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A higher point derivation on a commutative algebra is a finite or infinite 
sequence of linear functionals connected by the condition that they satisfy the 
Leibnitz identities. We discuss here higher point derivations on commutative 
Banach algebras. We study the extent to which point derivations are automatically 
continuous, and, for certain Banach algebras, we consider the maximum 
possible order of a higher point derivation. In particular, we obtain a complete 
description of the order and continuity properties of higher point derivations 
on the Banach algebra of n-times continuously differentiable functions on the 
unit interval. 

Let A be a commutative algebra with identity 1 over the complex field C, 
and let d,, be a character (nonzero multiplicative linear functional) on A. A point 
derivation of order q (respectively, of injinite order) on A at do is a sequence 
d 1 ,..., d, (respectively, dl , d, ,...) o f 1 inear functionals on A such that, for f and 
g in A and k = l,..., q (respectively, 1, 2 ,... ), 

?: 
ddfg) = z d,(f) d,-kd. 

j=O 

(l-1) 

These equations will be called the (normalized) Leibnitz identities. 
When it can cause no confusion, we may omit reference to the character do 

and the algebra /I in the terminology. Also, we may use the term “point deriva- 
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tion” without specifying the order; in such cases, either the order will be clear 
from the context or the statement will apply to point derivations of any order. 
Our “point derivations” are often called “higher point derivations” in the 
literature, and “point derivations of order 1” are elsewhere termed “point 
derivations”; they are often studied in the context of a search for analyticity in 
the character space of a commutative Banach algebra, but this is not our present 
concern. 

We say that a point derivation dl ,..., d, belongs to a point derivation of order p 
(where p > q) if there are linear functionals d,,, ,..., d, such that dl ,..., d, is 
a point derivation of order p. If A is a topological algebra, a point derivation on 
A is continuous if dj is continuous for each j > 1, and it is totally discontinuous 
if dj is discontinuous for each j > 1. 

A point derivation is, of course, a special case of a higher derivation, or system 
of derivations, into a module, the module being the complex field and the module 
action being determined by a character. The algebraic theory of the general 
situation has received a good deal of attention; one fairly recent survey is the 
paper of Heerema [8]. More recently, Bade and Curtis [2] have investigated 
continuity properties of derivations (of order 1, in our terminology) .in the case 
that .4 is a Banach algebra and the module is a Banach d-module. When the 
module is the algebra itself, or a superalgebra, or an algebra containing a homo- 
morphic image of the algebra, there are a number of results about the continuity 
of derivations; see, for example, [7, 91, and some of the references in those 
articles. In contrast, relatively little seems to have been done in the case of point 
derivations. Me shall study these point derivations in a series of articles, con- 
centrating on the determination of the point derivations for particular Banach 
algebras. 

We shall be concerned with the following question (for a Banach algebra A 
and a character d,, on ,4): Is there a function 4 w p(q) on the positive integers such 
that, whenever a point derivation of order 4 belongs to a point derivation of order 
p(q), the point derivation of order 4 is necessarily continuous? We show, for 
many of the familiar Banach algebras known to have discontinuous point 
derivations, that the answer is “yes,” withp(q) no larger than 2q. In particular, in 
the present paper, we examine the point derivations on the algebra P) == 
C’“)([O, 11) of n-times continuously differentiable functions on [O, I] (rz = 1,2,...) 
and we show that, for these algebras, p(q) = 2q is the exact bound. Note that 
p(q) is independent of 12. 

We also consider the question: Given K, what is the maximum order of a point 
derivation satisfying the condition d. I, f O? We obtain in Section 2 a general 
result, which, although found with certain Banach algebras in mind, is entirely 
algebraic, and in Section 3 we obtain for the algebras Ctn) the exact bound, which 
is (2n + 1)K - 1. Thus, our theme is that on certain commutative Banach 
algebras, the linear functionals in the “first half” of a point derivation are 
necessarily continuous, and that, if the order of the point derivation is sufficiently 
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large, a certain initial segment will be trivial in the sense that it consists entirely 
of zero functionals. 

The theory of point derivations (in our sense) has some connection with the 
theory of derivations from Banach algebras into finite-dimensional modules; 
see [3] for a discussion of this topic, particularly in relation to the algebras C’ln). 

In a subsequent paper, we hope to study in some detail the point derivations 
on certain other commutative Banach algebras. 

Examples of discontinuous point derivations of order 1 are well known [I]; 
such objects are of interest in connection with the existence of discontinuous 
homomorphisms from Banach algebras [ 1, 5, 6, lo]. In a further paper, we shall 
show that there exist totally discontinuous point derivations of any order, 
including infinite order. This implies the existence of a discontinuous homomor- 
phism from a Banach algebra into C[[X]] (in fact, we shall construct an 
epimorphism), and it also shows that there is not always a function 4 H ~(4) of 
the type referred to above. 

1. PRELIMINARIES 

In this section, we establish some conventions and further terminology, and 
make some preliminary observations. 

-411 the algebras considered in this paper will be commutative, linear, associative 
algebras over the complex field C. They will not be assumed to have an identity 
unless this is explicitly stated; however, we shall usually write A for an algebra 
with identity and M for an algebra without identity, and we shall write M 0 Cl 
for the algebra formed from M by adjoining an identity. 

If L- is a vector space, if X is a linear functional on I/‘, and if S C I!*, then we 
write X 1 S to mean that h(v) = 0 (w E S). 

If F and G are nonempty subsets of an algebra rl, then FG denotes the set of 
all sums & h,fig, , where Xi E C, fi E F, gi E G, and 1z is an arbitrary positive 
integer. If F or G is an ideal in A, then FG is also an ideal in =1. In particular, if Idl 
is an ideal in A, we shall often consider the descending chain of ideals M, M9, 
MZ,... . 

Suppose that rZ has an identity and that d,, is a character on A. Then any point 
derivation at do is easily seen to satisfy 

d,(l) = 0 (j $ 1). 

Also, if we restrict Eqs. (1.1) to elements in ker do , we get 

d, (fg) = C dj(f) d,.-,(g) (k Ia 2), 
,--1 

(1.2) 

(1.3) 

for f and g in ker do . 
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Now let M be an algebra without identity. A point derivation at 0~) on M is a 
sequence (finite or infinite, with the terminology concerning the order as before) 
of linear functionals on M such that Eqs. (1.3) hold for f and g in M. 

It is a familiar fact that point derivations of order 1 at $ on A (with identity) 
are characterized by the property dl 1 Cl + (ker do)“, and it is not hard to see 
that point derivations of all orders are characterized by Eqs. (1.2) and (1.3). Thus, 
point derivations at cc on M could be defined (equivalently) as the restrictions 
to M of point derivations on M @ Cl at the character whose kernel is M. 

