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If G is a connected undirected simple graph on n vertices and

n + c − 1 edges, then G is called a c-cyclic graph. Specially, G is

called a tricyclic graph if c = 3. Let �(G) be the maximum degree

of G. In this paper, we determine the structural characterizations of

the c-cyclic graphs, which have the maximum spectral radii (resp.

signless Laplacian spectral radii) in the class of c-cyclic graphs on

n vertices with fixed maximum degree � � n+ c + 1
2

. Moreover,

we prove that the spectral radius of a tricyclic graph G strictly in-

creases with its maximum degree when �(G) �
(
1 +

√
6 + 2n

3

)2
,

and identify the first six largest spectral radii and the corresponding

graphs in the class of tricyclic graphs on n vertices.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, G = (V, E) is a connected undirected simple graph with |V | = n and

|E| = m. Ifm = n+ c−1, then G is called a c-cyclic graph. Specially, if c = 0, 1, 2 or 3, then G is called

a tree, a unicyclic graph, a bicyclic graph, or a tricyclic graph, respectively. Let C(n) be the class of tricyclic
graphs with n vertices. Let NG(v) denote the neighbor set of vertex v in G, then dG(v) = |NG(v)| is
called the degree of v of G. If there is no confusion, wewriteNG(v) asN(v), and dG(v) as d(v). Let�(G),
� for short, be the maximum degree of G. Let S(n, �, c) be the class of connected c-cyclic graphs on

n vertices with fixed maximum degree �.

< This work is supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China

(No. LYM10039) and NNSF of China (No. 11071088).∗ Corresponding author.

E-mail addresses: liumuhuo@163.com (M. Liu), liubl@scnu.edu.cn (B. Liu).

0024-3795/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2011.06.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82632099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.laa.2011.06.003
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2011.06.003


3046 M. Liu, B. Liu / Linear Algebra and its Applications 435 (2011) 3045–3055

Let the adjacency matrix, degree matrix of G be A(G) and D(G), respectively. The signless Laplacian

matrix of G is Q(G) = D(G) + A(G). Denote the spectral radii of A(G), Q(G) by ρ(G) and μ(G),
respectively. The characteristic polynomial of A(G) is denoted as �(G, x)=det(xI − A(G)). Thus, ρ(G) is
equal to the maximum root of �(G, x) = 0.

When G is connected, by the Perron–Frobenius Theorem of non-negative matrices, ρ(G) and μ(G)
have multiplicity one and there exists a unique positive unit eigenvector corresponding to ρ(G), and
there also exists a unique positive unit eigenvector corresponding to μ(G). In this paper, we use

f = (f (v1), ..., f (vn))
T to indicate the unique positive unit eigenvector corresponding to ρ(G) or

μ(G), and call f the Perron vector of G.

It is a interesting problem concerning graphs with maximal or minimal spectral radii over a given

class of graphs. As early as in 1985, Brualdi and Hoffman [1] investigated themaximum spectral radius

of the adjacency matrix of a (not necessarily connected) graph in the set of all graphs with a given

number of vertices and edges. Theirworkwas followed by other people, in the connected graph case as

well as in the general case. Recently, the spectral radii of trees, unicyclic graphs and bicyclic graphs on

n vertices with fixed maximum degree were discussed in [2–6], respectively. In this paper, we extend

the results of [4,5] to the general c-cyclic graphs by determining the structural characterizations of

the c-cyclic graphs, which have the maximum spectral radii (resp. signless Laplacian spectral radii)

in the class of c-cyclic graphs on n vertices with fixed maximum degree � � n+c+1
2

. Moreover, we

prove that the spectral radius of a tricyclic graph G strictly increases with its maximum degree when

�(G) �
(
1 +

√
6 + 2n

3

)2
, and identify the first six largest spectral radii and the corresponding graphs

in the class of tricyclic graphs on n vertices.

2. The c-cyclic graphs with maximum spectral radii or signless Laplacian spectral radii in

S(n, �, c)

Let G − u or G − uv denote the graph that obtained from G by deleting the vertex u ∈ V(G) or the
edge uv ∈ E(G), respectively. Similarly, denote by G+uv the graph obtained from G by adding an edge

uv �∈ E(G).

Lemma 2.1 [7,8]. Let u, v be two vertices of the connected graph G, and w1,w2, ...,wk (1 � k � d(v))
be some vertices of N(v) \ N(u). Let G′ = G + uw1 + · · · + uwk − vw1 − · · · − vwk. Suppose f is the

Perron vector of G, if f (u) � f (v), then ρ(G′) > ρ(G) and μ(G′) > μ(G).

