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1. INTRODUCTION 

The notion of the n-width (or n-dimensional diameter) of a set JZZ in a 
normed linear space 5 was introduced by Kolmogorov [l] as a means of 
characterizing the approximability of XZ’ by linear manifolds of finite dimen- 
sion. Indeed, in order to obtain the n-width, dn(&), of & we take the maximal 
distance (or defection) 

of J&’ from an n-dimensional subspace M of X and then vary the subspace, 
and take the infimum 

d,(d) = inf {E(&, A) : J? C 3, dim JZ = n} (1.2) 

of the distances for all possible subspaces. The reader is referred to the 
survey article of Lorentz [2] and the paper of Tihomirov [3] for a summary 
of some important results concerning n-widths as well as for a bibliography 
of the subject. Some more recent results may be found in [4]-[7]. Auxiliary 
to the notion of n-width is the notion of an optimal approximating n-subspace 

(or extremal subspace), i.e., a linear manifold of dimension less than or 
equal to n whose deflection from slz is equal to d,(d). 

This paper will be concerned with the determination of n-widths and extre- 
ma1 subspaces for certain subsets of Hilbert space, especially of 9s(Q), 
Q a bounded open connected set in m-dimensional Euclidean space. In 
particular, a now classical theorem of Kolmogorov [l] regarding the n-widths 

* Sponsored by the Mathematics Research Center, United States Army, Madison, 
Miisconsin, under Contract No.: DA-31-124-ARO-D-462. 
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of certain classes in -Ep(O, 1) will be extended to the setting of PEP,(Q). To 
describe Kolmogorov’s result set, for K > 1, 

dk(O, 1) = {f E L?Qo, 1) :f’“-1’ exists and is absolutely continuous on [0, l] 

andf(“’ E 9a(O, 1)). (1.3) 
Kolmogorov considered the classes 

Sk = {f E siqo, 1) : IIf’“’ /I < I} (1.4) 
and proved 

THEOREM (Kolmogorov). Let A, , n = 1, 2,... denote all nonzero eigen- 
values of the boundary value problem 

(- 1)” y’W = Ay 

y’k’(()) = y’“‘(l) = . . . = ye-l'(()) =p-l'(l) =o 
(1.5) 

and J?,~ the corresponding (one dimensional) eigenmanifolds. Then all A, are 

positive; if they are arranged in increasing order one has 

d&Q = CO if n < k, (1.6) 
while 

d,(SQ = h;Lf+,, if n >, k. 

Moreover, in the latter case, one has 

(1.7) 

U-8) 

where Pk is the set of polynomials of degree less than k. 

In the present paper it is shown that an analogous result holds for certain 
function classes in 5$(Q) if the boundary value problem is replaced by an 
appropriate (functional) variational problem over a Sobolev space. In addition, 

the analogy with the Kolmogorov results is made complete under assumptions 
of sufficient smoothness on the boundary of R. In this case the variational 
problem is equivalent to an ordinary boundary value problem for a partial 
differential equation. In a future paper, asymptotic estimates will be obtained 

for the n-widths and the exact asymptotic order exhibited in certain cases. 
Golomb [8] has introduced the notion of the ellipsoid determined by a 

general positive self-adjoint linear operator on a Hilbert space and has obtain- 
ed results concerning their optimal approximation by subspaces not necess- 
arily of finite dimension. The importance of ellipsoids, aside from interest 
in them for their own sake, arises from the fact that many important function 
classes in LZ2(Q) have the same topological closure as ellipsoids and thus the 
same n-widths and extremal subspaces, which are invariant under closure 
of the classes which are approximated. Golomb’s major results, then, will 
form the basis for the abstract setting of this paper. 
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I. ~-WIDTHS IN HILBERT SPACE 

2. Approximation of Ellipsoids 

Let 2 be an infinite dimensional complex Hilbert space with inner product 
(f,g) and norm IIf 11 = (f,f)‘:‘. I f  R IS a linear, not necessarily bounded, 
operator with domain gjlR dense in .YY then R is positive if (Rf,f) > 0 for all 

fEQR, strictly positive if R is positive and one to one and positive definite 
if there exists a positive constant c such that (Rf,j) > c(f,f) for all f  E QR . 