Another comment about Eqs. (1.3) may b e in order. These equations show 
that the nature of the point derivations at d,, is strongly related to the ideal 
(ker do)2 (and, via relations of the form dj 1 (ker d,#+l, to higher powers of 
ker d,). Although we do not emphasize this point of view in our exposition, the 
reader can observe that each of our positive results is based on some properties, 
usually of a function-theoretic nature, of the ideal (ker d,)* and/or other closely 
related ideals. For example, Theorem 3.1 is crucial to later results in Section 3, 
and if we took the point of view that the theory of point derivations was a part of 
ideal theory in general, we would say that Theorem 3.1 was the main result of 
Section 3. 

Let 9 = C[[X]] denote the algebra of formal power series in one variable over 
C, and throughout let pj: ): XJi ---t Xj denote the coordinate projections on $. 
Then F is a complete Frechet algebra with respect to the topology determined 
by the family of seminorms (1 pi 1). Let Fn denote the closed ideal fl,“=O ker pj of 
9. Then the set of point derivations of infinite order at the character d,, of a 
Banach algebra A corresponds bijectively to the set (0 E Hom(A, 9): p, 0 0 = d,}: 
of course, O(a) = 1 d,(a)Xi, di = pi o 0. Similarly, point derivations of order n 
correspond bijectively to homomorphisms into F/Fn . These homomorphisms 
are continuous if and only if the corresponding point derivations are continuous. 
It is noted in [12] that the automorphisms of ZJ correspond to maps of the form 
h w h c p (formal composition of power series) for those p in .R such that 
p,,(p) = 0, p,(p) # 0, and that these automorphisms are continuous. Clearly, 
these automorphisms induce continuous automorphisms on each s/fin . This 
point of view leads to an easy proof of the following useful technical result. 

1. I LEMMA. Let A be an algebra with identity, let d, be a character on A, and 
let dl , d2 ,... be a point derivation at d, on A, of any order, infinite orfinite. Choose a 
positive integer m and a complex number OL, and define D, = dO and 

D, = Ego (’ - “y - ‘)) c2dr-i(l,,+l) (r > 1). 

Then D,, D, ,... is a point derivation at D, on A of the same order as dl , d, ,... . 
If A is a topological algebra and k is a positive integer, then dl ,..., dk are continuous 
if and only if D, ,..., D, are continuous. 



Before beginning the proof, we must state the convention about binomial 
coefficients which applies in the above formula. If F and s are integers, then 
(z) = 0 unless both I’ and s are nonnegative with r I: S, in which case (‘J is the 
usual binomial coefficient. 

Proof. Let 0: a -)x d,(a)P be a homomorphism from -4 into .F or F/Y0 , 
and let T be the automorphism of 9 or F/F% given by T(X) =: A 5 (S i WY:“‘). 
Then 

and we see that D,. = pr 0 T 0 0. Thus, D, , D, ,... is a point derivation, as 
required. 

Clearly, T =’ 0 is continuous if and only if 0 is continuous, and the continuity 
assertion follows. The lemma is proved. 

1f’e conclude this section with a general result on the continuity of point 
derivations. The result is very simple, and may be known, but we have no 
reference for it. We need some more terminology, which will be used again 
later. As we have already indicated, the point derivation defined by d, = 0 
forj 3 I is called the trivial point derivation. A (nontrivial) point derivation is 
degenerate if dl = 0, and nondegenerate if dl + 0. 

1.2 PROPOSITION. Let rl be a Banach algebra z&h identity, let d,, be a character 
on -4. and let dl , d2 ,... be a nondegenerate point derivation (of any order) on .q at 
d, . If k t.:: 1 and d, is continuous, then d, is continuous for each j = 1, Z,..., k. 

Proof. Let M = ker $ . It is sufficient to show that the appropriate linear 
functionals are continuous on M. 

If f E M, then dJf”) = d,(f)‘; (see Lemma 2.1) so that, if fpl ---f 0 in Icf, 
dl(fn) - 0, and it follows that d, is continuous. Since the point derivation is 
nondegenerate, we can take fO E M with d,(f,) == 1. Suppose inductively that 
d, ,..., d,._, are continuous for some r E (2 ,..., k - 1). Now 

4(f :-‘g, = d,.(g) + C 4-Xf i-7 d,(g) 
s=l 

(g E M). 

Apply with g = g, where g, - 0 in M to deduce that d,(g,) 4 0 and that d,. 
is continuous, continuing the induction. 

If the derivation is degenerate, the situation is more complicated, but a 



HIGHER POINT DERIVATIONS, I 171 

simple example shows that the above result need not hold. If dr ,..., d,, is a point 
derivation and if d is any first-order point derivation, then 0, dl , 0, dz ,..., 0, d, , d 
is a point derivation. 

2. A GENERAL ALGEBRAIC RESULT 

Throughout this section, A is an algebra with identity, d,, is a character on A, 
and we write M for the maximal ideal ker do . The main result is Theorem 2.3; 
before stating it, we shall isolate as lemmas two of the computations required. 

2.1 LEMMA. Let dl ,..., d, be a point derivation (on A at d,,), let k be a positive 
integer, and suppose that dj = 0 for 1 < j < k (vacuous if k = 1). Then, for any 
positive integer m such that mk < q and any f E ICI, 

(9 4df “1 = 4df )“; 
(ii) d,(f “) = 0 if r < mk. 

Proof. The proof is by induction on m. Before beginning, we remark that in 
the case k = 1, the conclusions (i) and (ii) are the familiar (and easily checked) 
properties of point derivations that dm(f “) = dl(f)m (f E M) and that 
d, 1 Mr+l, respectively. 

For the proof of the lemma, first observe that if m = 1, there is nothing to 
prove. Suppose that (i) and (ii) hold for some m > 1, and letf belong to M. Then, 
writing fm+l = ff nr and using Eqs. (1.1) and the information that dj = 0 for 
1 <j<k, 

4m+df jn+l) = ddf )4&f 9 + z: 

where .Z is a finite sum, each of whose terms has a factor d,(f “) for some r < mk. 
So, using both (i) and (ii), 

Also, if r < (m + l)k, we have 

4(f m+l) = ddf 1 L(f ‘7 + . . . . 

and in this case all the terms vanish by (ii), so that d,(f m+l) = 0, as required. 

2.2 LEMMA. Let dl ,..., d, be a point derivation. Suppose that g E M and that m 
is a positive integer such that d,(g) = 0 f or r < m. Then, for any positive integer j, 

d@) = 0 (r < min{p, jm + j - 1)). 
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Proof. The proof is by induction on j. First observe that the case j = 1 is 
given. Suppose k > 1 and the result holds for all positive integers j < k. For 
any Y E {I,..., p]-, 

,-I 
d,(g”‘) = 2 dj(g) d,-j(gkp’). 

j=l 

The three conditions j > m, r - j > (k - 1) m+k-2,andr <km+k- 1 
cannot occur simultaneously, so the inductive hypothesis and the data imply that 

d,(g”) = 0 (r < min{p, km + k - I)), 

as required. 

