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1. Introduction

Let 2 c RN (N >2) be a bounded simply connected domain and 0 < T < co. Consider the following quasilinear degen-
erate parabolic problem:

ue = div(a@)|VulP*O72Vu) + f(x, 1), (.0 € Qr,
ux,t) =0, (x,t) eIT, (1.1)
u(x, 0) = up(x), xeq,

where Qr = £ x (0, T], I'r denotes the lateral boundary of the cylinder Qr, and a(u) = u® +dy with the assumption that

o and dg are two positive constants. It will be assumed throughout the paper that the exponent p(x,t) is continuous in
Q = Qr with logarithmic module of continuity:

1<p = inf pxt)<pxt)<pT= sup pxt) < oo, (1.2)
(x,0)eQ (x,6)eQ
Vz=(x,t) €Qr, £=(y,5)€Qr, |z—&|<1, |p@ —p®|<w(lz-E&l), (13)
where

. 1
limsupw(t)In — =C < +o0.
-0t T
In the case when p is a constant, there have been many results about the existence, uniqueness and the properties of
the solutions, we refer to the bibliography [1-4].
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In the recent years, much attention has been paid to the study of mathematical models of electrorheological fluids.
These models include parabolic or elliptic equations which are nonlinear with respect to gradient of the thought solution
and with variable exponents of nonlinearity, see [5-8] and references therein. Besides, another important application is
the image processing where the anisotropy and nonlinearity of the diffusion operator and convection terms are used to
underline the borders of the distorted image and to eliminate the noise [9-11].

To the best of our knowledge, there are only a few works about parabolic equations with variable exponents of nonlin-
earity. In [6], applying Galerkin’s method, S.N. Antontsev and S.I. Shmarev obtained the existence and uniqueness of weak
solutions with the assumption that the function a(u) in div(a(u)|Vu|P*D—2Vu) was bounded. However, we can’t easily
put the method in [6] generalized to the unbounded case. This paper applied the method of parabolic regularization to
prove the existence of weak solutions to the problems mentioned. By making a sequence of estimates to weak solutions,
the authors of this paper proved the weak convergence of the approximation solution sequence and hence testified the ex-
istence of weak solutions. Furthermore, making appropriate a priori estimates and calculating accurately, we also obtained
the localization property of weak solutions.

The outline of this paper is the following: In Section 2, we shall introduce the function spaces of Orlicz-Sobolev type,
give the definition of the weak solution to the problem and prove the existence of weak solutions with a method of
regularization; Section 3 will be devoted to the proof of the uniqueness of the solution obtained in Section 2; in Section 4,
we will get the localization property of the solution under suitable conditions.

2. Existence of weak solutions

We will study the existence of the weak solutions in this section. Let us introduce the Banach spaces
LP*D Q) = {u(x, t) ’ u is measurable in Qr, Ap(y(u) = // JulP®D dxdt < OO},
Qr

lullpy =inf{r >0, Apy(u/r) < 1},

Ve(2) = {u|uel2(2)nWy ' (2), |Vu| € LP*D(2)}],

lullve) = lullz.e + 1 Vullp..oe.

W(Qr)={u:[0. T Ve(2) |u € L*(Qr), [Vu| € LP®Y(Qr), u=00nIT7},

lullwear) = llull2,or + IVUllpeo).r
and denote by W/(Q7) the dual of W(Qr) with respect to the inner product in L2(Q7).

Definition 2.1. A function u(x,t) € W(Qt) N L%°(0, T; L°°(£2)) is called a weak solution of problem (1.1) if for every test-
function

£ez={n@: neW(Qr)NL>®(0,T; L*(£2)), ne e W' (Qr)},

and every t1,t; € [0, T] the following identity holds:
ty
//[ugt — (U +do)|VulP*D"2VuVE + f(x, t)g]dxdt:/us dx|i2. (21)
t1 2 2
The main theorem in this section is:

Theorem 2.1. Let p(x, t) satisfy conditions (1.2)-(1.3). If the following conditions hold

2pt
pt—1

(H1) max{l,—} <p <N, 2<o0<

T
(H2) ug>0, f>0, |uole.e +/||f(x, B[ oo dt = K(T) < o0,
0

then problem (1.1) has at least one weak solution in the sense of Definition 2.1.

