þ _c
@s
@c

þ _T
@s
@T

: ð29Þ

Using Eq. (27) in the new variables, along with Eq. (22), the phase
equation Eq. (1) and solute equation Eq. (2), we derive, in Appendix
A, the temperature equation:

C _T þr � q ¼ L _/þ K _c: ð30Þ

Here

Cð/; c; TÞ � T
@s
@T

����
/;c

; Lð/; c; TÞ � �dE
d/

����
c;T

;

Kð/; c; TÞ � �dE
dc

����
/;T

; ð31Þ

where s given by Eq. (26), and the heat flux is given by,

q � �jrT � D
dF
dc

r dF
dc

: ð32Þ
C is the generalised heat capacity function. The generalised latent
heat of fusion, L is related to the constant Latent heat, L0 by

L0 ¼
Z 1

0
Ld/

���� ����
TM

¼ EðTMÞliquid � EðTMÞsolid ð33Þ

where we use the absolute value because the sign of L depends on
the convention for the choice of / ¼ 0 and / ¼ 1. The use of L over
L0 allows for the value to change across the interface and also to
change as the interface temperature varies. The interface tempera-
ture is usually not known in advance and therefore the use of L0 is
not strictly correct. Allowing latent heat to vary across the interface
has been adopted by, for example, [2], but no authors to our knowl-
edge implement dependence on temperature.

For practical computation, we use Eq. (26) to give

@s
@c

¼ � @

@c
dF
dT

;
@s
@T

� � @

@T
dF
dT

ð34Þ

and Eq. (22) for the variational derivatives of enthalpy, E.
It is clear, in comparing Eq. (30) with Eq. (3), that there are

terms neglected in the standard phase field treatment. Define

Hc � r � D dF
dc

r dF
dc

þ K _c ð35Þ

and

H/ � L _/ ð36Þ
which gives on assuming s independent of r/

C _T ¼ r � jrT þ H/ þ Hc: ð37Þ
We conclude this subsection by observing that there are no free
parameters in the temperature equation, once the bracket and free
energy are specified: e.g. latent heat, L, is prescribed from the free
energy functional, F; heat diffusivity, j, from the bracket.

We look at the ratio of Hc to H/ over the whole domain in the
next subsection.

2.2. Example heating in Lead-Tin alloy

This section explores the significance of solute heating, Hc , as
compared with heating associated with phase change, H/, using
Pb-Sn alloy as an example. A convenient way of evaluating K is

K ¼ �dE
dc

����
/;T

¼ � 1� T
@

@T

� �
@f
@c

����
/;T

; ð38Þ

and similarly

L ¼ �dE
d/

����
c;T

¼ � 1� T
@

@T

� �
dF
d/

����
c;T

: ð39Þ

Note that the final term for L involves a variational derivative which
includes gradients. Normally, in this term, we set dF

d/ ¼ @f
@/ and this

omission is noted in [7], Chap. 10. However, we find that this term
only plays a role in the initial transients and therefore is negligible
for more steady simulations. For more details of the implementa-
tion see Appendix B.

We have a measure of the significance of Hc by inspecting the
ratio

r ¼
R
Hc d

3xR
H/ d

3x
: ð40Þ

at any moment in time. On inspection of the phase diagram for
Pb-Sn, see Fig. 1, we expect the largest contribution from Hc when
the partition coefficient, kE � cmin=cmax, local to the solidification
interface, is far from unity. This is when the temperature
approaches the eutectic temperature of 456 K. Using an initial



Fig. 1. Phase diagram for Pb-Sn.

Fig. 2. Phase and solute heating for Pb-Sn alloy. The heating is normalised using the
final phase heating value. The final ratio of solute to phase heating, r � 0:77.
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condition of c0 ¼ 0:4 and T ¼ 475 we find this ratio, at steady state,
to be (see Fig. 2) of the order

r � 0:77; ð41Þ
indicating that solute heating is indispensable when there is sub-
stantial partitioning in the simulation. This result appears indepen-
dent of interface width (d ¼ d0;2d0 and 4d0 were tried). However,
for an initial condition of c ¼ 0:3, implying a larger under cooling,
the ratio, was reduced to r � 0:2 and so is less significant.

In conclusion, we find solute heating can be a vital ingredient
for alloys with significant partitioning, but negligible for alloys
where partitioning is small (e.g. Ni-Cu).
3. Multiphase and multi-species models

The power and significance of the bracket approach lies not only
in offering an alternative formulation for deriving a thermodynam-
ically consistent temperature equation, but also that it offers a
straightforward method for generalising to more complex systems
– namely multiphase and general alloy (multispecies) solidification
with physically realistic expressions for free energy.