2.3 THEOREM. Let A be an algebra with identity, let d0 be a character on A, 
and let M = ker d, . Suppose there are a set A C M and a positive integer n such 
that 

(i) A generates M in A (i.e., AA = M); 

(ii) given f E A and a positive integer p, there exists g in M such that 
gP = fnP+l. 

Then, for each positive integer q, the only point derivation of order q on A at d, 
which belongs to a point derivation of order q(2% + 1) is the trivial point derivation 
of order q. 

Proof. Let dI ,..., d, be a point derivation of order p; we have to show that 
p 2 q(2% + 1) implies that dI = ... = d, = 0. Because of Eqs. (1.2), it is 
sufficient to show dj 1 M for j = I,..., q, and for this it is sufficient by hypo- 
thesis (i) to show that d,(f) = 0 for f E A and j = l,..., q. The proof is by 
induction on q; hence, suppose that q is a positive integer and that, if q > 1, the 
result holds for the integers l,..., q - 1. If p > q(2’% + l), then d, 1 M for 
j < q, and we must show that d,(f) = 0 (f E A). 

To obtain a contradiction, suppose there exists f E A such that d,(f) = 01 + 0. 
Take g E M such that gla = fign+r. By Lemma 2.1 (ii), Y < 2qqn (<q(2% + 1)) 
implies that 

dr(f 2%+1) = 0, 

and so 

d,(g2”) = 0. 

Now an induction on j shows that 

d,.(g”“-‘) = 0 (r < 2”-jqn) (2.1) 
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forj = 0, l,..., Q: If (2.1) holds forj < K < p, if s < 2+%772, and if d,(g2”-L) == 0 
for all Y < S, then 

0 r= &(g**-“‘+‘) = ds(g*~-y~. 

The casej = 4 of (2.1) gives 

d,(g) = 0 (y G !74* 

Therefore, dQ(aQn+i)(g?*) = 0 by Lemma 2.2, since 4(2Qn 

On the other hand, 

d *,2*n+l)(.f*‘n+l) = cPn+1 f 0, 

by Lemma 2.1(i). This is the required contradiction. 

4 - 1) < 29qn + 24 - 1. 

2.4 COROLLARY. rZ nonifegenerate point derivation on A at dO has order at 
most 2n. The only point derivation of injinite order on A at d, is the trivial point 
derivation of infinite order. 

Before pointing out some of the algebras to which Theorem 2.3 can be applied, 
we remark that for any particular value of n, it may be possible to improve on 
the number q(2Qn + 1) of Theorem 2.3. For example, using rather more 
complicated calculations, it can be shown that in the case n = 1 a point derivation 
of order p > q(q + 2) has d, = ... = d, = 0. We do not know if this is best- 
possible. 

We conclude this section with some applications of Theorem 2.3. 

2.5 EXAMPLE. Algebras of dz@entiable functions on an interval. 

For each positive integer n, let C (rb) = C(“)([O, 11) denote the set of functions 
having at least n continuous derivatives on [0, 1] (one-sided derivatives at 
0 and 1). With pointwise operations and the norm 

II f I/ = f f sup{/ f ‘j)(t)l: t E [O, 1]} 
j&l _ . 

(f E CT 

P) is a Banach algebra, singly generated by the coordinate function x (where 
x(t) = t for t E [0, I]), and natural on [0, 11. The theory of derivations from this 
algebra into modules is discussed in [2, 31. 

Fix a point t, E [0, 1] and let M = {f E Cm): f (to) = 0) be the corresponding 
maximal ideal. Then Theorem 2.3 applies with the n from Cfn) and with 
/l = {f E M: f is real-valued}. It is certainly the case that (1 generates M. Also, 
for any positive integer p, one can define t n+(l/P) (t E R) so that the resulting 
function has n continuous derivatives and vanishes at 0 (but is not, of course, 
necessarily real-valued). Therefore, for each f~ (1, one can produce f tl+(l’p) = 



g E JI, and then g” == j” ‘I l, as required. Thus, any nondegenerate point 
derivation on 0”’ has order at most In, and the only homomorphisms PPl) + .F 
are the obvious ones of the formf +-f(t,,)l, for some fixed t, E [0, I]. 

We had the algebras C ()I) in mind when we found Theorem 2.3; we shall 
return to them in Section 3 and study their point derivations more fully. 

2.6 EXAMPLE. -4lgebras of differentiable functions on a disc. 

Let U be the open unit disc in C, let n be a positive integer, and let Dl'l) - 
P)(o) be the set of functions which are analytic on lY and whose derivatives 
up to and including order n are uniformly continuous on l?. With pointwise 
operations and norm analogous to that defined on C tn), Dfal is a Banach algebra, 
singly generated by the coordinate function 2, and natural on u. 

Now Theorem 2.3 certainly does not apply at points of U. At such points there 
are nondegenerate point derivations of all orders, including infinite order, 
because of the analyticity of functions in D 011 at points of U. Clearly, every point 
derivation at a point of U is continuous. 

Fix a point & in T = {[EC: / [ 1 = I), and let AZ be the corresponding 
maximal ideal {f E D(“): f (&,) = 0). 11’ e claim that now Theorem 2.3 applies, 
with the n from Dfn) and with 

‘4 = {f E M: f (5) # 0 (5 E D\&))). 

It is fairly straightforward to see that condition (ii) of Theorem 2.3 is satisfied. 
For, given f E (I and a positive integer p, the facts that U is simply connected and 
thatfdoes not vanish on U allow us to produce f l/l’, analytic on CT and uniformly 
continuous there (since f was). Then g = .f f ‘I l ‘I’ will satisfy the requirements 
of condition (ii). The following theorem, which we state for reference in a later 
paper, leads to the fact that 11 generates M. 

THEOREM. For each f E A4 with f ‘(&,) + 0, there are g E Dtn’ and h E iVl such 
that g(&,) f 0, h(t) # 0 zy 6 + to, and f = gh. 

Proof. Since f ‘(to) f 0, we can choose a relative neighborhood r of 5, so 
that f does not vanish in V\{&,}. Therefore, we can choose a relatively open cover 
{V, , V,} of U, with &, E I; , say, and with a I,7i and a( V1 n Vz) as smooth as we 

like, and so thatf / (VI n Vz) is an invertible element of D(“)( V, n V,) (obvious 
definition). By Theorem 20 of [l I], th ere are invertible elements Fi in DOz)(ri) 
such that f = F,F, in k; n lrz . Therefore, fF;l = F2 in I/; n Vz , and defining 

and g == .f ,‘A gi\-es the required factorization. 
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To see that A generates M, observe that both z - &, and the function h of the 
theorem belong to A, and that any f E M can be written as ,(z - &,) + fi for 
some OL EC and somefi E M such thatfi’(&,) # 0 (any 01 # f’(.$,) will do). 

Hence, again, we can conclude that a nondegenerate point derivation on DlnJ 
at a point of T has order at most 2n. 