Let us consider the following auxiliary parabolic problem
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ur = div(ae, ()| VuP*O7?Vu) + f(x,1), (x,) € Qr,
ux,t)=0, (x,t) e IT, (2.2)
u(x,0) =ug(x), xes2.

Here M stands for a positive parameter to be chosen later and notice that

0 < do < ey (u) = (min(jul?, M2) + £2) % +do < (M>+1)? +dy, O<e <1,

Since C3°(£2) is dense in Wé’p(x’t) for t € (0, T), we may construct the sequence of approximate solutions u™(x,t) =
S ' @r(x), and with a similar method as in [6], we may prove that the regularized problem has a unique weak solution

ug(x,t) € W(Q7T) NL2(Q7), ugr(x, t) € W (Qr) satisfying the following integral identities

t
f f [tteEe — Gy (ue) [ VU PRO-290, Ve + f(x, D] dxdt = / et 2, (2.3)
t1 2 2

and
5]
[ / [tteck + Gyt ()| Vit POO2V0, Ve — F(x,0)8] dxdt = 0, (2.4)
t1 2

In order to prove this theorem, we need the following lemmas.

Lemma 2.1. The solution of problem (2.2) satisfies the estimate

T
e lloo, 07 < llttolloo, 2 +/||f(x, B[ .o dt = K(T) < 0. (2.5)
0

Proof. Let us introduce the function

M ifu, > M,
UEMZ{Ua if lug| <M,
-M ifug <—M.

The function uﬁﬁd_], with k € N, can be chosen as a test-function in (2.4). Let in (2.4) t; =t +h, t; =t, with t,t + h € (0, T).

Then

1 [+hd t+h t+h
T a(fﬂ?’fwﬂ’X) dt+//(2/<—1)as,M(u8M)u§§\’;*”|VusM|P<xvf>dxdr=//fuﬁ’,‘v,”dxdt. (2.6)
t 2 t £ t

Dividing the last equality by h, letting h — 0 and applying Lebesgue’s dominated convergence theorem, we have that
vte (0,T)

i% uﬁ’j/,dx—i-/(Zk—1)ag,M(ugM)u§f\’f,_1)|VugM|p("*t) dx:/fui’,‘w_1 dx. (2.7)
2 2 2
By Hoélder’s inequality
[ o < B0 150 k=120
2
whence

1 d 2(k—1
luem g 5 (ltemllae.2) + 2k — 1) / e Uen)Uzyy | Vite yP*0dx
2

<luemleg  1FC 00 k=12, (2.8)

From (2.8) one gets, by integration over (0, t), for all t,

T
Juter Ol < 1m0l + [ W, VK EN,
0
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Then, as k — oo,

T T
Juem(. O] o < JuemC. 0] o +/ 1f lloo.2 dt < l[tolloo.2 +/ 1 flloo.2 dt = K(T).
0 0

If we choose M > K(T) then ugp(.,t) <suplugm(.,t)| < K(T) <M and therefore ugm (., t) =ue(.,t). O

Corollary 2.1. According to the above text, we have

)0’/2

min{u2, M2} =u? and ag m(uem) = aem(ue) = (82 +u?)”’* +do.

Corollary 2.2. When ug > 0 and f > 0, the solution ug (x, t) is nonnegative in Q.
Proof. Set u; = min{ug, 0}. Then u_ (x,0) =0, u; |5 =0 and

1d
35 (0 013 o)+ [ ase) |vu; " dx <o,
2

It follows that for every t > 0,
Juz .05 ¢ < us .0, 5 =0

The required assertion follows. O

Remark 2.1. It is clear that the constructed weak solution in this paper is nonnegative. But to the best of our knowledge, it
is still not clear whether any solution of the problem is nonnegative if the given data are nonnegative.

