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A phenomenological uniaxial model is derived for implementation in the time domain, which captures
the amplitude and frequency dependency of filled elastomers. Motivated by the experimental observa-
tion that the frequency dependency is stronger for smaller strain amplitudes than for large ones, a novel
material model is presented. It utilizes a split of deformation between a generalized Maxwell chain in
series with a bounding surface plasticity model with a vanishing elastic region. Many attempts to capture
the behaviour of filled elastomers are found in the literature, which often utilize an additive split between
an elastic and a history dependent element, in parallel. Even though some models capture the storage and
loss modulus during sinusoidal excitations, they often fail to do so for more complex load histories.
Simulations with the derived model are compared to measurements in simple shear on a compound of
carbon black filled natural rubber used in driveline isolators in the heavy truck industry. The storage
and loss modulus from simulations agree very well with measurements, using only 7 material parame-
ters to capture 2 decades of strain (0.5–50% shear strain) and frequency (0.2–20 Hz). More importantly,
with material parameters extracted from the measured storage and loss modulus, measurements of a
dual sine excitation are well replicated. This enables realistic operating conditions to be simulated early
in the development process, before an actual prototype is available for testing, since the loads in real life
operating conditions frequently are a combination of many harmonics.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Rising fuel prices, an increased environmental awareness and
legal demands are incentives for the automotive industry to reduce
fuel consumption, which efficiently lowers both costs and
emissions. This reduction is achieved by for instance, lower revolu-
tions at cruising speed, start-stop functionality, fuel cells, hybrid
engines and lighter vehicles. At the same time, the demands on
noise, vibration and harshness characteristics are ever increasing.
Driveline isolators and rubber bushings have to be designed to
fulfil these demands regardless of which driveline is used. In order
to reduce cost and development time, computer aided simulations
are used in the design process. However, the results of such simu-
lations are, at most, only as good as the material models employed.
Almost all bushings, vibration isolators and shock absorbers in
automotive vehicles are made out of elastomers. Elastomers’
unique properties of high extensibility, damping and the introduc-
tion of a significant change in impedance make it ideal for the task
of isolating the vibrations from the combustion engine and uneven
roads (Sjöberg and Kari, 2002). However, in order to achieve suffi-
cient stiffness, tear strength and an increased fatigue resistance, a
reinforcing filler is often used (Heinrich et al., 2002).

For temperatures above the glass transition temperature
unfilled elastomers have a stress–strain behaviour that for moder-
ate, quasi-static, strains can be described by statistical and contin-
uum mechanics (Boyce and Arruda, 2000; Treloar, 2005; Edwards
and Vilgis, 1998). The addition of a reinforcing filler to the material
introduces a strong strain amplitude dependency commonly
referred to as the Fletcher–Gent effect, which is significant for
strains larger than 0.01–0.1% (Fletcher and Gent, 1953; Payne
and part, 1962; Kraus, 1984; Rendek and Lion, 2010; Wrana and
Härtel, 2008). Therefore, the classical material models for unfilled
elastomers are inadequate. Even more cumbersome, the response
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Fig. 1. Test specimen. Rubber compound vulcanized between three steel pieces.
Displacement applied on middle piece.
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of a filled elastomer subjected to two simultaneous sinusoidal
displacements does not equal the sum of the responses of the indi-
vidual excitations (Wrana and Härtel, 2008; Sjöberg and Kari,
2003). Consequently, it is not an easy task to formulate an accurate
material model in the frequency domain or calculate the response
using Fourier methods since the superposition principle is not
valid. Therefore, it is beneficial to formulate constitutive equations
in the time domain. Furthermore, the vulcanization process and
thereby the rubber compound are often undisclosed which means
that the information needed for determining material parameters
from the physical structure of the material would generally be
unavailable. Hence, a phenomenological approach is advantageous
when modelling filled elastomers with material parameters that
can be deduced from small test samples and simple experiments.