3.1. Multiphase models

Here we extend the bracket to multiphase binary alloys.
Applying the summation rule from here on, and using the same
simplification rule as in Eq. (20) the bracket becomes
½A; E� ¼ �
Z
X
Mab

dA
d/a

dE
d/b

d3xþ
Z
X

Mab

T
dA
ds

dE
d/a

dE
d/b

d3x�
Z
X
Dr dA

dc
� r dE

dc
d3xþ

Z
X

D
T
dA
ds

r dE
dc

� r dE
dc

d3x; �
Z
X

j
T
r dA

ds
� r dE

ds
d3xþ

Z
X

j
T2

dA
ds

r dE
ds

� r dE
ds

d3x;

ð42Þ
and the chain rule becomes

_A ¼
Z
X

dA
d/a

_/a þ dA
dc

_c þ dA
ds

_s
� �

d3x; ð43Þ
from which

_/a ¼ �Mab
dF
d/b

ð44Þ

and the variational equation for c is as before, Eq. (2). The
temperature equation generalises Eq. (30) to

C _T þr � q ¼ � dE
d/a

����
c;T

_/a � dE
dc

����
/;T

_c ð45Þ

where

q � �jrT � D
dF
dc

r dF
dc

ð46Þ

Note that the mobility has become tensorial, i.e. Mab, in the multi-
phase formulation: this must be a symmetric semi positive definite
matrix. The form ofMab used by [6] is equivalent to a Lagrange mul-
tiplier times a scalar mobility, but other forms that preserve the
connection with single phase and generalise to n-phase systems
are proposed in [11].

3.2. Multi species alloys

Clearly this procedure easily extends to multi species alloys, e.g.
ternary, where

P
aca ¼ 1. The result is very similar when

F ¼ RX f ð/;r/; c; TÞd3x. That is, Eq. (44) together with solute
concentration

_ca ¼ r � Dabr dF
dcb

ð47Þ
and temperature equation

C _T þr � q ¼ � dE
d/a

����
c;T

_/a � dE
dca

����
/;T

_ca ð48Þ

where,
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q � �jrT � Dab
dF
dca

r dF
dcb

ð49Þ

and Dab has to take into account the constraint on ca. For more

general free energies in the form F ¼ RX f ð/;r/; c;rc; TÞd3x the
variational forms above are unchanged.

4. New terms in single phase field models

The introduction of off diagonal (cross) terms in phase field is
not new and has been explored, for example, by [20]. The model
they advocate, in a notation close to ours for comparison, is

_/ ¼ �M11
dF
d/

þM11D12dðJ � r/Þ;

_c ¼ r � J;

J ¼ D22 r dF
dc

þ D21d _/r/

� �
: ð50Þ

In [20] the authors adopt the Onsager symmetry relations to give
D12 ¼ D21 > 0. This model in turn may be brought back to the Karma
model, [3], by setting D12 ¼ 0 and replacingr/ in the definition of J,
with the normal, r/=jr/j.

In order to more clearly explore the introduction of cross terms
generated by the bracket formulation we return to the simpler
isothermal system with bracket given by Eq. (12). The diffusion
coefficients, Dij are associated with Alan-Cahn like equations and
the mobilities, Mij with the Cahn-Hillard equations, so that we
obtain

_hi ¼ �Mij
dF
dhj

þr � Dijr dF
dhj

: ð51Þ

By setting i; j 2 ½1;2� and define ½h1; h2� ¼ ½/; c� we obtain

_/ ¼ �M11
dF
d/

�M12
dF
dc

þr � D11r dF
d/

þr � D12r dF
dc

_c ¼ �M21
dF
d/

�M22
dF
dc

þr � D21r dF
d/

þr � D22r dF
dc

:

ð52Þ

By observing that c is a conserved quantity we deduce that
M21 ¼ M22 ¼ 0. Moreover, by assuming symmetry of Mij we have
M12 ¼ 0. This leaves

_/ ¼ �M11
dF
d/

þ r � D11r dF
d/

þr � D12r dF
dc

� �
_c ¼ r � D22r dF

dc
þ r � D21r dF

d/

� � ð53Þ

An exploration of the significance of the new coefficients (shown in
curly brackets) will be postponed for future work. However, we do
note here that although such extra terms can arise simply by a lin-
ear transformation of variables of a system with only diagonal con-
tributions, the system in Eq. (53) cannot arise (see Appendix C).
Thus the introduction of the new terms represents a possible
enrichment of the current modelling approaches.

