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1. Introduction

Throughout the paper, G = (V, E) is a connected undirected simple graph with |V| = n and
|[E| = m.Ifm = n+c— 1, then G is called a c-cyclic graph. Specially, if c = 0, 1, 2 or 3, then G is called
a tree, a unicyclic graph, a bicyclic graph, or a tricyclic graph, respectively. Let C(n) be the class of tricyclic
graphs with n vertices. Let Ng(v) denote the neighbor set of vertex v in G, then dg(v) = |Ng(v)| is
called the degree of v of G. If there is no confusion, we write N (v) as N(v), and dg(v) as d(v). Let A(G),
A for short, be the maximum degree of G. Let S(n, A, c) be the class of connected c-cyclic graphs on
n vertices with fixed maximum degree A.
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Let the adjacency matrix, degree matrix of G be A(G) and D(G), respectively. The signless Laplacian
matrix of G is Q(G) = D(G) + A(G). Denote the spectral radii of A(G), Q(G) by p(G) and u(G),
respectively. The characteristic polynomial of A(G) is denoted as ®(G, x)=det(xI — A(G)). Thus, p(G) is
equal to the maximum root of ®(G, x) = 0.

When G is connected, by the Perron-Frobenius Theorem of non-negative matrices, p (G) and «(G)
have multiplicity one and there exists a unique positive unit eigenvector corresponding to p(G), and
there also exists a unique positive unit eigenvector corresponding to w(G). In this paper, we use
f = (f(v1),....f(vp)T to indicate the unique positive unit eigenvector corresponding to p(G) or
1 (G), and call f the Perron vector of G.

It is a interesting problem concerning graphs with maximal or minimal spectral radii over a given
class of graphs. As early as in 1985, Brualdi and Hoffman [1] investigated the maximum spectral radius
of the adjacency matrix of a (not necessarily connected) graph in the set of all graphs with a given
number of vertices and edges. Their work was followed by other people, in the connected graph case as
well as in the general case. Recently, the spectral radii of trees, unicyclic graphs and bicyclic graphs on
n vertices with fixed maximum degree were discussed in [2-6], respectively. In this paper, we extend
the results of [4,5] to the general c-cyclic graphs by determining the structural characterizations of
the c-cyclic graphs, which have the maximum spectral radii (resp. signless Laplacian spectral radii)
in the class of c-cyclic graphs on n vertices with fixed maximum degree A > # Moreover, we
prove that the spectral radius of a tricyclic graph G strictly increases with its maximum degree when

2
A(G) > (1 +.,/6+ 23—” ) ,and identify the first six largest spectral radii and the corresponding graphs
in the class of tricyclic graphs on n vertices.

2. The c-cyclic graphs with maximum spectral radii or signless Laplacian spectral radii in
S(n, A, c)

Let G — u or G — uv denote the graph that obtained from G by deleting the vertex u € V(G) or the
edge uv € E(G), respectively. Similarly, denote by G + uv the graph obtained from G by adding an edge
uv € E(G).

Lemma 2.1 [7,8]. Let u, v be two vertices of the connected graph G, and wy, wa, ..., wx (1 < k < d(v))
be some vertices of N(v) \ N(u). Let G’ = G + uwq + - - - + uwy, — vwq — - - - — vwy. Suppose f is the
Perron vector of G, if f(u) > f(v), then p(G') > p(G) and u(G") > u(G).

Lemma 2.2 [9,10]. Let G = (V, E) be a connected graph such that uyv; € E, uyv, € E, vivy &€ E,
uiuy € E. Let G’ = G 4 vqvy + uquy — uqvy — UV, Suppose f is the Perron vector of G, if f (v1) > f(u3)
and f(vy) > f(uy), then p(G) > p(G) and w(G") > (G), where the equalities hold if and only if
fv1) = f(up) and f(v2) = f(u1).

Lemma 2.3. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius in
S(n, A, c¢),and u, v € V(G). Suppose f is the Perron vector of G, if d(u) > d(v), then f(u) > f(v).

