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Abstract

We investigate the stability of Pexiderized mappings in Banach modules over a unital Banach al-
gebra. As a consequence, we establish the Hyers–Ulam stability of the orthogonal Cauchy functional
equation of Pexider type f1(x + y) = f2(x) + f3(y), x ⊥ y in which ⊥ is the orthogonality in the
sense of Rätz.
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1. Introduction

Assume that X is a real inner product space and f :X → R is a solution of the orthogo-
nal Cauchy functional equation f (x + y) = f (x) + f (y), 〈x, y〉 = 0. By the Pythagorean
theorem, f (x) = ‖x‖2 is a solution of the conditional equation. Of course, this function
does not satisfy the additivity equation everywhere. Thus orthogonal Cauchy equation is
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not equivalent to the classic Cauchy equation on the whole inner product space. This phe-
nomenon may show the significance of study of orthogonal Cauchy equation.

G. Pinsker characterized orthogonally additive functionals on an inner product space
when the orthogonality is the ordinary one in such spaces [16]. K. Sundaresan generalized
this result to arbitrary Banach spaces equipped with the Birkhoff–James orthogonality [20].
The orthogonal Cauchy functional equation

f (x + y) = f (x) + f (y), x ⊥ y, (♥)

in which ⊥ is an abstract orthogonality relation was first investigated by S. Gudder and
D. Strawther [6]. They defined ⊥ by a system consisting of five axioms and described the
general semi-continuous real-valued solution of conditional Cauchy functional equation. In
1985, J. Rätz introduced a new definition of orthogonality by using more restrictive axioms
than of S. Gudder and D. Strawther. Moreover, he investigated the structure of orthogonally
additive mappings [18]. In the next step, J. Rätz and G. Szabó investigated the problem in
a rather more general framework [19].

In the recent decades, stability of functional equations have been investigated by many
mathematicians. They have so many applications in Information Theory, Physics, Eco-
nomic Theory and Social and Behaviour Sciences; cf. [1,12].

The first author treating the stability of the Cauchy equation was D.H. Hyers [7] by
proving that if f is a mapping from a normed space X into a Banach space satisfying
‖f (x + y) − f (x) − f (y)‖ � ε for some ε > 0, then there is a unique additive mapping
g :X → Y such that ‖f (x) − g(x)‖ � ε. Since then, the stability problem of the Cauchy
equation has been extensively investigated by many mathematicians; cf. [8]. A generalized
version of Cauchy equation is the equation of Pexider type f1(x + y) = f2(x) + f3(y).
Y.H. Lee, K.W. Jun, D.S. Shin and B.D. Kim obtained the Hyers–Ulam–Rassias stability
of this Pexider equation; cf. [9,10]. In addition, the stability of the linear and quadratic
mappings in Banach modules were studied by C.-G. Park [14,15].

R. Ger and J. Sikorska [5] investigated the orthogonal stability of the Cauchy functional
equation f (x + y) = f (x) + f (y), namely, they showed that if f is a function from an
orthogonality space X into a real Banach space Y , ε > 0 is given and for all x, y ∈ X with
x ⊥ y, ‖f (x + y) − f (x) − f (y)‖ � ε, then there exists exactly one orthogonally additive
mapping g :X → Y such that for all x ∈ X, ‖f (x) − g(x)‖ � 16

3 ε.
One of the significant conditional equations is the so-called orthogonal Cauchy func-

tional equation of Pexider type,

f1(x + y) = f2(x) + f3(y), x ⊥ y. (♦)

In the present paper, we investigate the stability of Pexiderized mappings in Banach mod-
ules over a unital Banach algebra and as a consequence we establish the stability of
orthogonal Pexiderized Cauchy functional equation in the spirit of Hyers–Ulam. Thus we
generalize the main theorem of [5].

Throughout the paper, R and R+ denote the sets of real and nonnegative real numbers,
respectively. A is a unital real Banach algebra with unit 1 and unit sphere A1. In addition,
all modules are assumed to be unit linked real left modules over A. The reader is referred
to [4] for more details on the theory of Banach modules.
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2. Preliminaries

There are several orthogonality notions on a real normed space such as Birkhoff–James,
Boussouis, (semi-)inner product, Singer, Carlsson, area, unitary-Boussouis, Roberts,
Pythagorean, isosceles and Diminnie (see, e.g., [2,3]).