5. The full conservative-dissipative bracket

In this section we examine the methodology of the full bracket
using an example. The full bracket is a sum of the dissipative
bracket with the Poisson bracket for continuous systems (see the
final chapter Goldstein Classical Mechanics, [21]). The necessity
for introducing the full bracket comes about by the simple addition
of density into the formulation. The equation for density change
(mass conservation) is not dissipative and also involves flow,
and, thus, we also require the correct equation for momentum
change. Clearly there is coupling between the momentum equation
and the other variables. We focus on pure metals for illustration
and find, in line with other authors, that the stress tensor has a
dependence on phase, and that partial time derivatives become
convected derivatives.

5.1. Density dependent bracket

We begin with a free energy of the general form:

F ¼
Z
X
f ð/;r/; c; T;qÞd3x: ð54Þ

For illustration purposes, we discuss here the simplest model that
includes density variation due to change of phase.

The Poisson bracket for discrete particles as given in Eq. (7) is
generalised to continua by

fA;HgL ¼
Z
X

dA
dx

� dH
dp

� dA
dp

� dH
dx

� �
d3X: ð55Þ

The subscript, L, here indicates that the coordinates, X � ½X;Y; Z� are
Lagrangian, so that the Cartesian position, x is given as a function of
the material coordinates, X and time, s, i.e. x ¼ xðX;Y; Z; sÞ; t ¼ s.
The material coordinates, X are conventionally chosen to coincide
with x at a given reference time, say t ¼ 0, so that xðX; s ¼ 0Þ ¼ X.
Lagrangian coordinates are not convenient for fluid flow, however,
and we seek a bracket more suitable for a Hamiltonian in Eulerian
coordinates. In [7] chp. 5 the Hamiltonian for Euler flow is given by

H ¼
Z
X
hðp;q; sÞd3x ¼

Z
X

p � p
2q

þ epðq; x; tÞ þ uðq; sÞd3x: ð56Þ

Here q; s; ep;u are mass, entropy, potential and energy densities
respectively, and p ¼ qu is momentum density, where u is velocity.
The potential energy, ep, typically refers to gravitational potential.
The internal energy, u, is the recoverable energy transfer associated
with an idealised non-dissipative system and is related to volume
changes and pressure, p, by

p ¼ q
@u
@q

����
s

þ s
@u
@s

����
q
� u: ð57Þ

The transition to the Eulerian form of Poisson bracket is not trivially
derived from the Lagrangian form, Eq. (55). In [7] chp. 5 the authors
use a 3 dimensional dirac delta function to move between Lagran-
gian and Eulerian integrals and give the Poisson bracket appropriate
for the Hamiltonian of Eq. (56) as

fA;HgE ¼ �
Z
X

dA
dq

r � dH
dp

q
� �

� dH
dq

r � dA
dp

q
� �� �

d3x

�
Z
X

dA
ds

r � dH
dp

s
� �

� dH
ds

r � dA
dp

s
� �� �

d3x

�
Z
X

dA
dpa

r � dH
dp

pa

� �
� dH
dpa

r � dA
dp

pa

� �� �
d3x: ð58Þ

One feature of the Eulerian Poisson bracket not present in the
Lagrangian form is the explicit dependence on the independent
variables and the absence of the position as a variable.

Using H in Eq. (56) to give

dH
dp

¼ p
q
¼ u; ð59Þ

dH
ds

¼ @u
@s

; ð60Þ

dH
dq

¼ �p � p
2q2 þ @ep

@q
þ @u
@q

; ð61Þ
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together with the chain rule

_A ¼
Z
X

dA
dp

� _pþ dA
dq

_qþ dA
ds

_s
� �

; ð62Þ

leads to the following ideal fluid equations: mass flow

_q ¼ �r dH
dp

q
� �

¼ �r � ðquÞ; ð63Þ
entropy flow

_s ¼ �r � dH
dp

s
� �

¼ �r � ðsuÞ; ð64Þ
and momentum flow

_p ¼ �qr dH
dq

�r � dH
dp

� p
� �

�r dH
dp

� p� sr dH
ds

ð65Þ

or in components

_pa ¼ �q @

@xa

dH
dq

� @

@xb

dH
dpb

pa

� �
� pb

@

@xa

dH
dpb

� s
@

@xa

dH
ds

: ð66Þ

Using the equation for p in Eq. (57) and the mass equation, Eq. (63),
it can be shown (see [7] Chap. 5) that the momentum equation is

q _uþ u � ruð Þ ¼ �rp� qrep; ð67Þ
but we will drop the potential energy in the model from now on to
focus on the fluid phase field interaction and write

q _uþ u � ruð Þ ¼ �rp: ð68Þ
We now wish to incorporate the phase variable into the Poisson
bracket. Inspecting the methods of [7] for the density variables, q,
s, p we can only apply this identically to the phase variable if we
require / to be a density and so vary under compression/expansion
in a similar manner to s.