Proof. On the contrary, suppose there exist u, v € V(G) such that d(u) > d(v), but f(u) < f(v).
Suppose d(u) — d(v) = k. Let Py, be the shortest path from u to v. Then, there must exist k vertices,
say wy, ..., Wi, such that wy,.., wy € N(u)\N(v) and wy,.., wy & V(Pyy).LetG; = G —uwy — -+ -+ —
uwy + vwq + - - - + vwy. By Lemma 2.1, p(G) < p(Gq) and u(G) < u(Gy).But Gy € S(n, A, ¢), itis
a contradiction. Thus, f(u) > f(v). O

Let G be a c-cyclic graph, where ¢ > 1. The base of G, denoted by G, is the unique minimal c-cyclic
subgraph of G. It is easy to see that G is the unique c-cyclic subgraph of G such that G contains no
pendant vertices, while G can be obtained from G by attaching trees to some vertices of G.
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Lemma 24. Let G = (V, E) be a graph of S(n, A, c¢), where A > 'Hzﬂ Ifd(u) = A, then u is the
unique vertex with degree A.

Proof. On the contrary, suppose there exists another vertex v such thatd(u) = d(v) = A.We consider
the next two cases.
Case 1. uv € E(G).

Since G is a c-cyclic graph, u and v have at most ¢ + 1 common neighbor vertices. Thus, G has at
least d(u) + d(v) — (c + 1) + 2 > n + 2 vertices, it is a contradiction.
Case 2. uv € E(G).

Since G is a c-cyclic graph, u and v have at most c common neighbor vertices. Thus, G has at least
d(u) + d(v) — ¢ > n+ 1 vertices, it is a contradiction.

This completes the proof of this result. []

Let G be a connected graph and T, be a tree such that T, is attached to a vertex v of G. The vertex v
is called the root of T, and T, is called a root tree of G. Throughout this paper, we assume that T,, does
not include the root v.

Lemma 2.5. Let G be the graph with the maximum spectral radius or 51gnless Laplacian spectral radius in
S, A,o).IfA > ”+C+] and ¢ > 1, then there are at most two vertices in G having root trees.

Proof. On the contrary, suppose there exist three vertices in G, say u, v, w, having root trees
Ty, Ty and Ty, respectively. Let f be the Perron vector of G. Without loss of generality, suppose
d(u) = max{d(u), d(w),d(v)} and f(v) > f(w). Choose w; € N(w) N V(Ty), then w; & N(v).
Let G; = G — wwy + vwq. Lemma 2.4 implies that d(w) < A and d(v) < A, thus Gy € S(n, A, ¢). By
Lemma 2.1, we can conclude that p(G;) > p(G) and £ (Gy) > (G), a contradiction. Thus, the result
follows. [

Given u, v € V(G), the symbol dist(u, v) is used to denote the distance between u and v, namely,
the length of (number of edges in) the shortest path that connects u and v in G.

Lemma 2.6. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius in
S(n, A, c), where A > % andc > 1.Ifd(u) = A,w € N(u) and w & V(G), thend(w) = 1.

Proof. On the contrary, suppose there is a vertex w € N(u) such thatw ¢ V(G), but d(w) 2. Since
w ¢ V(G), w must be in some root tree of G. Let dist(w, v) = min{dist(w, v1), v1 € V(G)}. Let f be
the Perron vector of G. We consider the next two cases:
Casel.v=u. R

Then, u € V(G), and hence there exists vertex u; € V(G) N N(u).
Subcase 1.1. f(w) = f(uq).

Then, there exists vertex u, € V(@) N N(uq) such that uy & N(w).Let G; = G — ujup + wuy. It
is easy to see that G; € S(n, A, c¢). On the other hand, Lemma 2.1 implies that p(G;) > p(G) and
u(Gy) > n(G), a contradiction.

Subcase 1.2. f(w) < f(uq).

Then, there exists vertex w; € N(w) \ {u}. Let G = G — wyw + wyuy. It is easy to see that
Gy € S(n, A, ¢). While Lemma 2.1 implies that p(G1) > p(G) and u(Gy) > 1 (G), a contradiction.
Case2.v # u.

Then, u ¢ V(f;). Otherwise, ifu € V(&), thenw € V(&), a contradiction. Noting that there exists a
vertex vi € V(@) NN(©),if f(w) > f(v), we let G; = G — vvq + wv; to obtain a contradiction. And
noting that there exists a vertex w; € N(w) N N(Ty), if f(w) < f(v), welet Gy = G — wwy + vwq to
obtain a contradiction. []



3048 M. Liu, B. Liu / Linear Algebra and its Applications 435 (2011) 3045-3055

Lemma 2.7. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius in
S(n, A, c), where A > % and ¢ > 1. Suppose f is the Perron vector of G, if d(u) = A, v € N(u) and
w & N(u) U {u}, then f(v) = f(w).