A method frequently used to model filled elastomers is to addi-
tively decompose it into an elastic part and a history-dependent
part, in parallel. The simplest model that combines relaxation with
a stiffness at quasi-static loading conditions is the well known stan-
dard linear solid (SLS). However, measurements have shown that
vulcanized filled elastomers contain a spectrum of relaxation times
(Adolfsson et al., 2005; Lion, 1998) where the SLS for obvious rea-
sons is limited to a single relaxation time. For a finite range of fre-
quencies, this can be modelled by adding more Maxwell elements
in parallel to the SLS, resulting in a generalized Maxwell chain
(GMC). Another way of capturing a spectrum of relaxation times is
with fractional derivatives (Adolfsson et al., 2005). The major draw-
back of fractional derivatives is that the results from all previous
time steps are needed for the calculation of the next, which makes
it computationally expensive. Even though this to some extent has
been solved by implementing a sparse time history (Adolfsson
et al., 2004; Adolfsson, 2004), neither fractional derivatives nor the
conventional GMC have the ability to capture the observed ampli-
tude dependency of filled elastomers, without modifications.

By utilizing non-linear viscoelastic models with process depen-
dent relaxation times an amplitude dependency can be introduced
(Rendek and Lion, 2010; Höfer and Lion, 2009; Liu and Fatt, 2011).
However, choosing evolution laws for the internal variables is
often a complicated matter with many material parameters to
define, which often leads to a trade-off if the storage or the loss
modulus should be represented accurately.

Another technique often used to model the Fletcher–Gent effect
is with plastic elements. For uniaxial loading conditions, many
models exist that capture the smooth plastic behaviour of filled
elastomers, one being the standard triboelastic solid (Coveney
et al., 1995; Coveney and Johnson, 1999). The strength of this
and similar models (Berg, 1995; Dahl et al., 1960; Netzker et al.,
2010) is that the amplitude dependency of the complex modulus
can be well reproduced, but their main drawback is the absence
of frequency dependency. This problem is addressed either by add-
ing a strain rate dependency in the plastic element (Coveney and
Johnson, 2000; Hu and Wereley, 2012) or by adding for instance
a fractional derivative (Sjöberg and Kari, 2002; García Tárrago
et al., 2007) or a GMC (Yarmohamadi and Berbyuk, 2010; Gracia
et al., 2010) in parallel to the elastoplastic model.

For the finite element method, there exist phenomenological
constitutive equations implemented for three-dimensional analy-
sis that capture the amplitude dependency and hysteresis in filled
elastomers for large deformations, such as the MORPH-model
(Besdo and Ihlemann, 2003) or an endochronic plasticity formula-
tion (Netzker et al., 2010). Unfortunately these material models
have no strain rate dependency, but this can be improved by using
an overlay method (Gracia et al., 2010) and a viscoelastic model
suitable for large deformations (Govindjee and Reese, 1997;
Bergström and Boyce, 1998).

However, measurements in literature clearly show that when
the frequency is increased, the increase in stiffness in absolute
values is larger for smaller strain amplitudes (Sjöberg and Kari,
2002; Rendek and Lion, 2010; Lion and Kardelky, 2004; Chazeu
et al., 2000; Luo et al., 2010). This is a strong indication that an
additive split between plastic and viscous elements is not an accu-
rate approach in a material model with the ambition to capture the
response in filled elastomers. From a physical point of view, it is
acknowledged that the Fletcher–Gent effect is caused not solely
from the breakdown and reforming of filler-filler structures, but
that there is a substantial contribution from filler-polymer interac-
tions (Ahmadi and Muhr, 2011; Donnet and Custodero, 2013;
Fröhlich et al., 2005; Litvinov et al., 2011). This is interpreted as
polymer chains in series with a mechanism which causes energy
dissipation, which again suggests that a polymer network in series
with a plastic contribution is suitable for modelling filled
elastomers.

In this paper, a constitutive model for filled elastomers is
presented, with the novelty being an addition of a frequency
dependency to the bounding surface model with a vanishing elas-
tic region (Dafalias and Popov, 1977). The derived model will be
compared to measurements on a compound of carbon black filled
natural rubber, used as isolators in the heavy truck industry.
Finally, the model proposed is intended for the evaluation of the
dynamical behaviour of rubber compounds with reinforcing fillers.
If the stresses and strains are reproduced well, the durability of a
component and the surrounding structure has the potential to be
optimized. For many load bearing components made out of rubber,
the strains are typically moderate to large (50% shear strain is not
uncommon) and in the lower frequency domain (typically below
20 Hz). This calls for a material model that can handle large pertur-
bations from an equilibrium condition. However, it needs only to
be accurate in a relatively small frequency bandwidth (0.2–
20 Hz). Also, in the intended application, the strains are not
expected to be large enough for the finite extensibility of the poly-
mer chains to influence the dynamical stiffness of the components.
Such high strain amplitudes could result in an unacceptably low
durability (Sheridan et al., 2001).