Our approach is to define an intermediate density variable, q/,
use an identical approach in the Poisson bracket for entropy den-
sity, s, and then derive the phase field equations from the relation-
ship between q/ to /. The phase field is then seen as a mass
fraction. A similar approach is applied to solute concentration.
Such phase densities obey their own conservation law (see [24]
for further detailed discussion)

_q/ ¼ �rðq/u/Þ ð69Þ
where u/ maybe thought of as the particle velocity of a particular
phase and is only equal to the average velocity u in a small fluid ele-
ment when there is no phase change.

We may define both the phase and solute variables by

ai ¼ qi
a

q
; i ¼ 1;2; . . . ð70Þ

where a is / or c. For just two phases and species, we use the nota-
tion and relations:

/ � /1 ¼ q1
/=q � q/=q ð71Þ

and

c � c1 ¼ q1
c � qc=q; ð72Þ

whereq/ is a phase density, andqc is a concentrationdensity. So it fol-
lows that the Poissonbracket forq/ andqc is, in analogy to s in Eq. (58)

fA;Hg/;cE ¼ �
Z
X

dA
dq/

r � dH
dp

q/

� �
� dH
dq/

r � dA
dp

q/

� �" #
d3x

�
Z
X

dA
dqc

r � dH
dp

qc

� �
� dH
dqc

r � dA
dp

qc

� �� �
d3x: ð73Þ
With this additional contribution, in analogy with Eq. (64), the
Poisson bracket alone produces equations:

_q/ ¼ �r � ðq/uÞ;

_qc ¼ �r � ðqcuÞ: ð74Þ

Note that, without any dissipation, both densities are conserved.
For a Hamiltonian consisting of only a kinetic term and isother-

mal free energy (as seen in Section 2, in models where temperature
and entropy flow is of no importance the free energy, F, and the
enthalpy, E, are interchangeable)

H½q;p;q/;qc� ¼
Z
X

p � p
2q

d3xþ F

¼
Z
X

p � p
2q

þ f ðq/;rq/;qc;qÞ
� �

d3x: ð75Þ

Here we work with free energy density, f, in place of internal
energy, u, and [7] show that, for reversible systems, pressure is
related more simply to the free energy:

p ¼ q
@f
@q

� f ; ð76Þ

which we expect to be modified by dissipative contributions. With
the addition of the Poisson bracket, the full bracket is defined,

½fA;Hg� � fA;Hg þ ½A;H�
¼ fA;Hg þ ½A; F�; ð77Þ

where the slightly cumbersome notation for the full bracket used in
[7] is also adopted here. It should be noted in the above that the dis-
sipation does not contain any dissipative terms associated with
mass density even though F is dependent on q.

The full bracket gives for the phase density

_q/ ¼ �r � ðq/uÞ � eM dF
dq/

) Dq/

Dt
¼ �q/r � u� eM dF

dq/

¼ q/

q
Dq
Dt

� eM dF
dq/

) q
Dðq/=qÞ

Dt
¼ � eM dF

dq/

; ð78Þ

where we used the following identity, for an arbitrary scalar or vec-
tor field, V

DV
Dt

� _V þ u � rV : ð79Þ

and the mass conservation equation, Eq. (63), written in the form

Dq
Dt

¼ �qr � u: ð80Þ

One simple choice is eM ¼ q2M, where M is the mobility for a con-
stant density system. This choice, together with the chain rule

d
dq/

¼ @/
@q/

d
d/

¼ 1
q

d
d/

; ð81Þ

gives

D/
Dt

¼ �M
dF
d/

: ð82Þ

Now, the additional term to the right hand side of the momen-
tum equation, Eq. (68), due to the contribution of phase density in
the dissipative bracket, is
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�q/r
dH
dq/

¼�q/r
dF
dq/

¼�r q/

dF
dq/

 !
þ dF
dq/

rq/

¼�r q/

dF
dq/

 !
þ @f

@q/

�r� @f
@rq/

 !
rq/

¼�r q/

dF
dq/

 !
þ @f
@q/

rq/þ
@f

@rq/

rrq/�r� @f
@rq/

�rq/

 !

¼�r q/

dF
dq/

 !
þrf �r� @f

@rq/

�rq/

 !