Let us recall the orthogonality in the sense of J. Rätz; cf. [18].
Suppose X is a real vector space (algebraic module) with dimX � 2 and ⊥ is a binary

relation on X with the following properties:

(O1) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X;
(O2) independence: if x, y ∈ X − {0}, x ⊥ y, then x, y are linearly independent;
(O3) homogeneity: if x, y ∈ X, x ⊥ y, then αx ⊥ βy for all α,β ∈ R;
(O4) the Thalesian property: if P is a 2-dimensional subspace of X, x ∈ P and λ ∈ R+,

then there exists y0 ∈ P such that x ⊥ y0 and x + y0 ⊥ λx − y0.

The pair (X,⊥) is called an orthogonality space (module). By an orthogonality normed
space (normed module) we mean an orthogonality space (module) having a normed
(normed module) structure.

Some interesting examples are:

(i) The trivial orthogonality on a vector space X defined by (O1), and for nonzero ele-
ments x, y ∈ X, x ⊥ y if and only if x, y are linearly independent.

(ii) The ordinary orthogonality on an inner product space (X, 〈. , .〉) given by x ⊥ y if and
only if 〈x, y〉 = 0.

(iii) The Birkhoff–James orthogonality on a normed space (X,‖.‖) defined by x ⊥ y if
and only if ‖x + λy‖ � ‖x‖ for all λ ∈ R.

Let X be a vector space (an orthogonality space) and (Y,+) be an Abelian group.
A mapping f :X → Y is called (orthogonally) additive if it satisfies the so-called (orthog-
onal) Cauchy function equation f (x + y) = f (x) + f (y) for all x, y ∈ X (with x ⊥ y).
Further, if X and Y are modules and f (ax) = af (x) for all a ∈ A and x ∈ X, then f is
called A-linear. A mapping f :X → Y is said to be (orthogonally) quadratic if it satisfies
the so-called (orthogonally) quadratic function equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) for all x, y ∈ X

(with x ⊥ y). Further, if X and Y are modules and f (ax) = a2f (x) for all a ∈ A and
x ∈ X, then f is called A-quadratic.

In 1985, Rätz gave the following significant result (cf. [18, Corollary 7]).

Theorem (∗). If (Y,+) is uniquely 2-divisible (i.e., the mapping ω :Y → Y , ω(y) = 2y

is bijective), in particular, a vector space, then every solution f of the orthogonally
additive functional equation (♥) has the form f = Q + T with Q quadratic and T ad-
ditive.
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3. Orthogonal stability in Banach modules

In this section, applying some ideas from [5,11,14] and using sequences of Hyers’ type
[7] being a useful tool in the theory of stability of equations (see also [13]), among several
things, we deal with the conditional stability problem for equation (♦).

Lemma 1. Suppose (X,⊥) is an orthogonality module and (Y,‖.‖) is a real Banach mod-
ule. Let F1,F2,F3 :X → Y be even mappings fulfilling∥∥F1(ax + ay) − a2F2(x) − a2F3(y)

∥∥ � ε (1)

for some ε, for all a ∈ A1 and for all x, y ∈ X with x ⊥ y. Assume that Fi(0) = 0,
i = 1,2,3. Then there exists a unique quadratic mapping Q :X → Y such that

∥∥F1(x) − Q(x)
∥∥ � 13

3
ε,

∥∥F2(x) − Q(x)
∥∥ � 16

3
ε,

∥∥F3(x) − Q(x)
∥∥ � 16

3
ε

for all x ∈ X. Moreover, Q(ax) = a2Q(x) for all a ∈ A1, x ∈ X.

Proof. For every x ∈ X, x ⊥ 0. So we can put a = 1 and y = 0 in (1) to obtain∥∥F1(x) − F2(x)
∥∥ � ε, x ∈ X. (2)

Similarly, we can put a = 1 and x = 0 in (1) to obtain∥∥F1(y) − F3(y)
∥∥ � ε, y ∈ X. (3)

If x ⊥ y, then by (O3) x ⊥ −y. Hence, we can put a = 1 and replace y by −y in (1) to get∥∥F1(x − y) − F2(x) − F3(y)
∥∥ � ε, x ⊥ y. (4)