Lemma 2.2. The solution of problem (2.2) satisfies the estimates

// u? |Vue [P®0 dxde < K(T)|$2]2, (2.9)

Qr

g //Wuelp("’f)dxdtgK(T)|.Q|%, (2.10)
Qr

dO//|Vug|p("’t)dxdt<K(T)|.Q|%. (211)
Qr

Proof. To prove Lemma 2.2, we proceed as in the proof of Lemma 2.1 and in (2.8) we take k = 1. We then get

d
KL CLo) P +/ag,M(ug)|Vug|W’“ dx<||fllz.e. Vte(0,T).
Q
Therefore, integrating in time over (0, t), Vt € (0, T)

t T
Jus .0, +f/ag,M(u£>|Vug|P<"’”dxdt< |us (.0, o +[ £ ll2,2 dt,
0 2 0
and since the first term on the left hand side is nonnegative and recalling the L2-norm
t
//ag,M(uS)Wqu(“) dxdt < K(T)|L2]2.
0 Q2

Since ag m(ug) > do, one gets inequality (2.11); since ag m(ug) > €%, one gets inequality (2.10); since M > K(T), one gets
ag m(ug) > uZ, furthermore, we get inequality (2.9). O

Lemma 2.3. The solution of problem (2.2) satisfies the estimate

lueellwrqp < C(o, p*, K(T),|82]). (2.12)
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Proof. From identity (2.4), we get

// ugtédxdt:—ff[(ug+82)”/2+do]|Vu£|p("’“’2VugV5 dxdt+/ F(x, OE, £) dxdt

Qr
T

// uZ ¢ )"/2+d0]|w [PxD— 1|vg|dxdt+//|f| |€| dxdt

0
<2|[(u2 +&%)"* +do]IVue PO L IVE e + 201 F s - 1€l e

T 1
't
2max[<// u +8 +d0]|Vu |P(Xt) 1}p(xt) Idxdt) ,
0 2
-

(x,t) -
(/ f (102 +2)°7 + o Vu P01 dxdr> ' ] IVE e
0 2

+2max{<//|f|p(’”)dxdt> (//w(“)dxdr) }nsnp(x,r)

2 -
<(2((K2(T)+l)d/ +do) P*TK(T)[2] + 2| floolT) € lw(Qr)-
Then (2.12) follows from Lemma 2.2. O

From [6], we may get the following inclusions:

us € W(Qr) SLP (0, T; Wy (),
+

o € W(Qr) S L7 1 (0.T; V4 (2).
WoP (2) CL2(2) C V()
with V(£2) = {u(x) |u e L2(2)N W0 (Q) |Vu| e L”+}.

These conclusions together with the uniform estimates in ¢ allow one to extract from the sequence {u.} a subsequence
(for the sake of simplicity, we assume that it merely coincides with the whole of the sequence) such that

U —>u ae.inQr;

Vu, — Vu weakly in LP®D (Q1);
u?|Vug [P®O=2Dju, — Aj(x,t)  weakly in LP ®9(Qr);
|Vue|P®D=2Du, — Wi(x,t)  weakly in LP ®D(Q7),

(213)

for some functions u € W(Qr), Ai(x, t) € LP*D(Qp), Wi(x, t) € LP®D(Qr).
Lemma 2.4. For almost all (x,t) € Qr,

lim //((ug —i—sz)% —u?)|Vug [P*D72Vu, Ve dxdt =0, VE e W(Qr).
e—0

Proof.

1= //((uﬁ +62)7 —u?)|Vue PO 2Vu, Ve dxdt

1
o o=2
= — g2 //(/(ug +58%) 2 ds>|Vug|p("'t)2Vu8V§ dxdt
Qr ‘0

2(KA(T) + 1) ||V, [P®0-1]

p(x.t) ||VE ||p(x,t)
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pt-1
e E
<C€2max{</ |Vug|p("’“dxdt> ! <f |Vug|p("’t)dxdt> ! }||vs||p(x,t).
Qr

Qr
By (2.10), we get

2— 0'(1-"+ 1
I<ce™ IVElpx.e)-

Passing to the limit as & — 0, we obtain Lemma 2.4. O

Lemma 2.5. For almost all (x,t) € Qr,

Aix,t) =u’ W;(x,t), i=1,2,...N.