Proof. Onthe contrary, suppose there are verticesv € N(u) andw ¢ N(u)U{u}suchthatf(v) < f(w).
We consider the next two cases:
Case 1.v ¢ V(G).

By Lemma 2.6, we have d(v) = 1. Let P, be the shortest path from u to w such that wy € V(Py)
and wwy € E(Pyy). Note that w ¢ N(u). Hence, w; # u. By Lemmas 2.3 and 2.4, we can conclude
that f(u) > f(wy).Let Gy = G — uv — wwyq + vw; + uw. Then, G; € S(n, A, c¢). By Lemma 2.2, we
can conclude that p(G1) > p(G) and u(Gy) > u(G), a contradiction.

Case2.v € V(f;).

Then, d(v) > 2. Let P,,, be the shortest path from v to w. We claim that there must exist vertex
vy & V(Pyy) such that vi € N(v) \ N(w). Otherwise, if vi € N(v), then vi € N(w) holds for every
vy & V(Pyy). Note that d(v) > 2. Hence, |Py,,,| < 2.Itis a contradiction tov € N(u) and w & N(u)
(We only need to consider the cases of vw € E(G) orvw ¢ E(G)). Thus, there exists vertex vy & V(Pyy)
such that vy € N(v) \ N(w). Let G = G — vv; 4+ wvy. By Lemma 2.4, G; € S(n, A, ¢). By Lemma 2.1,
it follows that p(Gy) > p(G) and £(Gy) > (G), a contradiction. [

Lemma 2.8. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius in
S(n, A, ¢), where A > % and ¢ > 1.Ifx € V(G) and there is a root tree Ty, then Ty is a star, and x is
the center vertex of Ty.

Proof. Ifx = u, the result follows from Lemma 2.6. Next we assume that x = u and T is not a star. Let
y € V(Ty) such that dist(x, y) = max{dist(x, v),v € V(Tyx) and d(v) > 2}. Let f be the Perron vector
of G. We consider the next two cases:
Case 1. f(y) = f(x).

Then, there must exist vertex x; € N(x) N V(é) such thatd(x;) > 2 and x; € N(y). We claim that
y # u.Otherwise, assume that y = u. By the choice of y, there exists some pendant vertex y; such that
¥1 € N(y).Then, f(y1) = f(x1) follows from Lemma 2.7, while Lemma 2.3 implies that f(y1) < f(x1),
a contradiction. Thus, y # u.

Let Gy = G — xx1 + yx1. Then, G; € S(n, A, ¢). Lemma 2.1 implies that p(G;) > p(G) and
1 (Gy) > u(G), a contradiction.
Case 2. f(y) < f(x).

By Lemmas 2.3 and 2.4,y # u. By the choice of y, there must exist some pendant vertex y; € N(y).
Let G; = G — yy1 + xy1.Then, G; € S(n, A, c¢). Lemma 2.1 implies that p(G1) > p(G) and u(Gy) >
1(G), a contradiction. [

Denote by w (G) the number of vertices of G, namely, w (G) = |V(G)|.

Lemma 2.9. Let G be a graph in S(n, A, c), where A > % andc > 1.Ifn > 3cand d(u) = A,
then there must exist some vertex w ¢ V(@) such thatw € N(u).

Proof. On the contrary, suppose that w € N(u) implies w € V(@). Two cases should be considered
as follows.
Case 1. G =G.

Then, 2n+2c—2 =31 ,dc(vj) 2 2(n— 1) + A 22(71—1)4‘% 22(’1_1)4‘% =
2n+2c—2+ % a contradiction.

Case 2. G # G.

Then, G has one pendant vertex vi.Let Gy = G—vy.ItiseasytoseethatG;isagraphinS(n—1, A, ¢)
because vi ¢ N(u). If G; does not have any pendant vertices, then G; = G.If G1 has one pendant
vertex vp. Let G = Gy — vp. Itis easy to see that Gy is a graphin S(n — 2, A, ¢) because v, & Ng, (u).
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Repeat the above process, and suppose a)(a) = b. Then, we can conclude that G € S(b, A, ©).
Thus,we have 2b+2c—2 = 31, de(vi) > 2(b—1)+A > 2(b—1)+ # Z2(b-1)+ % =

2b+2c—2+ % a contradiction. Thus, the result follows. [J

Ifv € V(G) and d(v) # 1, then v is called a non-pendant vertex of G. As usually, let P, G, and K,
be the path, cycle and complete graph on n vertices, respectively. Let 2K, be the graph on 4 vertices,
which is the union of two edges. Here is the main result of this section.