¼�r q/

dF
dq/

 !
þrf þr�T; ð83Þ

where we used

rf ðq/;rq/Þ ¼
@f
@q/

rq/ þ @f
@rq/

� rrq/; ð84Þ

and defined

T ¼ � @f
@rq/

�rq/: ð85Þ

This implies that the momentum equation Eq. (68) becomes

q
Du
Dt

¼ �r q
@f
@q

� �
� q/r

dF
dq/

¼ �rpþr � T ð86Þ

where the reversible pressure given in Eq. (76), is now modified to
include dissipation, to

p � q
@f
@q

þ q/

dF
dq/

� f : ð87Þ

Finally, we convert all the above to the phase variable, using the
mapping

/ ¼ q/=q;

r/ ¼ rq/

q
� q/

q2 rq; ð88Þ

and its inverse. Using the chain rules induced by the above, and that
f ¼ f ðq;q/;rq/Þ, i.e. the free energy includes no gradients of q, we
have

p ¼ q
@f
@q

����
q/

þ q/

dF
dq/

� f

¼ q
dF
dq

����
q/

þ q/

dF
dq/

� f

¼ q
dF
dq

����
/

� /
dF
d/

 !
þ /

dF
d/

� f

¼ q
dF
dq

����
/

� f ; ð89Þ

which, assuming there is no gradient of density in the free energy, is

p ¼ q
@f
@q

����
/

� f : ð90Þ

Note that the notation, @f
@q

���
q/

and @f
@q

���
/
replaces the less precise, @f

@q,

above where there is scope for ambiguity.
To obtain the stress we use the chain rule

@

@rq/

¼ 1
q

@

@r/
ð91Þ
and

rq/ ¼ qr/þ /rq; ð92Þ
to give

T ¼ � @f
@rq/

�rq/

¼ � @f
@r/

�r/þ /
q

@f
@r/

�rq: ð93Þ

Here the stress, in general, is not symmetric, but note that for an
isotropic term in the free energy, with the gradient dependent
term equal to 1

2 �
2r/ � r/, the stress tensor,

T ¼ ��2r/�r/ ðisotropicÞ; ð94Þ
is symmetric. This result may be compared with the stress given
without flow in [22] (but note the difference in sign). The bracket
approach may be compared with the methods and results of [23].
However, in both these references the second term involving the
effects of compressibility is absent. The irreversible isotropic stress
component given in Eq. (94), can be compared with the reversible
stress component for varying density in phase transitions between
liquid and vapour system, proportional to rq�rq. This classical
reversible stress component has been known for more than a cen-
tury, [17], and discussed in [18]

We pursue the equation for solute concentration, c, in a similar
manner to that of / (but without the complication of gradients,
rc). Using a concentration density, qcð¼ qcÞ we find the Poisson
bracket alone, in an identical way to entropy density, gives

_qc ¼ �r � ðqcuÞ ð95Þ
which can be written

Dqc

Dt
¼ �qcr � u: ð96Þ

Adding the dissipative contribution modifies this to

Dqc

Dt
¼ �qcr � uþr � q2Dr @f

@qc
; ð97Þ

where we have made explicit a density dependence in the solute
diffusion to keep the physical dimensions consistent, and assumed
no gradients of qc in the free energy density. As with the phase
equation, using the mass equation Eq. (63), allows us to rewrite this
in terms of the order parameter, c, and thus, the solute equation of
Eq. (2) is modified to

q
Dc
Dt

¼ r � q2Dr 1
q

@f
@c

� �
: ð98Þ

The coefficient D is decomposed into a diffusion term, a (units
m2/s), density q, the molar gas constant R, along with a reference
molar volume, mm and temperature, T0, as

D ¼ a
qmmRT0

ð99Þ

The free energy density, f is assumed to have units J/m3. The val-
ues for the bulk free energies arising from a database are typically
in units of J/mol which is readily converted to units of J/kg using
molecular weights and/or the molar volume, mm, of the species.
Let us assume then that the natural free energy quantity from data-

bases is f̂ which has units of J/kg and assumed to have no depen-
dence on density. Then using

f ¼ qf̂ ð100Þ
allows us to write
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q
Dc
Dt

¼ r � eDr @ f̂
@c

 !
; ð101Þ

where

eD � qa
mmRT0

¼ q2D: ð102Þ

The stress Eq. (93) and pressure Eq. (76) remain the same but with
the modified free energy density, f ¼ f ð/;r/;q; cÞ, meaning that
pressure, in the momentum equation, will depend on the extra
variable.

The above has a rather obvious extension to multiphase sys-
tems, where, for example, stress becomes

T ¼ � @f
@r/a

�r/a þ
/a

q
@f

@r/a
�rq: ð103Þ

To extend the single phase case to include a temperature field we
write the Hamiltonian, Eq. (75) as

H½q;p;/; c; s� ¼
Z
X

p � p
2q

d3xþ E

¼
Z
X

p � p
2q

þ eð/;r/;q; sÞ
� �

d3x ð104Þ

and extending the methods leading to the temperature equation,
Eq. (30) in Section 2, to depend on q, we find from Eq. (64) that