1Ve are grateful to Professor E. L. Stout, who referred us to Nagel’s paper and 
who also provided an ingenious direct proof of the factorization theorem given 
above. The algebras Dtn) will be studied later. Note that as far as the above 
argument is concerned, the unit disc could be replaced by any simply connected 
domain with a sufficiently smooth boundary, the degree of smoothness depending 
on n; see [l l] for details. 

2.7 EXAMPLE. Point derivations at inJinity on 1~. 

Let p be a real number, 1 < p < CO, and let 1” denote the Banach space of 
pth power summable sequences. With coordinate-wise multiplication, Ip is a 
Banach algebra without identity. Theorem 2.3 applies to lp, with n = 1 and 
A = {s = (sj) E I? sj E R for all j}. Thus, for example, a nondegenerate point 
derivation at r, on I” has order at most 2. In fact, we can show that more is true, 
and we can determine the nature of all point derivations for this algebra. The 
point derivations of order 1 are well known [I]: since (I’))? = /P:%, which is 
dense in I”, the space of such point derivations is infinite-dimensional, and all 
but the zero functional are discontinuous. So, given a point derivation dl , dz , 
a proof that dl is continuous entails a proof that dI = 0. This is a consequence 
of the next theorem. 

THEOREM. Every nondegenerate point derivation at a3 on I” (1 < p < “o) has 
order 1. 

Proof. Suppose, if possible, that d, d, is a point derivation of order 2 and that 
there exists f0 E Zp with d(f,) = 1. 

First note that there exists a function h on N such that h(n) + 0 for n E N, 
h(n) --, zj as n ---L co, and hf, E I I’. For, set n, = 1 and define inductively a 
sequence (nk: k = 1, 2,...) such that nk+l > nk and xzk j fo(n)l 1’ < 2-(“+ll. Let 

h(n) = k (nkpl < n < nk, k = 1, 2 ,... ). 

Then x:,” l(hf,)(n)jfi < zr=‘=, (kp/2k) < co, so that h is the required function. 
Let fi = hf, and let g = h-l, so that gfO E ZP. Now figfo = fez, so 

4fd d(gfo) = d,(f,gfJ = dz(fo2) = d(fo)* = 1, 

whence d(f,) + 0. By replacing h by a scalar multiple, we can suppose that 

d(f,) = 1. 
If F E C G C(N u {co}), then Ffl E 1” (identifying F with its restriction to N). 

Define A: C-C by h(F) = d(Ffl). Th en h is a linear functional and X(FG) = 
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d(FGjr) d(f,) = d(FJ,) d(Gf,) = A(F) h(G) for F, G E C, so that A is a character 
on C, say X(F) = F(s) (FE C) for some x E N u (~3. If x E N, S,fr E (I”)‘, so that 
1 = A(&) = d(S,f,) = 0, a contradiction. If x = co, set g(a) = 0 so that g E C. 
Then d(f,) = n(gfi) = h(g) = g(c.c) := 0, g a ain a contradiction. The theorem is 
proved. 

2.8 EXAMPLE. .-llgebras of Lipschitz functions. 

Let (X, m) be a metric space and write Lip(X, nz) for the set of bounded 
functions f on X such that / f I,?, < co, where 

If L = sup{lf (x) - .f(y)l/m(s, 4’): .2’, 1’ E -Y, x # y). 

Clearly, such functions are uniformly continuous on the metric space (X, m). 
The system Lip(X, m) has been studied by Sherbert [13] who showed that with 
pointwise operations and the norm 

(where /f IX = sup{1 f(~)l: x E X}), Lip(X, m) is a regular Banach algebra. 
Sherbert studied point derivations of order 1 on Lip&Y, m), and in particular 
obtained characterizations of the space of continuous, first-order point derivations 
associated with a point so E X. In the present context, we observe that 
Theorem 2.3 applies to Lip(X, m), again with n = 1 and 

/l = {f E Lip(S, m): f (.t.,,) = 0 and f is real-valued}. 

Thus, as in the last example, a nondegenerate point derivation at .rO has order at 
most 2. An analysis of the point derivations of order 2 on this algebra will be 
given in a later paper. 

3. THE ALGEBRAS Cn)([O, 11) 

In this section, we continue the study of the point derivations on the algebras 
Pa) (=P)([O, 11)) for n = I, 2 ,..., introduced in Example 2.5. L5’e shall give 
what amounts to a complete description of the point derivations on these algebras, 
and in particular we shall answer the question raised in the Introduction: Find 
~(4) such that whenever a point derivation of order q belongs to a point derivation 
of order p(q), the point derivation of order q is necessarily continuous. Also, we 
shall improve the upper bound implied by Theorem 2.3 for the order of a point 
derivation which begins with a specified number of zeros, giving a sharp bound. 

First, we point out that the point derivations on Ctn) at one point of [0, I] are 
formally equivalent to those at anv other point. This is not immediatelv obvious; 
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e.g., it is probably natural to wonder whether there might be a difference between 
endpoints and interior points of [0, 11. However, the reader will observe that for 
any t, E [0, 11, the function x - t, plays a (crucial) role in the investigation of the 
point derivations at to entirely parallel to the role played by the function x with 
regard to the point derivations at 0. Therefore, we shall fix our attention on the 
point derivations at 0. 

For any nonnegative integer k and any function f which has a kth derivative 
(in the usual sense) at 0, we write 

S,(f) = f’yop!. 

\I’e use the usual convention about the 0th derivative. For any n 2 1 and each 
k = l,..., rz, it is clear that 6, is a continuous linear functional on W), and also 
that 6, ,..., 6, is a point derivation on Cn) at 6, . We may refer to these as the 
oboious point derivations on Cfn); one of the aims of this section will be to show 
the relationship of the obvious point derivations to point derivations in general 
(cf. [6], particularly Corollary 51.2). 

As might be expected, certain ideals in W) associated with the point 0 play 
an important role in the study of the point derivations. We will fix some notation, 
setting, for K = 0, l,..., n, 

nir,., = ff~ W):f(j’(O) = 0 (j = 0, I,..., k)}. 

The J&k form a descending (finite) sequence of closed ideals in P). The first 
result of this section gives the properties of these ideals which we shall need. 

3.1 THEOREM. Let n be a positive integer. 

(i) (M,,J = LPM,.~ . 

(ii) For 0 < k < 71, (M,,J2 = xk+lMn,k. 

Proof. (i) We need the following technical fact. If f E &In,, , then there is a 
function 4 such that: 4 is infinitely differentiable on (0, 1] and 4 is continuous on 

KA 11; 

C(O) = 0, and w > 0 for t > 0; 

c+(t) 3 sup{1 f ‘“)(s)J: 0 < s < t>; 

$ f (n)(t) q(t) = 0. 

To prove this, suppose (without loss of generality) that / f tn)(t)l < 1 for 
t E [0, 11, and define g(t) = sup{\ f cn)(s)I: 0 < s < t} for t E [0, 11. Then g is 
nonnegative, continuous, and nondecreasing on [0, 11, g(0) = 0, and g(1) < 1. 
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iI\‘e can choose a sequence of points (ri) C (0, l), decreasing to 0, and for each i 
a step function hi on [ti , I] such that 

1 > Iii >g on [G, 11; 

hi is nondecreasing; 

ifj > i, hj == hi on [ti , I]; 

h;(ti) + 0 asi-, co. 