Proof. In (2.13), letting € — 0, we have

// u? |Vue [P®0-2vy, Ve dxdt — 2// Ai(x, t)D;€ dxdt; (2.14)
//Wu [PEO=2yy Ve dxdt — szw (x, t)D;E dxdt. (2.15)
Qr

By Lebesgue’s dominated convergence theorem, we have

8112102// 7)Ai(x, t)Di& dxdt = 0. (2.16)
So,

lim Z/f u? |Vue|P*Y=2Du, — u® Wi(x, t)) Dié dxdt

e—0

=£l£1})2f/ N Vue [P*D2Djug + u® (|Vug PP 72Djug, — Wix, £)))Di€ dxdt =0
By (2.14)-(2.16) and the above inequalities, this completes the proof of Lemma 2.5. O

Lemma 2.6. For almost all (x,t) € Qr,

Wix, t) = [VulP®D=2pu, i=1,2,...,N.
Proof. In (2.4), choosing & = (u; —u)® with ® e W(Qr), @ >0, we have

/f [uee(ue —w)® + @ (ug +do) | VuePXD 2V V(ue —u)]dxdt
Qr

+f [(ue —u)(ug +do)|Vue P*D72Vu, Vo — f(x, 1) (ue — u)@ ] dxdt

+ f/((ug +62)7 —u?)|Vue POV, Ve dxdt =0

It follows that

lim /[ @ (ug +do)|Vue PO 72Vu  V(ue — u)dxdt =0. (217)
£—
Qr

On the other hand, from ug, u € L°(Q7), |Vu| € LP*®D(Q7), we get
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lim /f u +do)|VulP*O2VuV (u, — u)dxdt =0, (218)
limo// 7)|\VulP®O2VuV (up — u)dxdt = 0. (219)
E—

Note that

0 < (IVug [P*D=2Vu, — |VuP*D=2Vu) V(u, —u)

< l[(ug +do) [Vug [P®D2Vug — (u — u”)|VulP®D2Vu ]V (ue — u)

do
- d]—o(u‘f +do) [Vul[P*D=2VuV (ug — u). (2.20)
By (2.17)—(2.20), we obtain
11m // (IVug |P®O=2Vu, — |VuP®D2Vu)V(u, — u)dxdt = (2.21)
Qr

The rest arguments are the same as those of Theorem 2.1 in [12], we omit the details. We complete the existence part
by a standard limiting process. O

3. Uniqueness of weak solutions

In this section, we study the uniqueness of the weak solutions to problem (1.1). In order to obtain the main conclusion
of this section, we need the following lemma.

Lemma 3.1. Let M(s) = |s|P*D—2s, then V&, n € RN

27PXD|E — PO if2<px,t) < o0,

M —M _ 2 X,t)—2
(ME =MOD)E =21 Lo~ 1 — e + ooy 585 ir1 < pee <2

The main result is:

Theorem 3.1. Suppose that the conditions in Theorem 2.1 are fulfilled and 2 < o < pzfr], pT > 2. Then the nonnegative solution of
problem (1.1) is unique within the class of all nonnegative weak solutions.