Let a ∈ A1 and x ∈ X be fixed. By (O4) there exists y0 ∈ X such that x ⊥ y0 and x + y0 ⊥
x − y0. Replacing x and y by x + y0 and x − y0 in (1), we have∥∥F1(2ax) − a2F2(x + y0) − a2F3(x − y0)

∥∥ � ε. (5)

By (O3), (x + y0)/2 ⊥ ±(x − y0)/2 and so by using (1) with a = 1, we obtain∥∥∥∥F1(x) − F2

(
x + y0

2

)
− F3

(
x − y0

2

)∥∥∥∥ � ε,

∥∥∥∥F1(y0) − F2

(
x + y0

2

)
− F3

(
y0 − x

2

)∥∥∥∥ � ε,

whence, by virtue of triangular inequality, we get∥∥F1(y0) − F1(x)
∥∥ � 2ε. (6)

It follows from
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∥∥F1(2ax) − a2F1(x + y0) − a2F1(x − y0)
∥∥

�
∥∥F1(2ax) − a2F2(x + y0) − a2F3(x − y0)

∥∥
+ ∥∥a2F2(x + y0) − a2F1(x + y0)

∥∥ + ∥∥a2F3(x − y0) − a2F1(x − y0)
∥∥

and (2), (3) and (5) that∥∥F1(2ax) − a2F1(x + y0) − a2F1(x − y0)
∥∥ � 3ε. (7)

It follows from∥∥F1(x − y0) + F1(x + y0) − 4F1(x)
∥∥

�
∥∥F1(x − y0) − F2(x) − F3(y0)

∥∥ + ∥∥F1(x + y0) − F2(x) − F3(y0)
∥∥

+ 2
∥∥F2(x) − F1(x)

∥∥ + 2
∥∥F3(y0) − F1(y0)

∥∥ + 2
∥∥F1(y0) − F1(x)

∥∥
and (1)–(4) and (6) that∥∥F1(x − y0) + F1(x + y0) − 4F1(x)

∥∥ � 10ε. (8)

It follows from (7), (8) and∥∥F1(2ax) − 4a2F1(x)
∥∥ �

∥∥F1(2ax) − a2F1(x + y0) − a2F1(x − y0)
∥∥

+ ∥∥a2F1(x − y0) + a2F1(x + y0) − 4a2F1(x)
∥∥

that ∥∥F1(2ax) − 4a2F1(x)
∥∥ � 13ε. (9)

Putting a = 1 in (9) and using induction, we infer that

∥∥4−nF1
(
2nx

) − F1(x)
∥∥ �

(
1 − 1

4n

)
13ε

3
. (10)

Hence {4−nF1(2nx)} is a Cauchy sequence in the Banach space Y and so is convergent. Set
φ(x) := limn→∞ 4−nF1(2nx). By (10), ‖φ(x) − F1(x)‖ � 13ε

3 . Applying inequality (2),
we get ‖4−nF1(2nx) − 4−nF2(2nx)‖ � ε

4n , whence φ(x) = limn→∞4−nF2(2nx). Simi-
larly, it follows from (3) that φ(x) = limn→∞ 4−nF3(2nx).

For all x, y ∈ X with x ⊥ y, inequality (1) yields∥∥4−nF1
(
2n(x + y)

) − 4−nF2
(
2nx

) − 4−nF3
(
2ny

)∥∥ � 4−nε.

Taking the limit, we deduce that φ(x + y) − φ(x) − φ(y) = 0. Hence φ is orthogonally
additive. Theorem (∗) states that φ can be expressed as the sum Q + S of a quadratic and
an additive mapping. Hence ‖Q(x) + S(x) − F1(x)‖ � 13ε

3 . Since F1 is an even function
and Q(−x) = Q(x), we have

∥∥S(x)
∥∥ � 1

2

∥∥Q(x) + S(x) − F1(x)
∥∥ + 1

2

∥∥−Q(−x) − S(−x) + F1(−x)
∥∥ � 13ε

3
.

Thus ‖S(x)‖ = 1
n
‖S(nx)‖ � 13ε

3n
for all n. Therefore S(x) = 0 and so φ(x) = Q(x). Thus

∥∥Q(x) − F1(x)
∥∥ � 13ε

. (11)

3
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Moreover, the inequality (9) yields∥∥F1
(
2nax

) − 4a2F1
(
2n−1x

)∥∥ � 13ε

for all x ∈ X, a ∈ A1 and so

Q(ax) = lim
n→∞ 4−nF1

(
2nax

) = lim
n→∞ 4−(n−1)a2F1

(
2n−1x

) = a2Q(x).