Now define h on (0, I] by h(t) == h,(t) if t 2: ti . From h produce a “polygonal” 
function k by taking the line segments which join the left-hand ends of adjacent 
“steps” of h; observe that we have 1 > k >g on (0, 11, and lim,,,, k(t) = 0. 
Round off the corners of k to produce #, infinitely differentiable on (0, 11; 
clearly, we can do this so that I > 4 > g on (0, I] and lim,,,, 4(t) = 0. Define 
#(O) = 0, so that $ is continuous on [0, 11. We have If’“‘/+ ) < 1 on (0, 11, and 
it is now easy to see that 4 -= +W will satisfy all the requirements. 

To prove (i), fix f~ AI%,, . We shall find h E n/r,,, and k E Mn,.,, such that 
.rjtf =I hk. Take 4 related tof as above, and define K on [0, 11 by 

k(f) = 1’ (t - s)‘l-1 #l(s) ds. 
‘0 

(The motivation for this is that the integral used to define K is a multiple of 
S:,S,“...S~S,‘~(s)dsdr..,dId ( z u ti integrations), as can be seen by changing the 
order of the integrations.) Thus, 

k(j)(t) == (n - 1) ... (n - j) L’ (f -- s)“-j-l+(s) ds (j = I,..., 12 -~ 1) 

and 

k”l)(f) = (?z - I)! 4(t), 

so that, clearly, k E n;l,., . Now define h on [0, I] by 

h(t) == t”f(t)/k(t) 

h(0) =: 0. 

(t E (0, ll), 

We write h = x’lflk for short. Note that k is positive on (0, 11. Since xnf = hk, 
we will have the required factorization of x*f once we have shown that h E iI&, . 
It is clear that h has n continuous derivatives on (0, 11, so only the behavior at 0 
has to be determined. This is done by direct calculation, and we omit most of the 
details, which are straightforward. The crucial fact in that h(t)/t” - 0 as 
t -O+ (and hence h(t)/tj -+ 0 as t + 0+ for j = 0, l,..., n), which follows 
from the equation h(t)/t” =f(t)/k(t) for t # 0 and l’Hbpital’s rule: 

fj? f(t);k(t) = j~~+f’“‘(‘) k(‘l)(f) == [(?z - l)!]-’ hEf’“‘(t),‘$(t) = 0. 
a _r 
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We have shown that x*M,,, C (Mn,J2, and this is the difficult part of the proof. 
To see the reverse inclusion, suppose h E M,,n and k E M,,, , and take 
f = hk/x”. As before, it is clear thatf has n continuous derivatives on (0, 11, and 
to complete the proof that f E M,,, , it suffices as above to show that f (t)/t” + 0 
as t + O+. But f(t)/t” = (h(t)/t”)(k(t)/P), which tends to 0 as t -+ Of by 
l’H6pital’s rule, since both h and k belong to M,,* . This completes the proof 
of (i). 

(ii) Since xk+l E Mn,k , the inclusion x~+‘M,,,, C (M,,Jz is clear. For the 
reverse inclusion, suppose that fi E Mfl,, for i = I, 2. Then there are Taylor 
expansions 

fi = j=g+l sj(fi) A+ + Rnfi 9 

where R,f, belong to M,,, . To see that fif2/xk+’ belongs to M,,, , simply 
multiply the two Taylor expansions and divide by xLfl, using (i) to see that 

(R,fl)(R,f2)/xkf1 belongs to W,,, , which is contained in Al,,, . This proves (ii). 

The first part of the above theorem was found by A. Browder and P. C. Curtis. 
We have given Browder’s proof, in a form shown to us by W. G. Bade. It is 
entirely elementary. Another elegant proof, due to Curtis, depends on the fact 
that 

A, = {f/x? f E M,,,} 

= {g E c?((O, I]): tjg(j)(t) -+ 0 as t --f 0+ (i = 0, l,..., n)} 

is a Banach algebra (without identity) with respect to the norm 

ilg ‘I == J$o (i) sup{t’ 1 g”‘(t)l: t E (0, l]}, 

and has a bounded approximate identity. Thus, by Cohen’s theorem [4, 11 .lO], 

if f c M,,, , there are g and h in M,,, such that f /.v” = (g/x”)(h/x”), and hence 
xy = gh. 

Part (ii) of Theorem 3.1, in the particular case k = 0 must be regarded as the 
ancestor of the results in this section. It is found in [2], Example 3, with the 
additional information that 

(M,J” = xM,,, = {f E M%,,: f ‘(0) = 0 and f cn+l)(0) exists}. 

From the last equality, it follows, first, that (M,,J = M,,l . Since continuous 
point derivations of order 1 on M,,. are just those linear functionals which 

annihilate (M,J2, the space of such derivations is one-dimensional and each 
continuous point derivation is a multiple of 6, . Second, (M,J has infinite 
codimension in Mm., , and so the space of discontinuous point derivations of 
order 1 is infinite-dimensional. Third, we see that Ctn) has a nondegenerate 
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point derivation of order n + I. For certainly S,,, exists for f in (M,J, and, 

if 4+l is any linear functional on W) such that d,,+,( 1) = 0 and d,,, = S,,, on 

(Nd2, then 6, ,..., 6, , &+, is a point derivation. Since we can easily find a set 
in (M,J which is bounded with respect to the norm of W), but on which S,,, 
is unbounded, such a d,n+, is necessarily discontinuous. It is less clear whether 
or not there exist nondegenerate point derivations on 0) of order Q with 
n + 1 < 4 < 2n; for this, see Theorem 3.4(iii). 

Next we give a technical lemma to be used in the proofs of the main theorems 
of this section. 

3.2 LEMMA. Suppose f~ M,,,+, , S,Jf) + 0, and f(t) f 0 if t i 0. Then 
g = xzn/f~ Mn,n-l and S,(g) = l/S,(f). 

Proof. Induction (on k) shows that, for k = 0, I,..., n, (l/f)(“) is a sum of 
terms of the form cf (O)/f /“l+i, where (J = (r( j):j = 1, 2,...) is a finite sequence 
of nonnegative integers such that Zjr(j) = k, c, is a numerical coefficient, 
/ 0 1 = E(j), andf(O) = (f (l))rl ... (f’“))‘n. Since 

we see that (.P/f) (0) is a sum of terms of the form 

cD,ox2n-r,y;f(o)/f lol+l. 

Ignoring the numerical coefficient c~,~ , the last expression can be written 

Now, 1’Hopital’s rule used repeatedly and the assumption that S,(f) # 0 imply 
that 

(a) g = x’“/f has n - 1 continuous derivatives on [0, 11, and Sj(g) = 0 
for j = 0, l,..., 12 - 1; 

(b) gcn) exists and is continuous on (0, 11, and lim,,,+g(n)(t) exists. 