The presented model enables the properties of components
subjected to uniaxial loading conditions to be studied via simula-
tions before an actual prototype is available for testing, given that
small test specimens to determine material parameters are often
accessible early in the design process.
2. Measurements

The measurements are conducted in a GABO EPLEXOR� 500 N,
fitted with a force transducer with a measurement range of
150 N. The experimental setup and the dimensions of the rubber
specimen are shown in Fig. 1. The rubber was injection moulded
between steel parts, the two outward pieces were attached to a
baseplate and a displacement is applied via the middle piece,
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effectively shearing the rubber. Measurements are made of the
applied displacement and the resulting force. There is a geometri-
cal influence on the measured shear modulus of the material since
the width-to-height ratio of the rubber is only 1.5, whereas it
should be at least 5 when material parameters are to be obtained
(Rubber, 2011). However, the objective of this paper is to derive
a material model for filled elastomers and not to determine the
parameters for a specific compound. To this end the measurement
data is sufficiently accurate, with less than 15% difference in the
magnitude of the shear modulus. This was determined by model-
ling the experimental setup in Abaqus, and using a linear, incom-
pressible, material model in a non-linear finite strain calculation.
The shear stress required for a certain amount of shear strain
was compared to the true shear modulus of the material. Table 1
shows the composition of the compound, labelled NR3233 by the
manufacturer TrelleborgVibracoustic.

The properties of the rubber compound are investigated prior to
the formulation of the constitutive equations. Experiments are
conducted in simple shear with a sinusoidal excitation at room
temperature: 23�C. Before the start of measurements, the test
specimen is subjected to five cycles with the maximum shear
strain (50% shear strain), in order to reach a steady state so that
the initial stress softening known as the Mullins effect (Mullins,
1969) is not included in the measurements. Thereafter, frequency
sweeps in the range of 0.5–20 Hz are conducted with a constant
strain amplitude. After each sweep, the amplitude is increased,
and a new frequency sweep commences. The frequency sweeps
with the initiating low frequency (0.1 Hz), large strain amplitudes,
is shown in Fig. 2. The measured strain amplitudes are 0.2, 0.5, 1, 5,
10, 20 and 50% shear strain.

The stress response from a 50% shear strain, low frequency
(0.1 Hz) excitation is shown in Fig. 3. As can be seen, there is no
apparent increase in stiffness for large shear strains. Therefore,
the assumption to not include the finite extensibility of the poly-
mer chains in the model is deemed to be valid. Since the response
is not a perfect sinusoidal, the hysteresis in Fig. 3 is not elliptical.
Therefore, the classical definition of storage and loss modulus is
inapplicable. In this work, the storage and loss modulus, G0 and
G00, are defined as

G0 ¼ samp

camp
ð1Þ

and

G00 ¼ G0 tan deqv; ð2Þ

tan deqv is defined as

tan deqv ¼W=ðpsampcampÞ; ð3Þ

where deqv is the equivalent loss angle and W ¼
H
sdc is the dissi-

pated energy during one cycle, where s and c is the measured stress
and strain, respectively. The classical definition assumes that when
the applied strain is harmonic, cðtÞ ¼ camp cos xt, the stress is also
harmonic, with a phase shift, sðtÞ ¼ samp cosðxt þ dÞ. The dissipated
energy during one cycle is then given by

W ¼
I

sdc ¼
Z T

s _cdt ¼ �sampcampx
Z T

sin xt cosðxt þ dÞdt

¼ sampcampp sin d ð4Þ
Table 1
Compounds in the rubber compound in parts per hundred rubber, by weight, and
Shore A hardness.