For a positive self-adjoint operator R we define the ellipsoid W determined 
by R: 

9 = (f~9, : (Rf,,) < I}. 

For such an operator, let X --, E,\ be the spectral family of R which is con- 
tinuous from the left. We denote by 6” the closed linear manifold which is 
the range of E, . We state now two results from [8]. Ai denotes the orthogonal 

complement of -47. 

THEOREM 2. E(W, &,) = 6 if and only $6-” is in the spectrum of R. 
These two results yield a particularly elegant expression for the n-widths 

of B in the special cases that R is dispersive, i.e., when the spectrum of R 
consists of isolated eigenvalues of finite multiplicity. Indeed, in this case, 

there exist nonnegative numbers A, and finite rank projectors P, , C P, = I, 
such that R = x A,P, with 

We agree, for convenience, to designate the first eigenvalue as A, = 0 if 0 is 
an eigenvalue and as A, otherwise. In the latter case we take P,, = 0. If  we 
denote by A< the projection manifold of P, and set 

N,=dirn(,~~+,~~+...+~~) 

then we have 

THEOREM 2.1. If  R is dispersive then 

d,(.C%?) = uz if n < No , (2.1) 

while 

d,(W) = A;::’ if N, < n < NV+, Y > 0. (2.2) 
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Furthermore, in the latter case, 
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4l(~) = E(9, -4 + .4 + ... + A), (2.3) 

i.e., A0 + A!i + *me + Av is an optimal approximating n-subspace. 

PROOF. Set 

E,= ’ 
I 

if A<0 
C P, if X > 0. 
A”<A 

Notice that {Eh} is the spectral family corresponding to R which is continuous 
from the left. Now from Theorem 2 it follows that 

E(W, A,, + Al + ..a + A’J = A;;;‘, Y > 0. (2.4) 

If N” < n < N”,, then, for any linear manifold A’ of dimension n and 
E > 0, AL n cY~~+~+~ # (0) since &AV+l+e has dimension > NV+, and since 
n < Ny+1 . By Theorem 1, however, 

E(W, A’) > (A,,, + l )-lr* for each E>O 

and it follows that 

E(B’, A’) > (hy+l)-1/2. (2.5) 

By (2.4) and (2.5) any n-dimensional linear manifold A! which contains 

40 + ... + AU satisfies 

E(C@‘, A’) = A;ji2 if N, < n < NV+, . 

Thus, (2.4) and (2.5) together imply (2.2) and (2.3). Finally, if n < N, and 
.A’ is any linear manifold of dimension n then A%‘~ n A’,, # (0) and if 
0 < 6 < A, we have, by Theorem 1, 

E(W, A’) > S-2. 

Since S can be chosen arbitrarily small, (2.1) follows from (2.6). 

(2.6) 

REMARK 2.1. It follows from the standard characterization of the A, 
for a positive dispersive operator R and Theorem 2.1 that the variational 
problem of the n-width of the ellipsoid determined by R is really the same 
as the well-known variational problem for eigenvalues. Indeed, we have if 
iv, < n -=c NV+, , 

4?(W) = sup {(Rf,.f)-l : f EgR, (If /I = 1, (f, v) = 0 if p E 4 + 0.. + J$>. 

409/20/I-8 
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3. Sets Determined by Quadratic Forms 

Let Z0 be a linear manifold which is dense in s+? and which is a Hilbert 
space with inner product 

(f, do = if, gl + (“6 g>t (3.1) 

where [a] is a positive Hermitian form on %a . To say that [*I is positive means 
that [f,f] > 0 for all fE So; if [f,f]lla is a norm then [.I is said to be 
strictly positive and if [f, f] > c( f,f) f or some positive constant c then [.I 
is positive definite. Now ure set 

9, = {fE &cl : [f,fl < 1) 
and say that W, is determined by the quadratic form [f,f]. The main 
theorem of this section is Theorem 3.3 which characterizes the n-widths 
of 9s if 2s is imbedded compactly in 2. We need two preliminary theorems, 
the first of which we merely state. Its proof is routine. In what follows, 
Cl0 will denote closure in X0 and 0’ will denote closure in .F. 