Theorem 2.1. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius

inS(n, A,c),wherec > 1,n > 3cand A > 'Hzﬂ Suppose u and v are the vertices of G which share

the maximum degree and the second maximum degree of G, respectively. Then, G must satisfy the following
conditions:

(1) Every non-pendant vertex is adjacent to u.

(2) G has no induced subgraphs that are isomorphic to 2K5, P4 or Cy.

(3) G is obtained from G by attaching A + 1 — w(@) pendant vertices tou, andn — A — 1
pendant vertices to v, respectively.

Proof. Let f be the Perron vector of G. Suppose ug € V(G) such thatd(up) = A. Since A > % U
is the unique vertex of G with degree A by Lemma 2.4. By Lemmas 2.6 and 2.9, there must exist some
pendant vertex x € N(up). Now assume that there exists a non-pendant vertex y such thaty & N(ug).
Lemma 2.7 implies that f(x) > f(y), while Lemma 2.3 implies that f (x) < f(y), a contradiction. Thus,
every non-pendant vertex is adjacent to ug. Thus, (1) follows, and hence ug = u.

Assume G has 2K as an induced subgraph. Let V(2Ky) = {vq, v, v3, v4} and E(2Ky) = {v1V;, v3v4}.
By (1) we can conclude that u & {vq, v3, v3, v4} and uv; € E(G), where 1 < i < 4. Without loss of
generality, suppose f(v1) = f(v3).Let Gy = G — v3v4 + vqv4. Then, Gy € S(n, A, c¢). But Lemma
2.1 implies that p(G;) > p(G) and u(G;) > w(G), a contradiction. Now suppose G has P4 as an
induced subgraph. Let V(P4) = {v1, Vo, v3, v4}and E(P4) = {vqVv2, Va3, v3V4}.By (1) we can conclude
that u ¢ {vq, vy, v3,v4} and uv; € E(G), where 1 < i < 4. Without loss of generality, suppose
f(va) = f(v3). Let Gi = G — v3vq + vovq. Then, Gy € S(n, A, c¢). But Lemma 2.1 implies that
p(G1) > p(G) and u(Gy) > u(G), a contradiction. It can be proved similarly that G has no induced
subgraphs that are isomorphic to C4. Thus, (2) follows.

Now we prove (3). By Lemmas 2.5 and 2.8, G is obtained from G by attaching some pendant vertices
to at most two vertices, say wy, wa, of G, respectively. Since n > 3c, by Lemmas 2.6 and 2.9 we can
conclude that wi = u. Next we shall show that w, = v if there is a root tree T,y,. On the contrary,
suppose wy # v, then dg(wp) < dg(v).

If f(wy) > f(v), then there must existx € N(v) N V(@) suchthatx ¢ N(w;).By(1),u & {x, v, wo},
uw; € E(G) and uv € E(G). Let Gy = G — xv + xw,. Then, G; € S(n, A, c¢). But Lemma 2.1 implies
that p(G1) > p(G) and 1 (Gy) > u(G), a contradiction.

Iff(w2) < f(v), then there must existy € N(wy) NV (Tw,).By (1), u & {y, v, w2}, uw, € E(G) and
uv € E(G).Let Gy = G —ywy +yv.Then, Gy € S(n, A, ¢). But Lemma 2.1 implies that p(Gy) > p(G)
and (Gy) > u(G), a contradiction.

Thus, wo, = v and hence (3) follows from (1). [J

Remark 2.1. In some literature (for instance, see [11]), if G has no 2K3, P4 or C4 as an induced subgraph,
then G is called a split graph. By Theorem 2.1, if G is the graph with maximum spectral radius or signless
Laplacian spectral radius in S(n, A, c), wherec > 1,n > 3cand A > # then G is a split graph.