NR Filler Plasticizer Additives Shore
[phr] [phr] [phr] [phr] A

100 54 13 19 50
If the stress and strain are given in the complex plane as
c� ¼ campeixt and s� ¼ sampeixtþd, the complex shear modulus is
given as G� ¼ s�=c� ¼ samp=campeid. The complex modulus can then
be separated into real and imaginary parts as
G� ¼ G0 þ iG00 ¼ samp=camp cos dþ isamp=camp sin d, from where it
follows that G00=G0 ¼ tan d. If the measured response is purely
sinusoidal, with a phase shift, and the loss angle is small,
cos d � 1, Eqs. (1)–(3) are good approximations to the classical
definition of storage and loss modulus.

The storage and loss modulus in the measurements are calcu-
lated according to Eqs. (1) and (2) and shown in Fig. 4–7. The
Fletcher–Gent effect is clearly visible. It can also be noted that
the frequency dependency of the storage modulus in absolute val-
ues is larger for smaller strain amplitudes, which is the expected
result. The same dependencies can be found in other measure-
ments of filled elastomers (Sjöberg and Kari, 2002; Rendek and
Lion, 2010; Lion and Kardelky, 2004; Chazeu et al., 2000; Luo
et al., 2010). It is observed that the exact values of the loss modulus
is uncertain for the smallest strain amplitudes due to a reduced
signal-to-noise ratio. However, the results still show a general
trend of the loss modulus, and they are therefore included in Figs. 5
and 7.
3. Constitutive modelling

The behaviour of filled elastomers is proposed to be modelled
using a Boundary Surface Model with a vanishing elastic region
(BSM) (Dafalias and Popov, 1977) with a modification that results
from observation of measurements in the literature. Firstly, mea-
surements with small strain amplitudes indicate the presence of
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a plateau for which the stiffness remains unaffected when the
strain amplitude of the excitation is further reduced (Payne and
part, 1962; Rendek and Lion, 2010). For the BSM, the stiffness tends
toward infinity in the limit when the strain amplitude tends
toward zero as will be shown in Section 3.1. Therefore, it seems
reasonable to place a finite stiffness in series with the BSM. A sim-
ple rheological equivalence is two springs in series where one has a
non-linear stiffness which decreases with increasing amplitude of
displacement and the other is of constant stiffness. Secondly, an
increase of frequency yields a higher increase in stiffness, in abso-
lute values, for small strains than for large strains, which is appar-
ent from the results shown in Fig. 4. These two observations
suggest that a BSM in series with a GMC could be appropriate for
modelling filled elastomers. A one-dimensional rheological model
is shown in Fig. 8. The measured, total shear strain, c, is the sum
of the strain over the BSM, w, and the GMC, q, as c ¼ qþw.

The constitutive equations for the total stress in a GMC are well
known,

stotðtÞ ¼ qðtÞG1 þ
XN

i¼1

ci
dq
dt
� ci

Gi

dsi

dt
; ð5Þ

where si refers to the stress in the i-th Maxwell chain. However, the
internal variable q(t) is unknown. By noting that the stress is equal
in the GMC and the plastic element, and by stating the evolution
laws for the plastic behaviour, the stress resulting from an applied
external strain can be derived.

3.1. Plastic behaviour

It is proposed to model the plastic behaviour with a constitutive
law incorporating two yield surfaces: an interior surface and a
bounding surface. The surfaces manifest purely kinematic harden-
ing and the interior yield surface has a vanishing elastic region.
Such a model was developed by Dafalias and Popov (1977) to
model cyclic plasticity in metals. Here it is used to model the hys-
teresis exhibited by filled elastomers. For uniaxial loading several
models exist that exhibit a smooth frictional behaviour, with no
elastic region, suitable for cyclic loading conditions, e.g. the Berg
and Dahl friction models (Berg, 1995; Dahl et al., 1960). The main
advantage for using the proposed model is its ability to take irreg-
ular (non-sinusoidal) cyclic plastic loading in three dimensions
into account.