THEOREM 3.1. Let .X;, be a linear manifold dense in gO , i.e., C/+8?; = ZO . 

Let 

9-q = {fE%;: [f,f] < l}. 

Then 

c&2, = ceg, . (3.2) 

It follows from this that 

c&$ = cts?,. (3.3) 

We relate the notion of a set determined by a quadratic form with that of 
an ellipsoid in 

THEOREM 3.2. There exists a positive self-adjoint operator R on S’& satis- 

fring 

[fig1 = (Rf,gg) for all f  EsR ,g e% (3.4) 

such that C&32 = C&B?, , where W is the ellipsoid determined by R and ~2~ is 
characterized by (3.4). R is strictly positive (positive dejkite) ;f  [a] is. More- 
over, if the inject&z I : A$ + 2 is compact then R is dispersive and the equation 

f.93 gl = +f~, g) for all g E % (3.5) 

has, for a sequence of nonnegative values A, , A,, + CO, corresponding $nite 
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dimensional eigenmanifolds ~2” which are orthogonal with dense linear span in 

both ZO and P. The h, are eigenvalues of R. 

PROOF. By a standard construction [9, pp. 332-3331 there exists a self- 
adjoint operator B : S -+ 8s defined by 

k9 ml = W) for all g4M 

which is bounded as a transformation from L@ to #s and from S to Z’: 

A = B-l exists, is self-adjoint and satisfies 

( h do = (4, d for all fEgA,gEe. (3.6) 

Indeed, gA is characterized as the set of all f  E g, for which (3.6) holds. 

gA is dense in &?s and A is positive definite: 

(Ahf> b (f,f) forall f  EL%“. 

IfwesetS?R=QA, R = A - I then R is a positive self-adjoint operator 

satisfying (3.4). Moreover, it follows from Theorem 3.1 and relation 3.4, 
taking .%‘; = gA , that C&S? = C&Q,. 

If  I : @a -+ &’ is compact then sets bounded in &a have compact closure 

in 2 and the strictly positive operator B is compact, with spectrum consisting 
of 0 which is not an eigenvalue and a sequence {try) of eigenvalues converging 
to 0, in fact, 1 > p1 > p2 > *** > 0. The eigenmanifolds corresponding 

to the pV are known to be finite dimensional and mutually orthogonal in SF 

and their closed span is all of X. The spectrum of A = B-l consists precisely 
of the reciprocals A: = p;l of the py with the same eigenmanifolds. It follows 
trivially that R is a positive dispersive operator whose spectrum is the spec- 

trum of A shifted one unit to the left and whose eigenmanifolds are the 4. 
Thus (3.5) follows from (3.4). The orthogonality and denseness properties 
of the AV in 2s follow directly from the corresponding properties in SF. 
This concludes the proof. 

REMARK 3.1. By the denseness of .QR in 2s we can readily establish the 

following characterization of the A,: 

h,=inf{[f,f] :f~&, IIf]] = land(f,q) =Oifg,EJO+-..+&.-l}. 

We are now ready to state the main result of this section. It is a direct 
consequence of Theorems 3.1 and 3.2, Remark 3.1 and the observation that 
n-widths and extremal subspaces are invariant under closure of the set 
being approximated. 
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THEOREM 3.3. If  the injection I : SO + 2 is compact then, for any subset 
B?; of ,F which satisfies C&Z’; = CL%‘, , we have the following charactmization 

of q~J: 

d,(W,) = us zjc n < No 

d,(W,) = A;;:’ if NV d n -c IV,,, , 

where the A, satisfy (3.5) with corresponding eigenmanifolds A& and 

NV = dim (df10 f *.. + AU). 