In the following, as shown in Fig. 1, let M(n, A, c) be the c-cyclic graph on n vertices and maximum
degree A, wherec > 1and A > ”+§+1 ,and let Hy,Hs, H3, H4 and Hs be the tricyclic graphs as shown
in Fig. 2. For convenience, we write M(n, A, 3) as F;(A). Let F,(A) be the tricyclic graph obtained
from K, by attaching A — 3 and n — 1 — A pendant vertices to two vertices of Ky, respectively.
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n—A-1" TA-1-c¢

Fig. 1. The c-cyclic graph M(n, A, ¢).

V1 I
H, : H, Hy Hs

Fig. 2. The tricyclic graphs H;,i = 1, 2, ..., 5.

Corollary 2.1. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius
inS(n, A, ¢), wherec > 1and A(G) > "5t

(1) If G is a unicyclic graph, then G = M(n, A, 1).
(2)Ifn > 6 and G is a bicyclic graph, then G = M(n, A, 2).
(3)Ifn > 9 and G is a tricyclic graph, then G = F1(A) or G = F(A).

Proof. We only prove (3), because the other cases can be proved similarly. By Theorem 2.1, every
non-pendant vertex is adjacent to the vertex with maximum degree of G. Thus, there are only five
possible candidates of G (see Fig. 2) because G is also a tricyclic graph. Moreover, G has no induced
subgraphs that are 2K and P4 by (2) of Theorem 2.1, then we have G = F;(A) or G = F,(A). O

Remark 2.2. For the cases of spectral radii of unicyclic and bicyclic graphs, the corresponding results
of Corollary 2.1 had been obtained in [4] and [5], respectively.

Theorem 2.2. Let G be the graph with the maximum spectral radius (resp. signless Laplacian spectral
radius) in S(n, A, c¢). If A < n — 2, then there must exist some graph G; € S(n, A + 1, ¢) such that
p(G) < p(Gy) (resp. u(G) < w(Gy)).

Proof. Let f be the Perron vector of G. Suppose x € V(G) such that d(x) = A and f(x) = max{f(u),
d(u) = A}.Since A(G) < n — 2, there must exist y € N(x) and z ¢ N(x) such that yz € E(G).

Ifd(x) > d(y),Lemma 2.3 implies thatf(x) > f(y).LetG; = G—yz+xz.Then,G; € S(n, A+1,c).
By Lemma 2.1, we have p(G) < p(Gy) and u(G) < u(Gy).

If d(x) = d(y), by the choice of x we have f(x) > f(y). Let G = G — yz + xz. Then, G| €
S(n, A + 1, c). By Lemma 2.1, we have p(G) < p(Gy and u(G) < wu(Gq).

Thus, the result follows. [

3. Arelation between p (G) and A (G) of a graph G in C(n)
The following result is often used to calculate the characteristic polynomials of graphs.

Lemma 3.1 [12] (Schwenk’s formulas). Let G be a (simple) graph. Denote by C, the set of all cycles in G
containing a vertex v. Then,

DG, x) =xP(GC—v,x) — > D(GC—v—w,x) —2 > &G —V(0),x).

w~v CeGy
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Theorem 3.1. Let G be the tricyclic graph with the maximum spectral radius in S(n, A, 3), wheren > 9
and A > 54+ 2.(1)IfA <n—5thenG=F(A).(2)Ifn—4 <A <n—1,thenG = F(A).

Proof. Letfi(x) =x* —(n+2)x*> —6x — A2 +3A —n+nA —11,H(x) =x°> —x* — (n+ 1D)x> +
(n—7)x* + (nA +2A —n— A> —5)x 4+ 3n+ A* — nA — 3 — 2A. By Lemma 3.1, we have

OF(A),x) =x"fi(0);  PFA(A), %) =x"C(x + DAHX). (1)

By Eq. (1), p(F1(A)) is equal to the maximum root of f;(x) = 0, and p(F»(A)) is equal to the
maximum root of f,(x) = 0. Set y;(x) = x> — 3x> — Ax + 2n + A — 14, and denote by «; the
maximum root of ;1 (x) = 0.Let y»(x) = (A +7 — nx? —2(n —4 — A)x+ (nA — A®> — 7n+31).
It is easy to see that

L) =& —1) + py(x). (2)
i) = x+3)10+1n®; LK =& +2x—2)y1(x) + & —1)y2x). (3)

By Corollary 2.1, we have G = F;(A) or G = F,(A). We consider the next three cases:
Case1: A <n—17.