The load process is defined by the incremental stress _rij, and
the considered processes are isothermal. The yield surface f and
boundary surface F are defined as

f ðrij � aijÞ ¼ 0 ð6Þ

and

Fðrij � bijÞ ¼ 0; ð7Þ

where aij and bij are back-stresses, i.e. they represent the centre of
the yield surface and boundary surface, respectively. The surface f is
located inside F, and the former is of vanishing size. The two sur-
faces translate simultaneously in stress space and may touch, but
not intersect. In one dimension this can be visualized as in Fig. 9,



Fig. 8. Rheological model of carbon black filled natural rubber.
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where there are two bounds XX0 and YY 0 which limit the magnitude
of stress. The boundaries are here represented with straight lines,
but they could also be curved. For the evolution of the back stresses
in three dimensions, the reader is referred to Dafalias and Popov
(1977). For uniaxial loading, the evolution laws are simply
(Ottosen and Ristinmaa, 2005, p. 342)

_s ¼ H _w ¼ _a ð8Þ

and

_b ¼ Hp0 _w ð9Þ

with H being the plastic modulus, where Hp0 is the value of the plas-
tic modulus when the yield surface and boundary surface intersect.
The expression for the plastic modulus may have many different
forms. In this paper, one similar to Dafalias and Popov (1977) is
used, namely,

Hðd; dinÞ ¼ Hp0 1þ d
din � d

� �
; ð10Þ

where d is the current distance to the boundary surface and din is
the distance to the boundary surface at the last turning point. Com-
pared to the form of the plastic modulus in the original model, this
is a simplified expression omitting a parameter that controls the
shape of the hardening behaviour.

In displacement controlled simulations, the stress is calculated
by combining the evolution laws for the GMC and the BSM. In the
following, the value of a variable at time step t is denoted ð�Þt and
ð�Þtþ1 ¼ ð�Þt þ Dð�Þtþ1. With w ¼ c� q, the internal variable q is
updated using an Euler forward method,

Dqtþ1 ¼
Dctþ1 � Ht þ

Pn
i¼1sijt

Gi
ci

dt

G1 þ Ht þ
Pn

i¼1Gi
: ð11Þ
Fig. 9. The one-dimensional representation of a Boundary Surface Model with a
vanishing elastic region.
A trial function for the incremental change of stress, Ds�, in the
plastic part of the model is computed for each time step as

Ds�tþ1 ¼ Dctþ1 � Dqtþ1

� �
� Ht : ð12Þ

The loading direction l is ltþ1 ¼ Ds�tþ1=jDs�tþ1j. If ltþ1 � lt < 0, the
load direction has changed, and the internal variable din is updated
as

din ¼ Syield � ltþ1 � ðst � btÞ: ð13Þ

Since the plastic modulus dramatically changes at load reversal,
the trial function for the incremental change of stress is updated.
The plastic modulus, Eq. (10), is unbounded at load reversal. With
an implicit integration scheme this is not a problem because the
algorithmic tangent modulus is bounded. With the current explicit
scheme, this issue is managed by imposing a bound on the
algorithmic tangent modulus, Ht 6 Hmax, where Hmax ¼ 100 � G1,
and G1 is the equilibrium stiffness of the GMC. As long as Hmax is
sufficiently larger than the stiffness in the GMC, applying an upper
limit to H has an insignificant influence on the results. At load
reversal, the internal variable and the trial function for the
incremental stress are recalculated according to Eqs. (11) and
(12), with Ht ¼ Hmax.

At the end of each time step, the distance to the boundary
surface and the plastic modulus are updated as

dtþ1 ¼ Syieldltþ1 � ðst � bt þ Ds�tþ1Þ; ð14Þ

Htþ1 ¼ Hp0 1þ dtþ1

din � dtþ1

� �
ð15Þ

and

Htþ1 ¼minðHtþ1;HmaxÞ: ð16Þ

The actual stress and back stress are updated as

Dstþ1 ¼ Htþ1ðDctþ1 � Dqtþ1Þ; ð17Þ

Dbtþ1 ¼ Hp0ðDctþ1 � Dqtþ1Þ; ð18Þ

stþ1 ¼ st þ Dstþ1 ð19Þ

and

btþ1 ¼ bt þ Dbtþ1: ð20Þ
4. Obtaining material parameters

The proposed material model has 3 + 2N parameters
(Syield;Hp0;G1;G1; . . ., GN; c1; . . ., cN). Here, a method is presented
to extract the material parameters based on test data. The method
assumes that isothermal tests have been performed at the
temperature of interest in the frequency and amplitude range of
interest [f1; f2] and [a1; a2], respectively. Furthermore, it is assumed
that no further increase in stiffness is observed if a1 is lowered
further. If the measured amplitude range is not sufficiently large,
the material parameters acquired with the following scheme could
be inaccurate. Nevertheless, the parameters will be in the right
order of magnitude and are candidate starting points for further
optimization, either numerically or manually.