Therefore, g E 1c&+i . (It is a fact that if a function 4 is differentiable in a 
deleted neighborhood of a point a and if lim,,, C’(t) = L exists, then $‘(a) 
exists and equals L.) 

The fact that S,(g) = l/S,(f) can be seen by looking at the equation 
fg/x” = .+ and using Taylor expansions for f and g as in the proof of Theorem 
3.l(ii). 
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This brings us to the first main result of this section, which gives the function 
p(q) referred to in the Introduction for nondegenerate point derivations on Ctn). 

3.3 THEOREM. Let n be a positive integer, and let dl , . . . . d, be a nondegenerate 
point derivation at 0 on CY of order p. Zf q is a positive integer and p > 2q, then 
the point derivation dl ,..., d, is continuous. 

Proof. First, observe that the hypothesis of nondegeneracy forces p < 2n, 
as in Example 2.5. Also, if p = 1, there is nothing to prove, so we shall suppose 
that p > 1. 

Since the point derivation is nondegenerate, 4(x) # 0, for, given f E M,,o , 
there existsg E M,,, with f ‘2 = xg, and, if d,(x) = 0, dl(f )’ = d?(f “) = d,(xg) = 
d,(x) d,(g) = 0, so that dl = 0, a contradiction. 

We now transform the derivation, using Lemma 1.1. When applying this 
lemma, we shall always use the same symbols for the members of the point 
derivation both before and after the transformation. Thus, first we can suppose 
d,(x) = 1 (Lemma 1.1, m = 1, OL = d,(x)-’ - I), and this implies that 
d,(xj) = Sjj for i = l,...,p and j >, i (Lemma 2.1). Apply Lemma 1.1 with 
m = 2 and OL = -d,(x). Then we have d2(x) = 0, and it is easily checked that 
di(x”-l) = 0 for i = 2, 3,..., p. Apply Lemma 1 .l with m = 3 and 01 = -d3(x). 
Then d3(x) = 0 and hence di(xie2) = 0 for i = 3,..., p. Continuing, we see 
that because of the continuity assertion in Lemma 1.1, we can suppose without 
loss of generality that 

d,(x’) = Sij (i = I)..., p,j = 1, 2 )... ). (3.1) 

The proof of the theorem is by induction on q. In fact, the case q = 1 includes 
in simple form the method for the general inductive step. Note that the argu- 
ments in the cases n = 1 and n > 1 are different. 

Thus, take q = 1 and n = 1. If f E M,., and S,(f) f 0, then f does not 
vanish in some deleted neighborhood of 0. Changing f outside a neighborhood 
of 0 does not affect either dl(f) or S,(f), so that we can suppose f(t) # 0 if 
t # 0. Then g = x2/f E Ml*, , by Lemma 3.2, and therefore 1 = 4(x?) = 
d,(fg) = 4(f) d,(g), so that 4(f) # 0. This implies ker dl C ker 6, , and 
therefore dl is a multiple of 6, , which shows that dl is continuous. (Because of 
the normalization carried out above, dl = 6, .) On the other hand, if n > 1 and 

f E Mu 9 then, by Theorem 3.l(ii), there is g E Me*1 such that f 2 = x?g. In 
particular, f’ E (Mm,J3, and therefore dl(f)2 = d2(f “) = 0, so 4(f) = 0. This 
shows that ker 6, C ker dl , and again it follows that dl equals Si and is continuous. 

Now suppose that 2 < 2k + 2 < p and that dl ,..., d, are continuous. Since 
d,(xj) = Sij = &(xi), di and Si agree on polynomials, and so di = Sj (i = l,..., k). 
It follows that d,,, = S,,, + d for some first-order point derivation d. (Note 
that k + 1 < n because 2k + 2 < p < 2n.) Clearly, d,,, is continuous if and 

580/26/2-6 
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only if d is continuous. Since d(s) = dk+l(x) r= 0, d is continuous if and only if 
d = 0, and to show that d = 0 it suffices, by (3.1), to show that d _L Mn,n . 

Let f and g belong to M,,, , where I 52 /z 5: rz - 1. By Theorem 3. I, 
fg/&+l E M,,k, and so, using (3.1), 

d,,+,(fg) = dzk+.” (&- . d’+l) = dk+l (-&). 

Also, 

and so 

dx&d = 4+1(f) d,+,(g), 

4+l (&) = d,+,(f) 4+1(g) (f, g E Mn.d (3.2) 

In particular, if k + 1 < n and f~ M,,k+l , then we know thatfa/xk+l belongs 

to xMn.r+l which is contained in (Mn,Jz, and so (3.2) implies that d(f)2 == 
d,+,(f)2 = dkfl(f2/xk+l) = d(f2/xk+‘) == 0, whence d(f) = 0 for eachfin M,,- , 
as required. 

Now consider the case when K + 1 = n. It is easy to check that d, 1 (Mn,nJ. 
If h is a linear functional on n;ln+r such that A(f) = d+,(f/x”) whenever 
f~ (Mn,+$, then (3.2) (with K = n - 1) implies that the pair d, , X is a point 
derivation of order 2 at 03 on Mfl,n-1 . If fE ICZn,n-l and S,(f) # 0, then (as in 
the case n = 1) f is zero-free in some deleted neighborhood of 0, and since 
changing f outside a neighborhood of 0 affects neither S,(j) nor d(f), we can 
assume that f(t) f 0 for t f 0. By Lemma 3.2, g = ~‘“/f belongs to MVl,a-l . 
Thenfg = .$” 1 (.v’~)?, so that d,(f) d,(g) = h(fg) == dm(s”)! =: 1, and therefore 
d,(f) + 0. Thus f~ MS.n-l and d,(f) = 0 together imply S,(f) = 0, and so 
d, and 6, , as linear functionals on Mn,,-, , have the same kernel, namely 

~~frz,n . Thus d = d, - &, vanishes on n/r,,, , as required. 
This completes the proof. 

The next result shows that all the situations not excluded by Theorem 3.3 
(and Theorem 2.3) for nondegenerate point derivations on Ctn) do actually occur. 
Also, the proof shows how the obvious point derivations are related to non- 
degenerate point derivations in general. 

3.4 THEOREM. (i) -4 continuous, nondegenerate point derivation on PI has 
order at most n. 

(ii) A continuous, nondegenerate point derivation dl ,..., d, on P) of order 
q < n belongs to a point derivation of order 2q + 1 with d, discontinuous for 
j = q + l,..., 2q + 1. 