Moreover, zjc NV < ?z < NV+, then 

d,(9;) = I?(&, .A+$ + -‘. + Au), 

and the numbers d,JS?;) may be characterized by 

dn2WG) = sup {[f,f I-’ : f  E % , Ilf I1 = 1 and 

( f, q~) = 0 if q E J& + JZI + ... + A”). 

4. Application to Kolmogorov’s Result 

We will outline the proof of Kolmogorov’s theorem in this section using 
the framework of results which we have developed. The first step in the proof 
is to show that the eigenfunctions of the boundary value problem 1.5 form a 
complete orthogonal system in LYz(O, 1) and that the eigenvalues consist of 0, 
which is an eigenvalue of multiplicity R, and a sequence A, of simple positive 
eigenvalues with A, -+ co. The reader is referred to [2] for the proof. 

The second step of the proof is to notice that the class .JJ~(O, 1) defined in 
1-J is actually the same set as the set of functionsf such that the distribution 
derivatives Djf, 0 <,j < k, are in PJO, 1) (see [17]). Thus xZ”(O, 1) with 
the inner product 

(fygh = (Ag) + [fpglk = j,, l,fg 5 I, l,f (kjg- 

yields a Hilbert ?pace which we designate by Y&(0, 1). Fk is simply the set 

{fE %x0,1) : If,flk G 11. 
.In’step three we proceed, as in Theorem 3.2, to construct a positive self- 

adjoint operator R on %QO, 1) satisfying 

If, glk = P?L g) for all fEgR,g E%(O, 1) 
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such that C&%9 = C’lSk , where W is the ellipsoid determined by R. We then 
show that R is a dispersive operator with eigenvalues precisely those of (1.5). 
This is easily accomplished through the formula, obtained by integration 
by parts, 

s zf= xx 
i (oAYf 

z =y(k), 

(0.1) 

which is valid for f E &j(O, 1) and y a solution of (1.5), and through the 
characterization of BR . 

The last step of the proof is to observe that 9 and Sk have the same 
n-widths and extremal subspaces. Thus, we can apply Theorem 2.1 with 
NV = k + v and A0 = Pk to obtain (1.6), (1.7), and (1.8). This completes 
the outline of the proof. 

REMARK 4.1. The eigenfunctions of (1.5) are (real) analytic functions 
on (0, 1); in fact they can be extended to entire functions. In extending the 
theory to Z’,(Q) we will see that the real analyticity of the eigenfunctions is 
preserved. This is a valuable property since the eigenfunctions span extremal 
subspaces. 

II. n-WIDTHS IN &(Q) 

5. The General Problem 

Let Sz be a bounded open connected set in m-dimensional Euclidean space 
and let k be an integer satisfying k > 1. Let Pa(Q) be the Hilbert space of 
complex-valued functions f square integrable on Q with inner product 

(f, dYp, = SnfS 

and norm 

llf II = (j, If 12)112v 

and let s;l’,(Q) be the set of functions f in X&2) such that f has distribution 
derivatives of order < k in 9#). We define for nonnegative integers 01~ , 
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and any f E 9s(Q) the distribution derivative 

A natural extension of Kohnogorov’s result is the determination of the 
n-widths and extremal subspaces for the class 

where the constants C, enable one to consider all possible permutations in the 
order of differentiation. dk(Q) with the inner product 

is a well-known Hilbert space which we designate by %‘&Q). If  we designate 
by &$2) the completion in #‘$2) of th e infinitely differentiable functions 
C:(Q) with compact support in Q then we can consider a somewhat more 
general approximation problem by considering any Hilbert space V,Y,Y satisfying 
.&#2) C Vk C %‘$2) and determining the n-widths and extremal subspaces 

for the class 

where 

Bk = {f E Kc : [f,flk < 11, 

We will do this in this section under the assumptions 

(i) the norm (f, f):‘” = {(f, f)9E0, + [f, f]k}1’2 is equivalent to the 

standard norm on Vk induced by %$(Q), and, 

(ii) the injection I : Vk --+ LZ2(!2) is compact. 