Amplitudes below the range of interest are treated as infinites-
imal, and at the lowest frequency, f1, the stiffness is assumed to be
completely determined by the parameter G1. For these measure-
ments, it is therefore easily defined from Fig. 4 (G1 ¼ 1:4 MPa).
The parameters of the plastic element are obtained at low
frequency, and the viscous effects are neglected, as discussed
above. The dissipation is measured from G00ðf1; a2Þ, and the param-
eter Syield is chosen to fit the cyclic energy dissipation at large



Fig. 10. The material parameter Syield is found from the simplification that the
dissipated energy can be calculated as the area of a parallelogram.
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amplitudes and low frequencies, 2Syield � 2camp ¼Wðf1; a2Þ. With the
simplification that the dissipated energy can be computed as the
area of the parallelogram in Fig. 10 and using Eqs. (1)–(3),

Syield ¼
pG00ðf1; a2Þcamp

4
: ð21Þ

The model’s large strain tangent stiffness, observed at large
amplitudes and low frequencies G0ðf ¼ f1; a!1) equals
Hp0 � G1=ðHp0 þ G1Þ. This is the asymptotic value of G0, which
may or may not have converged at the amplitude a2. It is proposed
to choose Hp0 according to

Hp0 ¼
ðG0ðf1; a2Þ � Syield=campÞG1
G1 � G0ðf1; a2Þ þ Syield=camp

: ð22Þ

The stiffness in the Maxwell chains is for simplicity set to the
same value, Gi ¼ G, where i ¼ 1;2; . . . ;N. The value of G depends
on the number of Maxwell chains and the characteristic frequen-
cies fc;i for each chain i. A Maxwell chain has zero stiffness at
quasi-static loading and equals the spring stiffness at frequencies
well over the characteristic frequency fc. As can be observed in
Fig. 7, the measured loss modulus increases almost linearly as a
function of frequency, on a logarithmic scale, for all amplitudes,
even though the increase is very small for the large amplitudes.
The loss modulus of a Maxwell chain has a maximum at fc.
This means that for one Maxwell chain, fc needs to be set in the
middle to upper end of the frequency range [f1; f2]. For two or
more Maxwell chains, the loss modulus should not decrease in
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the frequency range of interest. The spring stiffness G is chosen
such that the increase of stiffness for the Maxwell chains equals
the difference between G0ða1; f1) and G0ða1; f2Þ.

5. Results

As a first model, only one Maxwell element is used, with the
characteristic frequency 4 Hz (fc ¼ G=2pc), which is in the middle
of the frequency range, on a logarithmic scale. The smallest ampli-
tude in the measurement is 0.2%, and the strain amplitude for
which carbon black filled natural rubber experiences a plateau is
found in the literature to be somewhere between 0.01–0.1%
(Fletcher and Gent, 1953; Payne and part, 1962; Kraus, 1984;
Rendek and Lion, 2010; Wrana and Härtel, 2008). As seen in
Fig. 4, there is no apparent plateau in the storage modulus at the
lowest strain amplitudes. Therefore, the G1 obtained trough the
calibration scheme is underestimated. The parameters obtained
were Syield ¼ 0:022 MPa; Hp0 ¼ 1:13 MPa; G1 ¼ 1:4 MPa;
G ¼ 0:2 MPa; f c ¼ 4 Hz, and the results from this material model
are shown in the middle graphs of Figs. 12 and 13. An optimization
of the material parameters would surely give a better fit to the
measurements. However, from the middle graph in Fig. 13, it is
apparent that one Maxwell element is not enough to get the cor-
rect behaviour for the loss modulus. In order to get a good fit for
the loss modulus over the frequency range of interest, three Max-
well elements are used. The calibration scheme in the previous sec-
tion is still used since good starting points are needed for this
highly non-linear optimization problem. Objective functions with
different quotas between the measured and calculated storage
and loss modulus are calculated as