Ds
Dt

¼ �sr � u ¼ s
q
Dq
Dt

; ð105Þ

using Eq. (63), and the chain rule extends as

Ds
Dt

¼ @s
@/

D/
Dt

þ @s
@c

Dc
Dt

þ @s
@q

Dq
Dt

: ð106Þ

This results in material derivatives and an extra term due to the
density, J Dq

Dt in the temperature equation

C
DT
Dt

¼ �r � qþ L
D/
Dt

þ K
Dc
Dt

þ J
Dq
Dt

ð107Þ

where C, L, K , q are defined as before and the new term is taken
from Eqs. (106) and (107) (on multiplying by T) to give

J
Dq
Dt

¼ sT
q

Dq
Dt

� T
@s
@q

Dq
Dt

; ð108Þ

so that

J � 1
q
� @

@q

� �
ðsTÞ ð109Þ

where the thermodynamic identity for entropy is extended to

s � � dF
dT

¼ �@f
@T

����
q;/;c

: ð110Þ

For multi-phase, multi-species systems, clearly the temperature
equation of Eq. (48) is extended thus

C
DT
Dt

þr � q ¼ La
D/a

Dt
þ Ka

Dca
Dt

þ J
Dq
Dt

; ð111Þ

where

La � � dE
d/a

����
q;c;T;/b–a

; Ka � � dE
dca

����
q;/b ;T;cb–a

: ð112Þ
5.2. Free energy density construction

The purpose of this subsection is to suggest how to construct
the free energy when density is included, i.e. how to extend from
constant density models. The main assumption is that a data base
will give free energy of each phase of matter in units of Joules per
Mole. Since the free energy density is in Joules per volume the gen-
eralisation is primarily a matter of the correct placement of density
and the number of moles per unit mass.

For simplicity we choose an isothermal single phase binary
alloy with free energy functional:

F ¼
Z
X
f ð/;r/; c;qÞd3x ð113Þ

where the free energy density is given in terms of its surface and
volume components by

f ¼ f Sðr/Þ þ f V ð/; c;qÞ: ð114Þ
For anisotropic solidification we have

f S ¼ 1
2
j�Aðr/Þr/j2 ð115Þ

where � is a constant surface energy term and, for example, a cubic
symmetry is incorporated by

Aðr/Þ � 1� 3aþ 4aðn4
x þ n4

yÞ=jnj4; n � r/
jr/j ; ð116Þ

where a governs the strength of anisotropy (e.g. a � 0:02 see [26]).
The volume term is given by

f V ¼ q gð/Þf Vsolðc; TÞ þ gð1� /Þf Vliqðc;TÞ
h i

ð117Þ

where T is the isothermal temperature,

f Vi ¼ mðcÞf Vi;mol; ð118Þ
with

mðcÞ � ð1� cÞmA þ cmB; ð119Þ
and mA being the moles per mass of each alloy species.

With this definition of the free energy the governing equations
are given by

D/
Dt

¼ �MðcÞ dF
d/

; ð120Þ

where the mobility is given by

MðcÞ � ð1� cÞMA þ cMB: ð121Þ
The solute equation is (see previous subsection for definition of eD
and f̂ )

q
Dc
Dt

¼ r � eDð/; c;qÞr @ f̂
@c

; ð122Þ

where

eDð/; c;/Þ ¼ q /Dsol þ ð1� /ÞDliq
	 


cð1� cÞ
RT0mðcÞ ; ð123Þ

Dsol � Dliq are the solute diffusion constants and R is the molar gas
constant.

Mass continuity is

_q ¼ �r � ðquÞ; ð124Þ
and momentum continuity by

q
Du
Dt

¼ �rpþr � T ð125Þ

where pressure is given by

p ¼ q
@f
@q

� f ¼ �f Sðr/Þ ¼ �1
2
j�Ar/j2 ð126Þ

and stress by
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T � � @f
@r/

�r/þ /
q

@f
@r/

�rq; ð127Þ

where

@f
@r/

¼ @f S

@r/
¼ �2A2r/þ �2Ajr/j2 @A

@r/
: ð128Þ

It is to be expected in most situations that jrq=qj � jr/j and so
the second term in stress may legitimately dropped. Using the nota-
tion r/ � ½/;1;/;2;/;3�T and

@A
@r/

� @A
@/;1

;
@A
@/;2

;
@A
@/;3

� �T
; ð129Þ

it can be shown (see [26]) for explanation and also divergence of
this term that

@A
@/;i

¼ 4/;i

jr/j2 4a
/2

;i

jr/j2 � Aþ 1� 3a

 !
: ð130Þ
6. Conclusions

We have presented the bracket formulation in the context of
the phase field method in alloy solidification. Its main use being
the ability to build phase field models in all generality whilst keep-
ing the thermodynamics consistent. We have illustrated the proce-
dure beginning with the simplest models of alloy solidification and
then extending to modelling non-isothermal, multi-phase and
multi-solute materials. Density dependence introduces reversible
(non-dissipative) behaviour into the system and the bracket pro-
vides a comprehensive framework for this coupling. Clearly the
formalism applies to more complicated models such as complex
fluids with phase change.