Since g +2< A< n—7,wehaven > 18and A > 11. Whenx > \/Z >14+,/1+ %,Since
Y{(x) = 3x*> — 6x — A > 0, it follows that y; (x) > y1(v/A) = 2(n — 7 — A) > 0. Combining with
Eq. (2), we have fo(x) > Owhenx > p(F1(A)) > +/A. Moreover, note that lirIJlr fr(x) = 400,

X—> 100

hence p(F,(A)) < p(F1(A)). Then, G = F1(A).
Case2:n—4< A<n—1.
Since lim p;(x) = —00, 1(0) = 2n+ A — 14 > 0, 1 (v/A) = 2(n—7 — A) < 0,
X—> —0Q

lirr+1 y1(x) = 400, we have o1 > V/A.Whenx > +/A > 2, note that vy ) =2(A+7—n)x —
X—> 100

2(n—A—4) > 6(A+6—n) > 0,hence y»(x) > y»(v/A) = (A—n+4)(7+2+/A)+3 > 0.ByEq.(3),
we have f; (x) > O0and f>(x) > Owhenx > a1 > +/A.Thus, p(F;(A)), p(F2(A)) € (WA, «;). Once
again, Eq. (2) implies that fo (0 (F1(A))) = y1(p(F1(A))) < 0. Combining with Xj)rgl_oofz(x) = 400,

we have p(F1(A)) < p(F2(A)), the result follows.
Case3:n—6 < A<n—>5.

Here we only consider the case of A = n — 5, because the case of A = n — 6 can be proved
similarly. By g +2 < A =n—5 wehaven > 14. When n = 14, by Eq. (1) the result follows.
Next we may suppose that n > 15. Since y1(y/n) = 54/n — 19 > 0, by the discussion of Case 2
we can conclude that v/n —5 < a1 < /n.When v/n —5 < x < /n, since y(x) > 0, we have
Y2(x) = 2(x* —x —n+3) < yu(/n) = 23 — 4/n) < 0.By Eq. (3), it follows that fi(a;) =
ya(1) < 0, foleq) = (1 — 1)y(1) < 0, hence p(F1(A)), p(F2(A)) > «oq. Therefore, when
x = p(F1(A)) > oq, Eq. (2) implies that f,(x) = y1(x) > 0.Thus, p(F2(A)) < p(F1(A)), the result
follows. [

In the following, let S; = F,(n — 1), S, = Fi(n — 1), S3 be the graph obtained from H; by
attaching n — 5 pendant vertices to vy, S4 be the graph obtained from H, by attaching n — 6 pen-
dant vertices to vq, S5 be the graph obtained from H3 by attaching n — 7 pendant vertices to v, and
SG =F (n — 2)

In 1981, Cvetkovic¢ [13] indicated 12 directions in further investigations of graph spectra, one of
which is classifying and ordering graphs. After then, ordering graphs with various properties by their
spectra, becomes an attractive topic (see [16-20]). There are many corresponding results of order of
trees, unicyclic and bicyclic graphs via their spectral radii [16-20], while few results on the tricyclic
graphs. Up to now, to our best knowledge, only the tricyclic graph which has the maximum spectral
radius in C(n) had been determined.
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Theorem 3.2 [14]. Let G be the graph with the maximum spectral radius in C(n), then G = S;.
By Theorem 3.1, next we shall extend the order of Theorem 3.2 to the first six largest tricyclic graphs.

Theorem 3.3. Supposen > 18.IfG € C(n) \ {S1, S2, ..., Se}, then p(G) < p(Sg) < p(S5) < -+ <
p(S1).

Let K1,,—1 be the star on n vertices. The proof of Theorem 3.3 needs the next Lemma.

Lemma 3.2 [15]. If G is a connected graph on n vertices and m edges, then p(G) < «/2m — n + 1, where
equality holds if and only if G = Ky, or G = Ky n—1.

The proof of Theorem 3.3. Since n > 18, Theorems 2.2 and 3.1 imply that p(G) < p(Sg) because
$1, S2, ..., S5 are all the tricyclic graphs on n vertices with maximum degree n — 1. By Theorem 3.2, we
only need to show that p(Sg) < p(S5) < -+ < p(S2).

By Lemma 3.1 and Eq. (1), we have

DSy, x) = X"4(x* — (n + 2)x* — 6x + 3(n — 5)).