Now these assumptions hold for Y&(Q) without any further conditions on 
Sz but this is not true for %‘$2). In the next section we will apply the results 
of this section to the special cases of J&(Q) and ctLT,(Q) and also give 
conditions on Q which will guarantee that assumptions (i) and (ii) hold for 
%‘&Q) and a fortiori for Vk . We now state the main result of this section. 
We preserve the notation of the previous sections. The Hermitian form 
[f, glk will have the obvious meaning. 
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THEOREM 5.1. The n-widths of W, satisfy 

d,(%“,) = co if n < N, (5.1) 

d&Sk) = A$ if N, < n < NV+, v 2 0, (5.2) 

zuhere the A, are nonnegative numbers satisfying the functional equation 

(5.3) 

with corresponding finite dimensional eigenmanifolds Jkt C Vk . (0) C A0 C 9* , 
where S;k is the set of polynomials of degree less than k. If  NV < n < NYtl then 
an optimal approximating n-subspace is A,, + ulv, + .*- + 4. Finally, the 
A$ are orthogonal and dense in both L?$2) and Vk and the solutions v  of the 

functional Eq. (5.3) are (real) analytic on Q and satisfy 

(- 1)x: A” = xg, (5.4) 

where 

d=-fT+...+&. 
I2 m 

PROOF. Because of assumptions (i) and (ii), Theorem 3.3 is applicable 
and from that theorem follow (5.1), (5.2) and the fact that the h, satisfy (5.3) 
and that Aa + me* + AV is an extremal subspace. To see that (0) C A0 C Pk 
it suffices to show that if Oaf = 0 for all 1011 = k then f  is a polynomial of 
degree less than k. This fact may be found in [lo, p. 461. To prove (5.4) we 
proceed as follows. We notice that the dispersive operator R constructed 
as in Section 3 satisfies the relation 

[f, g1.t = (Rf, g)pp, for all fE=QR, .ge% (5.5) 

and in fact that gR is characterized by (5.5). This implies that 

R+ = (- l)“f@ if 4 E cw). 

Indeed, setting u = (- 1)” Ak$ for # E CT(Q) and choosing g E Vk we have, 
by the definition of distribution derivative, 

which by (5.5) implies that $ l 9s and II+ = u. Now if Q is an eigenfunction 
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of R corresponding to eigenvalue X and 9 is an arbitrary element of C:(Q) 
then 

Thus, v is a distribution solution of 

[(- 1)” A’i -XI] p = 0 

and, since (- 1)” A” - XI is elliptic, it follows that p is (real) analytic on Q 
and (- 1)” Akg, = hp, (see [I 1, Corollary (4.4.1), p. 1141). This concludes 
the proof of the theorem. 

REMARK 5.1. It is proved in [12] that the class Cm(Q) is dense in W;,(Q). 
Hence, the class P(Q) n 9, has the same 9’&2) closure as gik: and Theorem 
5.1 may be viewed as a result on the approximation of classes of smooth 
functions. 

REMARK 5.2. The theory presented in Section 5 can be readily extended 
to the case of coercive Hermitian forms B[f, g] over Vk of the form 

Rfsfl b df,f )w, - /-df,f )pz 1 B[f,f 1 >, 0, 

where aas E Cm(Q) and c, > 0, pLo 2 0. In this case the widths of the classes 

vYk={f~%c:B[f,f] <l} 

may be characterized, with the aid of assumption (ii), in terms of the eigen- 
values of the functional equation 

The eigenfunctions v of (5.6) are of class C” in Sz and satisfy 

(5.7) 

The reader is referred to [13, pp. 141, 1421 f or a more complete description 
of coercive forms. Also, one observes that u,~ E F(D) 17 CqlQ) is a sufficient 
hypothesis above. 
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6. The Special Cases of yi8,(Q) and “ty(Q). 