Proof. We argue by contradiction. Suppose u(x,t) and v(x, t) are two nonnegative weak solutions of problem (1.1) and there
is a 6 > 0 such that for some 0 <7 < T, w=u—v >4 on the set 25 =2 N{x: w(x, ) >3} and u(£2;s) > 0. Let

11— 1 gl-a
Fs(s>:{8t181 = EZE

where § > 26 >0 and o = §.
By the definition of weak solutions, let a test-function & = Fg(w) € Z,
- ff WeFe(w) + (v7 +do) (IVu[P®O=2Vu — |Vy[PXD=2Vy) VF, (w)] dxdt

// 7)|VulP*D=2VuVF, (w) dxdt

:// w[Fs(w)dde-// (v7 +do)w ™ (|Vu[P®D=2vy — |Vy|PXD=2vy) Vw dxdt

Qe v Qe r
+ // (u” - v")w’o‘|Vu|p("*t)’2VuVdedt =J1+ J2+ I3, (3.1)
QS.T

with Qg r =Q: N{(x,t) € Q¢: w > ¢}.
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Now, let to =inf{t € (0, T]: w > &}, then we estimate [, Jo, J3 as follows:

to

]1:/[ thg(w)dxdt:/(/thg(w)dt—i—/Wth(W)dt) dx

Qe,x 2 0 to
w(x,T) w(X,T)
2/ f Fg(s)dsdx>/ / Fo(s)dsdx
2 & 2, ¢
> /(W—ZS)Fg(ZS)dX> (8 —2&)F.(2e) 0 (825). (3.2)
£25

Let us consider first the case p~ > 2. By virtue of the first inequality of Lemma 3.1, we get

I =// (vO +do)w™*(|Vu[P*D=2vy — |Vy|PED=2yy) Vw dxdt

Qe,r
2// (v7 +do)w¥27PXD |7y PXO dx dt
Qex
>27P" // (v +do)w™*|Vw|P*D dxdt > 0. (3.3)

Qer

. ot +
Noting that péjx(,};)ll > pf_l >
following way

(SIS}

=« > 1 and applying Young’s inequality, we may estimate integrand of J3 in the

|(u” = vO)w | VuPXO2vuvw| =

1
awf(ou +(1—0)v) " dow Y| VuPEO2vuvw
0

C [v? +d ,
<3 [%Wwﬂ“"’“ +Ci(o.do. K(T), p*)|w|? ("’”IVUI”("’“]
vo +d Lo Py
= S D TIPS (o do, K(T), p) wl? 404 g0
ve +d
< ﬁwwww + C1(0, do, K(T), p=)|Vu[P*D, (3.4)
Substituting (3.4) into J3, we get
1
J3<z)24+C |VulP®O dxdt. (3.5)
2

Qé‘,'[

Secondly, we consider the case 1 < p~ < p(x,t) <2, p™ > 2. According to the second inequality of Lemma 3.1, it is easily
seen that the following inequalities hold

2 :// (V” +d0)w_“(|Vu|p(X't)_2Vu _ |Vv|p(x't)_2Vv)VWdth
Qex

> (p~—1) // (v7 +do)w™ (IVu| + [Vv])"*" 2|V w2 dxdt > 0, (36)
Qer

. . + . . .
Using the conditions 1 <« < p£_1 < 2 and Young’s inequality, we may evaluate integrand of J3 as follows

|(u” = vO)w | VuPXO2yuvw|

1
aw/(&u +@1 —Q)V)a_l dow ™| Vu|P®D=2gyvw
0
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_ (4o =)

~

(IVul + [Vv)**O 72| Vw P 4 C1 (07, do, K(T), p*) w>~* (1Vul + |V v])P*?

2w
ve +do)(p” —1 .0— .
<! ZOV)V? ) (1l + 1V )P O 2V wi £ € (0 do. K(T), p*) (1Vul + [Vv])P40. (3.7)
Plugging (3.7) into J3, we get
1
Ja< gl [ [ (vul+ 1) dxat. (38)
Qe.r

Plugging the above estimates (3.2), (3.3), (3.5) and (3.2), (3.6), (3.8) into (3.1) and dropping the nonnegative terms, we
arrive at the inequality

(6 —2¢)(1-2""%)e" " nu(s25) < C, (3.9)

with a constant C independent of &.
Notice that limg_,o(8 — 2&)(1 — 21%)g1=% 1 (£25) = 400, we obtain a contradiction. This means £(£25) =0 and w <0,
ae.in Q;. O

Corollary 3.1 (Comparison principle). Let u, v € W (Qr) NL%(0, T; L°°(£2)) be two nonnegative solutions of problem (1.1) such that
u(x,0) < v(x,0) ae. in £2. If the coefficients and nonlinearity exponents satisfy the conditions of Theorem 3.1, then u(x, t) < v(x, t)
ae.in Qr.