(iii) A continuous, nondegenerate point derivation dl ,..., d,, on 0”) of order n 
belongs to a point derivation of order 2n with d, discontinuous for j = n + I,..., 2n. 
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Proof. (i) Assume that dl ,..., d, is a continuous, nondegenerate point 
derivation with q > it > 1. As in the proof of Theorem 3.3, we can apply 
Lemma 3.3 and suppose that d,(xj) = i& for i = l,..., q and j = 1, 2 ,... . Then 
the continuity of the di’s and the density of the polynomials in CY) imply 
di = Si for i = l,..., n. By a remark following Theorem 3.1, a,,,, is defined on 
(M&?. Since both d,,, and 6,+r obey the Leibnitz identity with 6, ,..., 6, for 
products of elements in Ic&, , we have d,,+l = 6,+r on (M,,,)‘. But 6,+t is 
discontinuous on (MnJ2 with respect to the norm of Ccn), a contradiction. 

(ii) Note that the case n = 1 is implicitly excluded here. Also note that, 
by Proposition 1.2, we need only show that d,,, can be discontinuous in order to 
ensure that each dj (j = q + I,..., 2q + 1) can be chosen to be discontinuous. 

First, suppose that df = & for i = l,..., q. Let d,,, be a linear functional on 
Ccn) such that 

(4 iff E (Mn.o)21 then 4+df 1 = dAf/x); 

(b) d,+,(l) = d,+,(x) = 0; 

(4 4+, is discontinuous. 

Observe that the case K = 0 of Theorem 3.l(ii) implies that (a) can be satisfied. 
Also, (b) can be satisfied since neither 1 nor x belongs to (M,,J2. Finally, (c) can 
also be satisfied because (M,J2 = {f E M,,,: f ‘(0) = 0 and f cn+l)(0) exists} ([2], 
Example 3) and so (J&J2 has infinite codimension in Al,,, . 

Now we must show that dl ,..., d,,, is a point derivation, and it will be enough 
to show that, if f and g belong to M,,, , then d,+,(fg) = I& 4(f) 4+l-dg). 
Take the Taylor expansion off in the form 

f = zgl h(f) xi + R,f, (3.3) 

where R,f E M,,., , and take a similar expansion for g. Multiplying the two 
Taylor expansions gives 

fg = zl (g &j(f) Ljk)) xi + F ( i sj(f 1 si-k?)) xi 
i=4+2 i=i-p 

+ t$l (Uf )(R,d + %)(R,f 1) xi + (RPf XRA (3.4) 

Because di = ai for i = I,..., q and because of the properties of d,,, , it is easy 
to see that di(xj) = 6ii for i = I,..., q + 1 and j = 1,2 ,..., and hence that 

di(xT) = dimi (FE M,,, , i = l,..., q + 1, j < i). 
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(In fact, these relations motivate the definition of 
3.l(ii), there exists h in M,,, such that 

(R,f)(R,g) = x*+vL 

d4+r .) Because of Theorem 

(3.5) 

With these facts in mind, we apply d,,,, tofg, using (3.4) and (3.5), and get 

4,lud = i S,(f) %+1-,(g) 
j=l 

= i dj(f) d*+l-Ag), 
j=l 

as required; the last equality is obtained from the facts that d, = ai for i = l,..., q 
and that R,f and RQg belong to M,,, . 

We now suppose inductively that 4 + 1 < K < 2q + 1 and that we have a 
point derivation dl ,..., dk with di = 6, for i = l,..., Q and with d&j) = 6jj for 
i = I,..., K and j = 1, 2,... . As before, there is a linear functional d,, such that 

d,+,(F) = dk(W4 for FE UKJ and d,+,(x) = d,+,(l) = 0. Again, we have 
d,(xj) = aij for i = l,..., K + 1 and j = 1, 2 ,..., and 

d,(xjF) = d,+(F) (FE M,,, , i = l,..., k + 1, j < i). 

Also, using (3.3), we see that d<(f) = d,(R,f) for i = 4 + l,..., K, and similarly 
for g. Applying dk+l to fg, using (3.4) and (3.9, and taking account of the 
immediately preceeding remarks, gives 

dt+,(fg) = i a,(f) Ski-l-j(g) 

j=kLl-q 

+ 1 (h(f) 4+,-,(Rx) + %(A 4+,-d&f )) + 44) 

i=l 

c $J s,(f) Sk+,-&) + y (s,(f) dk+,-i(g) + si(g) dk+,-i(f )) 

j=k+l-q i=l 

= i 4(f) L-i(g). 

i=l 

This proves that dl ,..., dk+l is a point derivation. Therefore, by induction, the 
required derivation of order 2q + 1 exists. 
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Finally, if di ,..., d, is any nondegenerate, continuous point derivation of order 
4, where q is less than 11, we can use Lemma 1.1 as in the proof of Theorem 3.3 
to transform dl ,..., d, into a continuous point derivation for which d,(xi) = Sij 
for i = I,..., q andj = 1, 2,..., and so we can transform dl ,..., d, into 6, ,..., 6, . 
We carry out the above construction and then use the inverse of the trans- 
formation to go back from 6, ,..., 6, to dl ,..., d, modifying d,,, ,..., dzQfl so that, 
in the end, we obtain a point derivation dl ,..., d, , d,,, ,..., dzotl , as required. 

(iii) This is very similar to (ii), and we omit the details. Observe that when 
the inductive construction of (ii) is used to extend 8, ,..., 6, , the process must 
stop when d,, is reached. This is because of the difference between (M,,J and 
(Mn,Jp for K < 12, as expressed in Theorem 3.1; specifically, (3.5) must be 
replaced by the equation 

for some h in ill,,, . However, we know by Theorem 2.3 that CIn) has no non- 
degenerate point derivation of order greater than 2n. Note also that d,+l is 
necessarily discontinuous by (i). 

This completes the proof of the theorem. 

It is a consequence of Theorem 3.4(iii) that the estimate given by Theorem 2.3 
for the maximum order of a point derivation is best-possible for nondegenerate 
point derivations on C(n). The final theorem concerning Cn) of this section 
improves the estimate given by Theorem 2.3 for these algebras, giving the best- 
possible bound. It also shows that the hypothesis of nondegeneracy was 
unnecessary in Theorem 3.3. We need one more technical lemma; the case n = 1 
was shown to us by P. C. Curtis. 

3.5 LEMMA. Let dl ,..., d,,+l be linear functionals on M,,O such that dl is a 
point derivation of ordm 1, and 

Then dl is a multiple of $; in particular, dl is continuous. 

Proof. If f belongs to M,,, , then the identity given for d,,, implies that 
dntl(xnf) = 4(f). If S,(f) = 0, then f = zy=, Si(f)xi + R,f, and so dl(f) = 
dl(R,f) because dl is a point derivation. Thus, given f such that S,(f) = 0, we 
can suppose that f belongs to M,., without affecting dl(f). Then, by Theorem 
3.1(i), there are g and h in Mn., such that xnf = gh. So 4(f) = dntl(xnf) = 
d,+,(gh) = 0. This shows that ker 6, C ker dl , and proves the lemma. 

3.6 THEOREM. Let n be a positive integer, and let dl ,..., d, be a point derivation 
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at 0 on C(“’ of order p. Let k he a positive integer, and suppose that d, =. 0 for 

j < k and that d, F 0. 