As remarked in Section 5, assumptions (i) and (ii) hold for 9,(Q) without 
any further assumptions on Q. They follow from Poincare’s inequality and a 

version of Rellich’s lemma. In this case h = 0 is not an eigenvalue of the 
functional equation (5.3) and N, = 0. If  Q satisfies a condition known as the 
restricted cone condition then the assumptions hold for the case YLL~(Q). This 
condition does not depend for its statement upon the boundedness of Q 

and we will state it for an open connected set. It must be understood, how- 
ever, that the boundedness of Q is crucial for the validity of assumptions (i) 
and (ii) (see [13, Theorems 3.3 and 3.81). 

DEFINITION 6.1. An open connected set D in m-dimensional Euclidean 
space satisfies the restricted cone condition if the boundary X2 of Sz has a locally 
finite open covering Vi and corresponding cones I& with vertices at the origin and 
the property that x + Ki C 52 for all x E Q n Vi . By the cones Ki we mean 

sets of the form 

Ki = {x = t(yi + z), z . yi = 0, z . z < rip, 0 < t < l} 

where yi # 0 and ri > 0. 

REMARK 6.1. A bounded region Q satisfies the restricted cone condition 
if it is of class Cl. Also, if 52 satisfies the restricted cone condition then the 
infinitely differentiable functions C”(o) with derivatives of all orders uni- 

formly continuous in J2 are dense in YlT,(L?) (see [13, Theorem 2.1, p. 111). 
Now in the case of ?Y$(Q), N,, = dim 9k and A0 = 9;:. We thus have 

THEOREM 6.1. If the bounded region 52 satisfies the restricted cone condition 
then assumptions (i) and (ii) of Section 5 are satisfied and Theorem 5.1 holds. 

L&k may be replaced by any class Yk satisfying Cm(Q) n 92, C 9, C 93’k . 
hflo = Pk if 9% = Z&~(Q). 

7. The Boundary V’alue Problem 

In this section we point out the equivalence, under smoothness assump- 
tions on LK?, of the variational problems in the cases Vk = tik(sZ) and 
“t; = YQQ) with boundary value problems. Thus the approximation 
problem can be solved by solving a boundary value problem when 8.Q is 
smooth. 

The functional equation 

C%f lk = %P,f )P2 for all f  E J-e(Q) 
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is known to be equivalent to the Dirichlet problem over Y&(Q) 

(- l)k A’$ = Xcp 

Dy = 0 on aQ if lal<k 

if B is of class C’ for sufficiently large r. Certainly r > 3k f  [m/2] will 

suffice (see [14, Theorem 4, p. 3591 and [15, p. 3041). 
The functional equation 

b?hflk = %A?2 for all f E %W 

is known to be equivalent to the boundary value problem 

(- l)k Akv = hv 

N2k-l-jv = 0 on L%Q for j = 0, I,..., k - 1 

if -Q is of class Cr for sufficiently large r where Na,-,Jx), x E X?, is a dif- 
ferential operator of order 2k - 1 -j such that the surface aQ is nowhere 
charcteristic for each Nsk-rPj. Certainly r > 2k + [m/2] + 1 will suffice 

(see [13, p. 1431 and [14, Theorem 4, p. 3591. 

KEMARK 7.1. Nak--l-j contains the term (a/a,)2k-1-j with nonvanishing 
coetl?cient where a/& denotes differentiation along the normal to a~?. In the 

case k = 1 there is one natural boundary operator, Nr = (a/&). In the case 
k = 2 and m = 2 Aronszajn [16, p. 3761 h as computed the operators N2 and 
N, for a simple closed curve C in terms of normal (a/&) and tangential 
(a/&) derivatives: 

N2=& 
r 

N,=;A+ 
a* a 1 a 

as* aV t 11 as p as 

where p is the radius of curvature on C. 
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