4. Localization of weak solutions

In this section, we shall concentrate on the study of localization of weak solutions to problem (1.1). Our main result is:
For a function w : 2 — [0, 00), we define

suppw = {xe G; lim M > 0},
p=0  w(Bp(X)

where G ={xe 2; w>0}, B,(x) ={y € £2; |x—y|<p}
It is easy to see that if w e C(£2), then suppw =G.

Theorem 4.1. Assume that the conditions of Theorem 3.1 are fulfilled and 2 < o < 20" —p) suppug C £2. If u is a nonnegative

solution of problem (1.1) and f =0, then P
suppu C suppug a.e.in Qr.

Proof. By Definition 2.1, it is easily seen that there holds
//[uzé + (u” +do) | Vu[P*D2vu Ve ] dxdt =0, (4.1)
Qr

with VT € (0, T).
Let ¥ = inf{dist(x, suppug U d£2)/1,1} (0 <A < 1), and

1 a1 gl-a
Fe(®) = { Tt Tt e
0 ifé <e,

with @ = 5.
Taking § =¥ F.(u) (0 <& < 1) and substituting it into (4.1) yields

0:// utlI/Fs(u)dxdt—i-// W (u +do)|VulP*D"2VuVF, (u) dxdt

Qe,r Qs.r
+// Fe()(u® +do)|VulP*D2vuvwdxde := Iy + Io + I3, (4.2)
QE.T

with Q¢ =Q: N{(x,t) € Q¢: u > ¢&}.
Denote E ={x € {¥ =1}; u(x,t) > 38} with § > 2¢ > 0, then
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u
I]=// lPLlfFe(“)dXdl’?/Xsupprng(s)dsdx

Qe.r ¢ &
> / Xsuppw ¥ (U — &)F¢(8)dx > (8 — 3¢/2)F, (3¢ /2) L (E), (4.3)
25
1
I= // v (u® +do)|Vu|p("'”_2VuVa—l(—u]_“)dxdt
Qe.r
> // W (u” +do)u%|VulP*D dxdt > 0. (4.4)
Qa,r

Applying Young’s inequality with # and choosing 1 = (¢f)1=P*D  we may estimate |I3]

|13|=’// Fs(u)(u“+d0)|Vu|P<"’f)*ZVuVdedt‘

Qs,r
<c// e~ vuP®O-1 vy | dxdt
Qe,r
+y B+ t 1-p+ t
< C(o,do, K(T), p*)e” " » // |Vu[P®D dxdt 4 ¢f1-P >f |V [PXD dxdt. (4.5)

Qe,r Qe,r

Choosing 8 = “pp:_’ll > 0 and plugging these inequalities (4.3)-(4.5) into (4.2), we get

a—p~ (@—Dp—

%[1—(3/2>1—0‘]82“"‘ﬁ+ P (E) < (6 - 38/2)[1- 3/2)' e T )

- @=Dp~ g+
<Cl+e 1 7y, (4.6)
with a constant C independent of ¢.
Noting that 2 <o < % < pzfjl, we have

+ _ p— —1p—
1<a:g<u7 1_ﬁ+u:0; (4.7)

2 p(pt-1 p~—1

oa—1p~ T—p)—ap (pt -1
( )p _ﬂp+=(p p)—ap (p )>0. (458)

p~—1 p~ -1

Assume that there exists a 79 € (0, T) such that w(E) # 0. Thus, by virtue of (4.7)-(4.8), letting € — 0 in (4.6) yields a
contradiction. Hence, for all § € (0, 1) and a.e. T € (0, T), we have

w({xe{¥ =1} u@x v)>s})=0.

Then Theorem 4.1 follows from this and the arbitrariness of A € (0,1). O
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