D(S3,%) =x"CP +x— D = —nx* + (n = 7)x + (n = 5)).

DSs,x) =x"x+DE —x* =+ DX+ (1 —5)x> 4+ 2n— Dx — 2n + 12).
OS5, %) =x"x—12x+ 1)1 —x*—n—Dx+n—7).

DS, %) =x"Cx+ D - -+ D+ =%+ Bn—13)x —n+5).

When x > /n — 1, since ®(S3,x) — ®(S2,x) = x" °3Bx2 +2x —n+5) > x"®2n+2 +
24/n — 1) > 0, it follows that p(S3) < p(S2).

When x > /n — 1, Since ®(S4,x) — ®(S3,%) = x" B2 +6x —n+7) > x"%2n+4+
64/n — 1) > 0, we have p(S4) < p(S3).

When x > +/n — 1, since ®(Ss5, x) — ®(S4,x) =x"8Bx* +4x° —(n—2)x* —6x+n—7) >
BB —1)—(—2))+x(4(n—1)—6)+n—7) = x"8(2n—1)x*+ (4n—10)x+n—7) > 0,
we have p(S5) < p(S4).

Next we shall show that p(Sg) < p(Ss).

When n = 18, by ®(Ss, x) and ®(Sg, x), it is easily checked that p(Sg) < p(Ss5). Next we may
suppose thatn > 19.Let f5(x) = x> — x> —(n—Dx+n—7,f4(x) = x> —x* — (n+ Dx> + (n —
7)x* + (3n — 13)x — n + 5. Then, p(Ss) and p(Sg) are equal to the maximum roots of f3(x) = 0 and
fa(x) = 0, respectively. Let y3(x) = —2x> 4+ (n — 11)x +n — 9. Then,

fax) = & = 2)f5(x) + y3(0). (4)

By Lemma 3.2, it follows that /n —2 < p(Sg) < ~/n+5,and /n—1 < p(S5) < +/n+5.
When v/n—1 < x < /n+5, we have y3(x) > min{y3(v/n—1), y3(v/n+5)} = min{(n —
1M/n—1—mn+7),(n—11)/n+5—(n+19)} > 0. Thus, when p(S5) < x < 4/n + 5, we have
fa(x) > y3(x) > 0by Eq. (4). Hence, p(Sg) < p(S5). U

Note that Sy, Sy, ..., S5 are all the tricyclic graphs on n vertices with maximum degree n — 1. Thus,
we may consider the next problem: Whether the spectral radius of a tricyclic graph strictly increases
with its maximum degree. The answer is positive when A is enough large because we have

2
Theorem 3.4. Suppose G, G’ are two tricyclic graphs on n vertices. If A(G) > (l +,/6+ %n ) and
A(G) > A(G), then p(G) > p(G).

The proof of Theorem 3.4 needs the next Lemma.
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2
Lemma33. IfA > (14 /6+ %) =1, then p(Fi () < VA +1.

Proof. By Eq. (1), p(F1(A)) is equal to the maximum root of f; (x) = 0. Whenx > /A +1 >/ 23—"
since f{'(x) = 12x* — 2n — 4 > 0, we have

’—432264\/%3222116—2"4\/%60
fi60 =2¢ —2+2x—6>4 ([T ) —2m+2)/F - _(3—) T6>0

Hence,whenx > VA +12>1+,/6 4+ 23—” it follows that

) > A+1D)2—m+2)(A+1) —6J/AF1+(M—A+3)A—n—11
=3A—6JAF1—2n—12
:3(«/A+1—1)2—2n—18

= 0.

Therefore, p(F1(A)) < VA +1. O

The proof of Theorem 3.4. In the proof of this result, we write A(G’) as A’, and A(G) as A. Let

a= (1 +.,/6 + 23—" )2 — 1. We consider the next two cases.
Case1. A < n—>5.
Subcase 1.1. A’ > a.

Since A" > a > 7 42, by Theorem 3.1 and Lemma 3.3 we can conclude that p(G) < p(F1(A")) <
/A’ + 1. On the other hand, since A > A’, we have p(G) > A > /A + 1, hence the result
follows.