The key advantages of using the bracket approach can be
summarised:

	 Natural extension to non-isothermal models.
	 Provides a general framework for phase field modelling.
	 The opportunity to add more generality to phase field
modelling.

and the specific contributions of this paper are to:

	 Produce a thermodynamically correct temperature equation for
single and multi phase models and density dependent models.

	 Highlight the importance of solute heating in the temperature
equation, providing one example where this heating is essential
and thereby suggesting that this term is probably significant in
all but the simplest materials.

	 Write down the equations for phase field modelling when den-
sity is included. This provides a model for when density varies
between phases and will have its key application in 3 dimen-
sions where buoyancy is of major concern.
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Appendix A. Mathematical derivation of Eq. (30)

Beginning with Eq. (25) multiplying by T gives

T _s ¼ Tr � j
T
r dE

ds

� �
þM

dE
d/

dE
d/

þ j
T
r dE

ds
� r dE

ds
þ Dr dE

dc
� r dE

dc

¼ r � jr dE
ds

� �
� j

T
rT � r dE

ds
þM

dE
d/

dE
d/

þ j
T
r dE

ds
� r dE

ds
þ Dr dE

dc
� r dE

dc

¼ r � jrT þM
dE
d/

dE
d/

þ Dr dE
dc

� r dE
dc

; ð131Þ

where the last simplification came from using the first relation from
Eq. (26) to cancel terms.

We now use Eqs. (1) and (23) to write

M
dE
d/

����
s;c

dE
d/

����
s;c

¼ M
dF
d/

����
T;c

dF
d/

����
T;c

¼ � _/
dF
d/

����
T;c

: ð132Þ

Similarly we use Eqs. (2) and (23) to rewrite

DrdE
dc

����
/;s

� rdE
dc

����
/;s

¼ rdF
dc

����
/;T

� Dr dF
dc

����
/;T

¼ r � D dF
dc

r dF
dc

� dF
dc

r � Dr dF
dc

¼ r � D dF
dc

r dF
dc

� dF
dc

_c: ð133Þ

Now, the relations coming from Eq. (22) imply

dF
dc

¼ dE
dc

� T
@s
@c

; ð134Þ

dF
d/

¼ dE
d/

� T
@s
@/

; ð135Þ

(all in the T; c;/ space) and the chain rule, Eq. (29), for s is

T _s ¼ T
@s
@/

_/þ T
@s
@c

_c þ T
@s
@T

_T: ð136Þ

So that starting from Eq. (131) together with Eqs. (132) and (133),
we collect terms in _/ and _c on the right hand side, and apply Eqs.
(134) and (135). For example, collecting terms in _/ gives

�T
@s
@/

� dF
d/

� �
_/ ¼ � dE

d/
_/ ð137Þ

and similarly in _c. Finally, using the definitions Eq. (31) and the heat
flux relation, Eq. (32) we obtain the heat equation Eq. (30).

Appendix B. Detail of the Pb-Sn model

In our simulations, using an implementation based on [26] we
used slightly modified parameters from the isothermal model of
[25] in our thermal model (for Lead (A), tin(B)): Mobility (m3/J)

MA ¼ T AlA

6
ffiffiffi
2

p
LAdA

; MB ¼ T AlB

6
ffiffiffi
2

p
LBdB

: ð138Þ

For surface energy (J/m) we take

�A ¼ 6
ffiffiffi
2

p
rAdA; �B ¼ 6

ffiffiffi
2

p
rBdB ð139Þ

and energy barrier (J/m3) in the double well potential

WA ¼ 3rAffiffiffi
2

p
dA

; WA ¼ 3rBT Affiffiffi
2

p
dBTB : ð140Þ
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Solute diffusion is given by

D ¼ /Dsol
c þ ð1� /ÞDliq

c

RT0
ð141Þ

where we assume the free energy is in J/mol for the solute equation
and convert to J/m3 for the phase field equation using
m ¼ ð1� cmA þ cmB.