If Q′ :X → Y is another quadratic mapping fulfilling ‖Q′(x) − F1(x)‖ � 13ε
3 , then

∥∥Q(x) − Q′(x)
∥∥ � 1

n2

(∥∥Q(nx) − F1(nx)
∥∥ + ∥∥Q′(nx) − F1(nx)

∥∥)
� 26ε

3n2
.

Tending n to ∞, we get Q = Q′ which proves the uniqueness assertion. Further, inequali-
ties (2), (3), (11) imply that

∥∥F2(x) − Q(x)
∥∥ �

∥∥F2(x) − F1(x)
∥∥ + ∥∥F1(x) − Q(x)

∥∥ � ε + 13ε

3
= 16ε

3
and

∥∥F3(x) − Q(x)
∥∥�

∥∥F3(x) − F1(x)
∥∥ + ∥∥F1(x) − Q(x)

∥∥ � ε + 13ε

3
= 16ε

3
. �

Remark 1. In the proof of Lemma 1 we do not use the assumptions that F2 is even and
F1(0) = 0.

Corollary 1. Suppose (X,⊥) is an orthogonality space and (Y,‖.‖) is a real Banach space.
Let F1,F2,F3 :X → Y be even mappings fulfilling∥∥F1(x + y) − F2(x) − F3(y)

∥∥ � ε

for some ε and for all x, y ∈ X with x ⊥ y. Assume that Fi(0) = 0, i = 1,2,3. Then there
exists a unique quadratic mapping Q :X → Y such that

∥∥F1(x) − Q(x)
∥∥ � 13

3
ε,

∥∥F2(x) − Q(x)
∥∥ � 16

3
ε,

∥∥F3(x) − Q(x)
∥∥ � 16

3
ε

for all x ∈ X.

Proof. Use the same reasoning as in the proof of Lemma 1 with a = 1. �
Lemma 2. Suppose (X,⊥) is an orthogonality module and (Y,‖.‖) is a real Banach mod-
ule. Let F1,F2,F3 :X → Y be odd mappings fulfilling∥∥F1(ax + ay) − aF2(x) − aF3(y)

∥∥ � ε (12)

for some ε, for all a ∈ A1 and for all x, y ∈ X with x ⊥ y. Then, there exists a unique
additive mapping T :X → Y such that



M.S. Moslehian / J. Math. Anal. Appl. 318 (2006) 211–223 217
∥∥F1(x) − T (x)
∥∥� 7ε,∥∥F2(x) − T (x)
∥∥� 8ε,∥∥F3(x) − T (x)
∥∥� 8ε

for all x ∈ X. Moreover, T (ax) = aT (x) for all a ∈ A1, x ∈ X.

Proof. For every x ∈ X, x ⊥ 0. So we can put a = 1 and y = 0 in (12) to obtain∥∥F1(x) − F2(x)
∥∥ � ε, x ∈ X. (13)

Similarly, we can put a = 1 and x = 0 in (12) to obtain∥∥F1(y) − F3(y)
∥∥ � ε, y ∈ X. (14)

If x ⊥ y, then by (O3) x ⊥ −y. Hence, we can put a = 1 and replace y by −y in (12) to
get ∥∥F1(x − y) − F2(x) + F3(y)

∥∥ � ε, x ⊥ y. (15)

Let a ∈ A1 and x ∈ X be fixed. By (O4) there exists y0 ∈ X such that x ⊥ y0 and x + y0 ⊥
x − y0. It follows from (12) that∥∥F1(2ax) − aF2(x + y0) − aF3(x − y0)

∥∥ � ε. (16)

It follows from∥∥F1(2ax) − aF1(x + y0) − aF1(x − y0)
∥∥

�
∥∥F1(2ax) − aF2(x + y0) − aF3(x − y0)

∥∥ + ∥∥aF2(x + y0) − aF1(x + y0)
∥∥

+ ∥∥aF3(x − y0) − aF1(x − y0)
∥∥

and (13), (14) and (16) that∥∥F1(2ax) − aF1(x + y0) − aF1(x − y0)
∥∥ � 3ε. (17)