Lemma 2.2 [9,10]. Let G = (V, E) be a connected graph such that u1v1 ∈ E, u2v2 ∈ E, v1v2 �∈ E,

u1u2 �∈ E. Let G′ = G+ v1v2 + u1u2 − u1v1 − u2v2. Suppose f is the Perron vector of G, if f (v1) � f (u2)
and f (v2) � f (u1), then ρ(G′) � ρ(G) and μ(G′) � μ(G), where the equalities hold if and only if

f (v1) = f (u2) and f (v2) = f (u1).

Lemma 2.3. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius in

S(n, �, c), and u, v ∈ V(G). Suppose f is the Perron vector of G, if d(u) > d(v), then f (u) > f (v).

Proof. On the contrary, suppose there exist u, v ∈ V(G) such that d(u) > d(v), but f (u) � f (v).
Suppose d(u) − d(v) = k. Let Puv be the shortest path from u to v. Then, there must exist k vertices,

say w1, ..., wk , such that w1,..., wk ∈ N(u)\N(v) and w1,..., wk �∈ V(Puv). Let G1 = G − uw1 − · · · −
uwk + vw1 + · · · + vwk . By Lemma 2.1, ρ(G) < ρ(G1) and μ(G) < μ(G1). But G1 ∈ S(n, �, c), it is
a contradiction. Thus, f (u) > f (v). �

Let G be a c-cyclic graph, where c � 1. The base of G, denoted by Ĝ, is the unique minimal c-cyclic

subgraph of G. It is easy to see that Ĝ is the unique c-cyclic subgraph of G such that Ĝ contains no

pendant vertices, while G can be obtained from Ĝ by attaching trees to some vertices of Ĝ.
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Lemma 2.4. Let G = (V, E) be a graph of S(n, �, c), where � � n+c+1
2

. If d(u) = �, then u is the

unique vertex with degree �.

Proof. On the contrary, suppose there exists another vertex v such thatd(u) = d(v) = �.We consider

the next two cases.

Case 1. uv �∈ E(G).
Since G is a c-cyclic graph, u and v have at most c + 1 common neighbor vertices. Thus, G has at

least d(u) + d(v) − (c + 1) + 2 � n + 2 vertices, it is a contradiction.

Case 2. uv ∈ E(G).
Since G is a c-cyclic graph, u and v have at most c common neighbor vertices. Thus, G has at least

d(u) + d(v) − c � n + 1 vertices, it is a contradiction.

This completes the proof of this result. �

Let G be a connected graph and Tv be a tree such that Tv is attached to a vertex v of G. The vertex v

is called the root of Tv, and Tv is called a root tree of G. Throughout this paper, we assume that Tv does

not include the root v.

Lemma 2.5. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius in

S(n, �, c). If � � n+c+1
2

and c � 1, then there are at most two vertices in Ĝ having root trees.

Proof. On the contrary, suppose there exist three vertices in Ĝ, say u, v, w, having root trees

Tu, Tv and Tw , respectively. Let f be the Perron vector of G. Without loss of generality, suppose

d(u) = max{d(u), d(w), d(v)} and f (v) � f (w). Choose w1 ∈ N(w) ∩ V(Tw), then w1 �∈ N(v).
Let G1 = G −ww1 + vw1. Lemma 2.4 implies that d(w) < � and d(v) < �, thus G1 ∈ S(n, �, c). By
Lemma 2.1, we can conclude that ρ(G1) > ρ(G) and μ(G1) > μ(G), a contradiction. Thus, the result

follows. �

Given u, v ∈ V(G), the symbol dist(u, v) is used to denote the distance between u and v, namely,

the length of (number of edges in) the shortest path that connects u and v in G.

Lemma 2.6. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius in

S(n, �, c), where � � n+c+1
2

and c � 1. If d(u) = �, w ∈ N(u) and w �∈ V(Ĝ), then d(w) = 1.

Proof. On the contrary, suppose there is a vertexw ∈ N(u) such thatw �∈ V(Ĝ), but d(w) � 2. Since

w �∈ V(Ĝ), w must be in some root tree of G. Let dist(w, v) = min{dist(w, v1), v1 ∈ V(Ĝ)}. Let f be

the Perron vector of G. We consider the next two cases:

Case 1. v = u.
Then, u ∈ V(Ĝ), and hence there exists vertex u1 ∈ V(Ĝ) ∩ N(u).

Subcase 1.1. f (w) � f (u1).

Then, there exists vertex u2 ∈ V(Ĝ) ∩ N(u1) such that u2 �∈ N(w). Let G1 = G − u1u2 + wu2. It

is easy to see that G1 ∈ S(n, �, c). On the other hand, Lemma 2.1 implies that ρ(G1) > ρ(G) and

μ(G1) > μ(G), a contradiction.