It remains to specify the free energy density,

f ¼ 1
2
�jAðr/Þr/j2 þW/2ð1� /Þ2 þ gð/Þf liq þ ð1� gð/ÞÞf sol

ð142Þ
where using i ¼ liq; sol,

f i ¼ ð1� cÞhA
i ðTÞ þ chB

i ðTÞ þ hRK
i ðc; TÞ: ð143Þ

The Gibbs expansions are

hAðBÞ
i ¼

X8
j¼1

hAðBÞ
ij Tj; ð144Þ

where

Tj¼1;8 ¼ ½1; T; T ln T; T2; T3;1=T; T7;1=T9�: ð145Þ
The Redlich-Kister terms are

hRK
i ðc; TÞ ¼ ðha

ij þ Thb
ijÞKjðcÞ ð146Þ

where

Kj ¼
cð1� cÞ j ¼ 1
ð1� 2cÞKj�1 j > 1:

�
ð147Þ

We will not give the thermodynamic coefficients, hA
i , h

B
i , h

a
ij and hb

ij,
which can be found in a data base such as MTDATA, [27], which also
gives the phase diagram shown in Fig. 1. Table 1 provides informa-
tion and parameters used in the simulation. We remind the reader
that the aim of this simulation is to indicate the relevance of solute
heating in general, not to give a physically accurate simulation of
Pb-Sn solidification per se. Nonetheless, we choose physically
Table 1
Table of parameters used in our simulation for demonstrating the significance of
solute heating in Lead-Tin solidification.

Parameter Variable Value

Molar gas constant R 8.31 m2 kg/s2/K/mol
Boundary temp T0 475 K

Lead melting temp TA 600 K
Tin melting temp. TB 505 K

Boundary and initial solute c0 0.4
Characteristic time s 0.03293 ns
Characteristic speed v 0.03293 ns
Characteristic length L 1 nm

Characteristic diffusivity a 0:30366
 10�7 m2/s
Diffusivity liquid Dliq

c 10�9 m2/s
Diffusivity solid Dsol

c 10�13 m2/s
Lewis number Le � j=D1

c
100

Anisotropy a 0.02
Kinetic coefficient Pb and Sn lAðlBÞ 0.4 m/(Ks)

Surface energy-Pb(Sn) rAðrBÞ 0.033(0.059) J/m2

Initial radius q0 10 L
Domain size 1000 L
 1000 L
Mesh size Dx 0.78 L
Time step Dt 0:5s

Capillary length d0 0.5 nm
Interface width Pb dA 2d0
Interface width Sn dB dAðTB=TAÞðrA=rBÞ

Latent heat LAðLBÞ 2:6ð4:3Þ 
 108 J/m3

Moles per vol mAðmBÞ 54,730(61,505) mol/m3
realistic values where possible. The choice of the very small value
for interface width, d � 2d0 allows a reasonably realistic kinetic
coefficient, l � 0:4 m/(Ks), which is slightly lower than, say, [2]
l � 2 m/(Ks), but, inline with [25], is still expedient for computa-
tion. The Lewis number, Le ¼ 100, in particular, is far less than phys-
ically realistic, Le ¼ 10;000, but we judge the value used to be high
enough to judge the significance of the relative strength of the heat-
ing sources. The mesh size, though insufficient for very accurate
measurement of, say, tip velocity and radius, appears sufficient to
resolve the solute field and demonstrate the significance of solute
heating. The value initial solute value of c0 ¼ 0:4 together with
T ¼ 475 K were chosen to maximise the solute heating effect. Char-
acteristic values are chosen for computational reasons, the surface
energy comes from [28] and others are typical in the literature,
e.g. [25].

Appendix C. Cross terms due to linear transformation

We wish to explore the possibility that a linear transformation
between the phase variable, / 2 ½0;1�, and the conserved solute
variable, c 2 ½0;1� to new variables, say w1 and w2, leads to cross
terms if the transformed variables, wi, have the same properties,
w1, w2 2 ½0;1� with w2 conserved.

Writing v1 ¼ /, v2 ¼ c, we begin with the general isothermal
model

_va ¼ �Mab
dF
dvb

þr � Dabr dF
dvb

; ð148Þ

which we may write in matrix notation as

_v ¼ �M
dF
dv

þr � Dr dF
dv

: ð149Þ

The familiar isothermal solute model with only diagonal terms is
returned on setting

M ¼ M 0
0 0

� �
; D ¼ 0 0

0 D

� �
: ð150Þ

Now consider a symmetric linear transformation

w ¼ Av: ð151Þ
Then upon substitution of Eq. (151) into (149) gives

A�1 _w ¼ �MA
dF
dw

þr � DAr dF
dw

; ð152Þ

so that

_w ¼ �N
dF
dw

þr � Er dF
dw

: ð153Þ

where N ¼ AMA and E ¼ ADA. If we assume that both v1, v2 2 ½0;1�
and w1, w2 2 ½0;1� this means that the transformation is limited to

A ¼ a 1� a

1� a a

� �
ð154Þ

If furthermore we limit our transformation so that both v2ð¼ cÞ and
w2 are conservative we are left with A ¼ I and wi ¼ v i.

We conclude that cross terms do not naturally arise from a lin-
ear transformation of variables and hence that the introduction of
cross terms is indeed a change to the model.
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