It follows from∥∥F1(x + y0) + F1(x − y0) − 2F1(x)
∥∥

�
∥∥F1(x + y0) − F2(x) − F3(y0)

∥∥ + ∥∥F1(x − y0) − F2(x) + F3(y0)
∥∥

+ 2
∥∥F2(x) − F1(x)

∥∥
and (12), (13) and (15) that∥∥F1(x + y0) + F1(x − y0) − 2F1(x)

∥∥ � 4ε. (18)

Now (17) and (18) and∥∥F1(2ax) − 2aF1(x)
∥∥ �

∥∥F1(2ax) − aF1(x + y0) − aF1(x − y0)
∥∥

+ ∥∥aF1(x + y0) + aF1(x − y0) − 2aF1(x)
∥∥

yield ∥∥F1(2ax) − 2aF1(x)
∥∥ � 7ε. (19)
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Putting a = 1 in (19) and using induction, we infer that

∥∥2−nF1
(
2nx

) − F1(x)
∥∥ �

(
1 − 1

2n

)
7ε. (20)

Hence {2−nF1(2nx)} is a Cauchy sequence in the Banach space Y and so is convergent.
Set ψ(x) := limn→∞ 2−nF1(2nx). By (20), ‖ψ(x) − F1(x)‖ � 7ε. Applying inequality
(13), we get ‖2−nF1(2nx) − 2−nF2(2nx)‖ � ε

2n , whence ψ(x) = limn→∞ 2−nF2(2nx).
Similarly, it follows from (14) that ψ(x) = limn→∞ 2−nF3(2nx).

For all x, y ∈ X with x ⊥ y, inequality (12) yields∥∥2−nF1
(
2n(x + y)

) − 2−nF2
(
2nx

) − 2−nF3
(
2ny

)∥∥ � 2−nε.

Taking the limit, we deduce that ψ(x +y)−ψ(x)−ψ(y) = 0. Hence ψ is orthogonally
additive. Theorem (∗) states that ψ can be expressed as the sum P + T of two quadratic
and additive mappings. Hence ‖P(x) + T (x) − F1(x)‖ � 7ε. Since F1 is an odd function
and T (−x) = −T (x), we have

∥∥P(x)
∥∥ � 1

2

∥∥P(x) + T (x) − F1(x)
∥∥ + 1

2

∥∥P(−x) + T (−x) − F1(−x)
∥∥ � 7ε.

Thus ‖Px‖ = 1
n2 ‖P(nx)‖ � 7ε

n2 for all n. Therefore, Px = 0 and so ψ(x) = T (x). Thus∥∥T (x) − F1(x)
∥∥ � 7ε. (21)

Moreover, the inequality (19) yields∥∥F1
(
2nax

) − 2aF1
(
2n−1x

)∥∥ � 7ε

for all x ∈ X, a ∈ A1 and so

T (ax) = lim
n→∞ 2−nF1

(
2nax

) = lim
n→∞ 2−(n−1)aF1

(
2n−1x

) = aT (x).

If T ′ :X → Y is another additive mapping fulfilling ‖T ′(x) − F1(x)‖ � 7ε, then
‖T (x)−T ′(x)‖ � 1

n
(‖T (nx)−F1(nx)‖+‖T ′(nx)−F1(nx)‖) � 14ε

n
. Tending n to ∞ we

infer that T = T ′ which proves the uniqueness assertion. Further, inequalities (13), (14),
(21) imply that∥∥F2(x) − T (x)

∥∥ �
∥∥F2(x) − F1(x)

∥∥ + ∥∥F1(x) − T (x)
∥∥ � ε + 7ε = 8ε

and ∥∥F3(x) − T (x)
∥∥ �

∥∥F3(x) − F1(x)
∥∥ + ∥∥F1(x) − T (x)

∥∥ � ε + 7ε = 8ε. �
Remark 2. In the proof of Lemma 2 we do not use the assumption that F2 is odd.

Corollary 2. Suppose (X,⊥) is an orthogonality space and (Y,‖.‖) is a real Banach space.
Let F1,F2,F3 :X → Y be odd mappings fulfilling∥∥F1(x + y) − F2(x) − F3(y)

∥∥ � ε

for some ε and for all x, y ∈ X with x ⊥ y. Then there exists a unique additive mapping
T :X → Y such that
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∥∥F1(x) − T (x)
∥∥ � 7ε,∥∥F2(x) − T (x)
∥∥ � 8ε,∥∥F3(x) − T (x)
∥∥ � 8ε

for all x ∈ X.