(i) If q is a positive integer and p 12 2q, then the point derivation d, ,..., d, is 
continuous. 

(ii) p < (2n + 1)k. 

Proof. If k = 1, assertion (i) is Theorem 3.3 and assertion (ii) comes from 
Theorem 2.3, so we suppose henceforth that k > I. 

To begin, consider, for r 3 1, the hypothesis 

p >:: 2rk and the derivation has the form 0 ,..., 0, dk , 0 ,..., 0, d,, , 

W,.) 
1 
O,..., 0, d,, , de+1 . . ..I 4, with d,: + 0 and where each sequence 
of zeros has length k - I. 

By the hypotheses of the theorem, either p < 2k, in which case both assertions 
(i) and (ii) are clear, or (HI) is true. 

Suppose now that (H,) holds for some r < n. An easy calculation shows that 

4 > da v..., dFrk is a nondegenerate point derivation of order 2r. If q < 2rk, the 
continuity assertion (i) follows from Theorem 3.3, so that (H,) entails (i) unless 
p 2 2rk + 2. If p > 2rk + 2, then, using Lemma I .I as in the proof of 
Theorem 3.3, we see that we can suppose that 

dj, = Sj (j = I ,..., r) 

and that 

d,(X) = 0 (i > rk) 

without changing the sequences of zeros. (For example, supposing that dk = 6, , 
to ensure that dz,, = 6, , apply Lemma 1 .l with OL = -d&x) and m - 1 = k, 
and observe that the element k, or any multiple of k, places before a zero is a 
zero, so that the zeros are unchanged.) Also, another easy calculation shows that 

(j = I,..., k - I). 

We now wish to show that, in certain circumstances, (H,,,) is true. Let m 
be a positive integer with m < k, and suppose that 

dT,+j z=z 0 (j = I,..., m - I) (3.6) 

(vacuous if m = 1) and that p 3 2rk + 2m == 2(rk + m); we shall show that 

&+m = 0. We have already pointed out that dk, dzk. ,..., d,,, is a point 
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derivation of order 2r. Provided that 2m # k, a further calculation shows that 

is also a point derivation of order 2~. Because Y < n and because of the normaliza- 
tion carried out above, the construction in the proof of Theorem 3.4(ii) can be 
used to extend each of these to point derivations of order 2r + 1. Taking the 
difference of the (2~ + 1)th members of these derivations shows that there is a 
well-defined linear functional h on Mn,, such that, forf and g in Mn.o , 

X(./i) = i IdjJf) d(~r-j)~tirnk) + hr-j)k+df) ddk)l, 
j=l 

and comparison of this equation with the Leibnitz identity for dzrk+8,,, shows that 

where we recall Eq. (3.6). That is, we have shown that drk+,,, belongs to a point 
derivation of order 2. By Theorem 3.3, drk+,,, is either 0 or a multiple of 6, , so 
the fact that drtcm(x) = 0 implies that d,,,, = 0, as required. 

On the other hand, if 2m = k, one needs only the observation that dk ,..., dZrk 
belongs to a point derivation of order 2r + 1 to conclude that drLtm belongs to a 
point derivation of order 2, and hence that drk+,,, = 0. 

For each m < k such that (3.6) holds, either p < 2rk + 2m or p > 2rk + 2m. 
In the former case, the condition 2q < p implies that q < rk + m - 1 and so d, 
is continuous, being either 0 or dj, = Sj for somej E {l,..., r}. In the latter case, 

d,,+m = 0. Induction on m shows that either the continuity assertion (i) holds 
or that we can deduce that (Hr,,) holds, and then induction on Y (for Y < n) 
shows that either (i) holds or that we can deduce that (H,) holds. 

Suppose then that (H,) holds. As before, dj,, = Sj for j = I,..., tl and 
dnlitj 1 (M,J2 forj = I,..., k - 1. Again, suppose that 1 < m <k, and that 
d,,+j = 0 for j = I,..., m-l.Ifp>22nk+m(NOT“p>,2nk+2m”)and 
if f, g E Mneo , then 

Ank+m(fg) = f [djdf) d(en-j)~+mk) + dt~n-j)k+m(f) d&)1, j=l 

so that d,,B+m is a multiple of 6, by Lemma 3.5 (with dnlefm , d(atl)fi+,n ,..., d2nk+,rr 
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replacing d, , d, ,..., d,,,). Since &+,,,(x) .=I: 0, we have dan+,,, = 0. Thus, we 
either prove (i) for 4 in the range n/z + 1 < q < (n + 1)k (something a littlc 
better, in fact), or we can deduce that p $ (2n + 1)k and that the derivation has 
the form 

0 ,..., 0, d,, 0 ,...I 0, d,,. , 0 I... , 0, &l; , Or., 0, d(.,z_,)k, d(,+l,k+l ,...> d(ea,+l)k ,...t d, . 

This latter implies, by a method similar to that used above, that dk , 

4, v...r d(,,+,,l; is a nondegenerate point derivation of order 2n + 1 on Cfn). But 
we know that this is not possible, so that we have proved both (i) and (ii), as 
required. 

This completes the proof of the theorem. 

The estimate (ii) in the above result is best-possible: Take a point derivation of 
order 2n (given by Theorem 3.4(iii)), put k - 1 zeros before each term, and add 
any K - I first-order point derivations at the end. We could also show that the 
estimate (i) (modified according to the last part of the proof for nk < q < 
(n + 1)K) is sharp. This would amount to something like Theorem 3.4, with 
complications brought on by the degeneracy, and we omit it. 

As an addendum to this section, we examine an algebra which is closely 
related to the algebras CV1)([O, I]). Th’ IS is the algebra Cz = C=([O, I]) of 
infinitely differentiable functions on [0, 11. It is well known [4, 18.221 that C7 
cannot be normed so that it becomes a Banach algebra, but Cm is a complete 
FrCchet algebra on [0, l] with respect to the seminorms 

llfll, = ~o~suPilf”‘(t)~: tE[O* 111 (fs w 

(for n = 0, 1, 2,...), and every- character is given by evaluation at a point of [0, 11. 

3.7 THEOREM. Every point derivation on C” is continuous. 

Proof. Let &I,., = {f E P: f(j)(O) = 0 (j = O,..., k)). By a standard 
argument, M,., = XC”: if f E M,,, and t E [0, 11, let F(s) = f(d) (S E [0, l]), 
so thatf(t) =F(l) -F(O) = JiF’(s) ds = tg(t) andf = xgfor someg E C”. Thus, 
Mm,, C xM,.~ and so 

(Mm.Jk+l = .IC~M~.~ = M,,, (k = 1, 2,...). 

In particular, (Mm,JL+l is closed in Cm and of finite codimension in M,,, . 
Thus, if X is any linear functional such that X 1 (M,.,)“+’ for some k, then )I is 
continuous. The theorem follows. 

In fact, for each nondegenerate point derivation on CL at 0 of infinite order, the 
map f ++ Z &(f)=yi, C’= + 9 is a continuous epimorphism. 
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