Subcase 1.2. A’ < a.
Note that a > % + 2. By Theorem 2.2 and Lemma 3.3 we can conclude that p(G") < p(Fi(a)) <

v/a+ 1. Moreover, since A > (] +./6 + 23—" )2 = a+ 1, it follows that p(G) > «/K > Ja+1,the
result also follows.
Case2.n—4 < A<n—1
By Theorem 3.3, we only need to consider the casesofn —4 < A <n — 2.
Subcase 2.1. A = n — 4. ,

Then, A’ <n—5Byn—4> (1 + .6+ 23—”) it follows thatn > 79.Sincen — 5 > J + 2, by
Theorems 2.2 and 3.1 we have p(G') < p(F;(n — 5)). Let fs(x) = x* — (n + 2)x*> — 6x + 7n — 51.
By Eq. (1), p(F1(n — 5)) equals to the maximum root of fs(x) = 0. Whenx > /n — 4, since fZ (x) =
12x* —2n—4 > 10n—52 > 0,we havef,(x) = 4x> — (2n+4)x—6 > (2n—20)y/n — 4—6 > 0,and
hencefs(x) > fs(x/n —4) = n—27—6+/n — 4 > 0.Then, p(G") < p(F1(n—5)) < /n—4 < p(G),
the result follows.

Subcase2.2. A = n — 3.

2
Then, A’ <n—4.Byn—3 > (1 +./6+ %) it follows that n > 75.Thus,n — 4 > § + 2. By
Theorems 2.2 and 3.1, we have p(G') < p(Fy(n—4)).Letfs(x) = x°> —x* — (n+ 1D)x°> + (n — 7)x*> +
(5n — 29)x — 3(n — 7). By Eq. (1), p(F2(n — 4)) equals to the maximum root of fg(x) = 0.
Since lim fg(x) = —00,fs(—3) = 18n—252 > 0,fs(0) =21 —3n < 0,fs(1) =2n—16 > O,
X—>—0Q
f6(3) = 6 —6n < 0,and fsg(+/n—3) = (n — 17)(v/n—3 — 7) — 86 > 0, we have p(G') <

p(F2(n —4)) < /n—3 < p(G).
Subcase 2.3. A =n — 2.
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Fig. 3. The tricyclic graphs Wy and W,.

Then, A’ <n—3.Byn—2> (l +./6+ 23—")2,itfollowsthatn > 71.Thus,n — 3 > § 4 2.By
Theorems 2.2 and 3.1, we have p(G') < p(Fo(n —3)).Let f(x) = x°> —x* — (n+ 1)x°> + (n — 7)x* +
(4n — 20)x — 2(n — 6). By Eq. (1), p(F2(n — 3)) equals to the maximum root of f;(x) = 0.

Ifn = 71,since A = n— 2, G has T* as its proper subgraph, where T* is a tree of order 71 obtained
by attaching one pendant vertex to one pendant vertex of the star Ky go. Thus, p(G) > p(T*) >
8.3075 > 8.3069 > p(F»(68)) > p(G"), the result follows.

Ifn > 72, since Xgmooﬁ(x) = —00,f7(=2) =2n—16 > 0,f7(0) = 12 —2n < 0,f;(1) =

2n—16 > 0,f7(3) =24 — 8n < 0,and f;(s/n —2) = (n — 14)(y/n — 2 — 7) — 76 > 0, we have
p(G) < p(F2(n—3)) < /n—2 < p(G).

By combining the above arguments, this completes the proof of this result. []

4. Remarks

Bearing Theorems 2.1 and 2.2 in mind, we find there are many similar properties between the
spectral radius and signless Laplacian spectral radius of a graph. Thus, it is natural to consider the
following question: “Whether the signless Laplacian spectral radius of a tricyclic graph strictly increases
with its maximum degree when A is enough large". The answer is given by the next result.

Theorem 4.1 [21]. Let G and G’ be two tricyclic graphs on n vertices. If A(G) > (%1 +4and A(G) >
A(G), then u(G) > u(G).

Actually, we obtained the similar result for general graphs as follows.

Theorem 4.2 [21]. Let G and G’ be two connected graphs with n vertices and m edges. If A(G) > m —
1”1 ] + 1and A(G) > A(G'), then u(G) > pu(G).

As the next Example shown, the bound {”2;1] + 4 in Theorem 4.1 is best possible.

Example4.1. Let W; and W5 be the tricyclic graphs on 11 vertices as shown in Fig. 3. Though A (W;) >
A (W), we have (Wq) < 9.153 < 9.199 < p(W>).
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