Proof. Use the same reasoning as in the proof of Lemma 2 with a = 1. �
Theorem 1. Suppose (X,⊥) is an orthogonality module and (Y,‖.‖) is a real Banach
module. Let f1, f2, f3 :X → Y be mappings fulfilling∥∥f1(ax + ay) − abf2(x) − abf3(y)

∥∥ � ε (22)

for some ε, all a, b ∈ A1 and for all x, y ∈ X with x ⊥ y. Then there exists exactly
a quadratic mapping Q :X → Y and an additive mapping T :X → Y such that

∥∥f1(x) − f1(0) − Q(x) − T (x)
∥∥ � 68

3
ε,

∥∥f2(x) − f2(0) − Q(x) − T (x)
∥∥ � 80

3
ε,

∥∥f3(x) − f3(0) − Q(x) − T (x)
∥∥ � 80

3
ε

for all x ∈ X. Furthermore, T (ax) = aT (x) and Q(ax) = a2Q(x) for all x ∈ X, a ∈ A1.

Proof. For 1 � i � 3 define Fi(x) = fi(x)−fi(0) and denote the even and odd parts of Fi

by F e
i , F o

i , respectively. Clearly, F e
i (0) = F o

i (0) = Fi(0) = 0, i = 1,2,3.
Putting x = y = 0 in (22) and subtracting the argument of the norm of the resulting

inequality from that of inequality (22), we get∥∥F1(ax + ay) − abF2(x) − abF3(y)
∥∥ � 2ε. (23)

If x ⊥ y then, by (O3), −x ⊥ −y. Hence we can replace x by −x and y by −y in (23) to
obtain∥∥F1(−ax − ay) − abF2(−x) − abF3(−y)

∥∥ � 2ε. (24)

By virtue of triangular inequality and (23) and (24) we have
∥∥F e

1 (ax + ay) − abF e
2 (x) − abF e

3 (y)
∥∥ � 2ε, (25)∥∥F o

1 (ax + ay) − abF o
2 (x) − abF o

3 (y)
∥∥ � 2ε (26)

for all x, y ∈ X.
Putting a = b in (25) and applying Lemma 1, there exists a quadratic mapping Q such

that ‖F e
1 (x) − Qx‖ � 14ε and Q(ax) = a2Q(x) for all x ∈ X, a ∈ A1.

Putting b = 1 in (26) and applying Lemma 2, there exists an additive mapping T such
that ‖F o

1 (x) − T (x)‖ � 26
3 ε and T (ax) = aT (x) for all x ∈ X, a ∈ A1.

Hence,
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∥∥f1(x) − f1(0) − Q(x) − T (x)
∥∥ �

∥∥F e
1 (x) − Qx

∥∥ + ∥∥F o
1 (x) − T (x)

∥∥
� 14ε + 26

3
ε = 26

3
ε.

Similarly, one can shows that

∥∥f2(x) − f2(0) − Q(x) − T (x)
∥∥ � 80

3
ε,

∥∥f3(x) − f3(0) − Q(x) − T (x)
∥∥ � 80

3
ε.

Using the same method as the proof of Lemmas 1 and 2, the rest can be easily proved. �
Remark 3. If we replace condition (22) by∥∥f1(ax + ay) − af2(x) − af3(y)

∥∥ � ε, x ⊥ y, a = a2, ‖a‖ = 1,

then Theorem 1 is still true except that T (ax) = aT (x) and Q(ax) = a2Q(x) hold merely
for idempotents a ∈ A1. This may be of special interest whenever we deal with the Banach
algebras generated by their idempotents.

Remark 4. If f2 = αf1 for some scalar α 
= 1, then by (2) and (13) we have |1 − α| ×
‖F e

1 (x)‖ � ε and |1 − α|‖F o
1 (x)‖ � ε for all x ∈ X. Hence,

Q(x) = lim
n→∞ 4−nF e

1

(
2nx

) = 0

and

T (x) = lim
n→∞ 2−nF o

1

(
2nx

) = 0

for all x ∈ X. In particular, it follows from the conclusions of Theorem 1 that

∥∥f1(x)
∥∥ �

∥∥f1(0)
∥∥ + 68

3
ε,

∥∥f3(x)
∥∥ �

∥∥f3(0)
∥∥ + 80

3
ε.