obj1 ¼
X7

i¼1

X8

j¼1

ln
G0measðai; fjÞ
G0simðai; fjÞ

� �� �2

; ð23Þ

obj2 ¼
X7

i¼1

X8

j¼1

ln
G00measðai; fjÞ
G00simðai; fjÞ

� �� �2

; ð24Þ

obj3 ¼max ln
G0measðai; fjÞ
G0simðai; fjÞ

� �� �2

þmin ln
G0measðai; fjÞ
G0simðai; fjÞ

� �� �2

ð25Þ

and

obj4 ¼max ln
G00measðai; fjÞ
G00simðai; fjÞ

� �� �2

þmin ln
G00measðai; fjÞ
G00simðai; fjÞ

� �� �2

ð26Þ
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Fig. 12. Storage modulus from simulations and measurements. Top: measure-
ments. Middle: one Maxwell element. Bottom: three Maxwell elements.
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Fig. 13. Loss modulus from simulations and measurements. Top: measurements.
Middle: one Maxwell element. Bottom: three Maxwell elements.
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and are minimized using the commercial optimization software
HEEDS� MDO (Red Cedar Technology, Inc., East Lansing, MI, USA).

The final material parameters obtained are Syield ¼ 0:037
MPa; Hp0 ¼ 1:06 MPa; G1 ¼ 1:59 MPa; G ¼ 0:146 MPa; f c1 ¼ 171
Hz; f c2 ¼ 21 Hz and f c3 ¼ 1:9 Hz. The calculated storage and loss
modulus are shown in the bottom graphs of Figs. 12 and 13. The
amplitude dependency on the loss modulus is captured in the
presented material model, with a maximum around 1% strain
amplitude.
5.1. Comparing with bimodal excitation

Using the material parameters above, the model with three
Maxwell chains is subjected to a dual sine excitation, and the
results are compared to the response from measurements. The
results are displayed in Fig. 11 and as seen the simulated response
resembles the measurement well.
6. Discussion

By utilizing a split of deformation between elastoplastic in
series with viscoelastic elements, the measured loss and storage
modulus are reproduced very well by simulations. Also, and of
greater importance, the measured and simulated response to a
bimodal excitation are in good agreement, even though the bimo-
dal measurements were not used when obtaining the material
parameters. In order to model the finite extensibility of polymer
chains, one possibility could be to replace the linear stiffness Hp0

and G1 with non-linear elements. However, since this phenomenon
is negligible for the studied range of strain amplitudes, this has not
been investigated further.

In this work the model has been implemented uni-axially and
compared to uniaxial test data. The simplicity of the proposed
model together with the accurate results it yields makes it ideal
for modelling filled rubber-bushings subjected to uniaxial loading.
The non-linear stiffness and damping of these bushings strongly
influence the response in the complete vehicle, and the loading is
rarely sinusoidal. For components subjected to shear, the model
can facilitate design engineers in choosing between concepts and
geometries, early in the design phase. For more complex geome-
tries and loading conditions, the model should be expanded into
three dimensions. Even though the individual rheological ele-
ments, the GMC and the BSM, have three-dimensional equivalents,
the task is not trivial, and will be the focus of future research. Nev-
ertheless, many bushings and isolators are primarily sheared in
one plane, and the derived uniaxial model can be expanded to
two dimensions by implementing two uniaxial models on that
plane, perpendicular to each other, since the influence of a pre-load
in shear is relatively weak (Heinrich and Klüppel, 2002).

By limiting the model’s applicability to a finite range of frequen-
cies and amplitudes, the number of material parameters can be
kept to a minimum, without reducing the models usability. In this
paper, the limiting range of frequencies and amplitudes was
0.5–20 Hz and 0.2–50% shear strain, which is deemed more than
sufficient when investigating the high amplitude dynamic loads
on bushings and vibration isolators in, for instance, heavy truck
applications.
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