There is a similar assertion when f3 = αf1 for some scalar α 
= 1.

Theorem 2. Suppose (X,⊥) is an orthogonality normed module and (Y,‖.‖) is a real
Banach module. Let f1, f2, f3 :X → Y be mappings fulfilling∥∥f1(ax + ay) − abf2(x) − abf3(y)

∥∥ � ε

for some ε, all a, b ∈ A1 and for all x, y ∈ X with x ⊥ y. Then there exist exactly
a quadratic mapping Q :X → Y and a additive mapping T :X → Y such that

∥∥f1(x) − f1(0) − Q(x) − T (x)
∥∥ � 68

3
ε,

∥∥f2(x) − f2(0) − Q(x) − T (x)
∥∥ � 80

3
ε,

∥∥f3(x) − f3(0) − Q(x) − T (x)
∥∥ � 80

ε

3
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for all x ∈ X. In addition, if the mapping t �→ f1(tx) is continuous for each fixed x ∈ X,
then T is A-linear and Q is A-quadratic.

Proof. We use the notation of proof of Theorem 1.
By Theorem 1, there exists exactly a quadratic mapping Q(x) = limn→∞ 4−nF e

1

(
2nx

)
and an additive mapping T (x) = limn→∞ 2−nF o

1 (2nx) satisfying the inquired inequalities
and as well

T (ax) = aT (x), Q(ax) = a2Q(x), x ∈ X, a ∈ A1.

For each fixed x ∈ X, because of the continuity of t �→ f1(tx), we deduce that
t �→ F e

1 (tx) and t �→ F o
1 (tx) are continuous too. By the same arguing as in the proof

of the theorem of [17], we can establish that T is R-linear and Q is R-quadratic.
Now for all a ∈ A, x ∈ X, we have

Q(ax) = Q

(
‖a‖ a

‖a‖x

)
= ‖a‖2Q

(
a

‖a‖x

)
= ‖a‖2 a2

‖a‖2
Q(x) = a2Q(x)

and similarly,

T (ax) = T

(
‖a‖ a

‖a‖x

)
= ‖a‖T

(
a

‖a‖x

)
= ‖a‖ a

‖a‖T (x) = aT (x). �
Corollary 3. Suppose (X,⊥) is an orthogonality complex normed space and (Y,‖.‖) is
a complex Banach space. Let f1, f2, f3 :X → Y be mappings fulfilling

∥∥f1(λx + λy) − λμf2(x) − λμf3(y)
∥∥ � ε

for some ε, all λ,μ ∈ {z ∈ C: |z| = 1} and for all x, y ∈ X with x ⊥ y. If the mapping
t �→ f1(tx) is continuous for each fixed x ∈ X, then there exist exactly a C-quadratic
mapping Q :X → Y and a C-additive mapping T :X → Y such that

∥∥f1(x) − f1(0) − Q(x) − T (x)
∥∥ � 68

3
ε,

∥∥f2(x) − f2(0) − Q(x) − T (x)
∥∥ � 80

3
ε,

∥∥f3(x) − f3(0) − Q(x) − T (x)
∥∥ � 80

3
ε

for all x ∈ X.

Proof. Consider A to be C in Theorem 2. �
The next result is a generalization of the main theorem of [5].

Theorem 3. Suppose (X,⊥) is an orthogonality space and (Y,‖.‖) is a real Banach space.
Let f1, f2, f3 :X → Y be mappings fulfilling

∥∥f1(x + y) − f2(x) − f3(y)
∥∥ � ε
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for some ε and for all x, y ∈ X with x ⊥ y. Then there exists exactly a quadratic mapping
Q :X → Y and an additive mapping T :X → Y such that

∥∥f1(x) − f1(0) − Q(x) − T (x)
∥∥ � 68

3
ε,

∥∥f2(x) − f2(0) − Q(x) − T (x)
∥∥ � 80

3
ε,

∥∥f3(x) − f3(0) − Q(x) − T (x)
∥∥ � 80

3
ε

for all x ∈ X.

Proof. Use the same reasoning as in the proof of Theorem 1 with a = b = 1 and applying
Corollaries 1 and 2. �
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