Subcase 1.2. f (w) < f (u1).
Then, there exists vertex w1 ∈ N(w) \ {u}. Let G1 = G − w1w + w1u1. It is easy to see that

G1 ∈ S(n, �, c). While Lemma 2.1 implies that ρ(G1) > ρ(G) and μ(G1) > μ(G), a contradiction.

Case 2. v �= u.

Then, u �∈ V(Ĝ). Otherwise, if u ∈ V(Ĝ), thenw ∈ V(Ĝ), a contradiction. Noting that there exists a

vertex v1 ∈ V(Ĝ) ∩ N(v), if f (w) � f (v), we let G1 = G − vv1 + wv1 to obtain a contradiction. And

noting that there exists a vertex w1 ∈ N(w) ∩ N(Tw), if f (w) < f (v), we let G1 = G − ww1 + vw1 to

obtain a contradiction. �
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Lemma 2.7. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius in

S(n, �, c), where � � n+c+1
2

and c � 1. Suppose f is the Perron vector of G, if d(u) = �, v ∈ N(u) and
w �∈ N(u) ∪ {u}, then f (v) � f (w).

Proof. On the contrary, suppose there are vertices v ∈ N(u) andw �∈ N(u)∪{u} such that f (v) < f (w).
We consider the next two cases:

Case 1. v �∈ V(Ĝ).
By Lemma 2.6, we have d(v) = 1. Let Puw be the shortest path from u to w such that w1 ∈ V(Puw)

and ww1 ∈ E(Puw). Note that w �∈ N(u). Hence, w1 �= u. By Lemmas 2.3 and 2.4, we can conclude

that f (u) > f (w1). Let G1 = G − uv − ww1 + vw1 + uw. Then, G1 ∈ S(n, �, c). By Lemma 2.2, we

can conclude that ρ(G1) > ρ(G) and μ(G1) > μ(G), a contradiction.

Case 2. v ∈ V(Ĝ).
Then, d(v) � 2. Let Pvw be the shortest path from v to w. We claim that there must exist vertex

v1 �∈ V(Pvw) such that v1 ∈ N(v) \ N(w). Otherwise, if v1 ∈ N(v), then v1 ∈ N(w) holds for every

v1 �∈ V(Pvw). Note that d(v) � 2. Hence, |Pvw| � 2. It is a contradiction to v ∈ N(u) and w �∈ N(u)
(We only need to consider the cases of vw ∈ E(G) or vw �∈ E(G)). Thus, there exists vertex v1 �∈ V(Pvw)
such that v1 ∈ N(v) \ N(w). Let G1 = G − vv1 + wv1. By Lemma 2.4, G1 ∈ S(n, �, c). By Lemma 2.1,

it follows that ρ(G1) > ρ(G) and μ(G1) > μ(G), a contradiction. �

Lemma 2.8. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius in

S(n, �, c), where � � n+c+1
2

and c � 1. If x ∈ V(Ĝ) and there is a root tree Tx, then Tx is a star, and x is

the center vertex of Tx.

Proof. If x = u, the result follows from Lemma 2.6. Next we assume that x �= u and Tx is not a star. Let

y ∈ V(Tx) such that dist(x, y) = max{dist(x, v), v ∈ V(Tx) and d(v) � 2}. Let f be the Perron vector

of G. We consider the next two cases:

Case 1. f (y) � f (x).

Then, there must exist vertex x1 ∈ N(x) ∩ V(Ĝ) such that d(x1) � 2 and x1 �∈ N(y). We claim that

y �= u. Otherwise, assume that y = u. By the choice of y, there exists some pendant vertex y1 such that

y1 ∈ N(y). Then, f (y1) � f (x1) follows from Lemma 2.7, while Lemma 2.3 implies that f (y1) < f (x1),
a contradiction. Thus, y �= u.

Let G1 = G − xx1 + yx1. Then, G1 ∈ S(n, �, c). Lemma 2.1 implies that ρ(G1) > ρ(G) and

μ(G1) > μ(G), a contradiction.

Case 2. f (y) < f (x).
By Lemmas 2.3 and 2.4, y �= u. By the choice of y, there must exist some pendant vertex y1 ∈ N(y).

Let G1 = G − yy1 + xy1. Then, G1 ∈ S(n, �, c). Lemma 2.1 implies that ρ(G1) > ρ(G) and μ(G1) >
μ(G), a contradiction. �

Denote by ω(G) the number of vertices of G, namely, ω(G) = |V(G)|.
Lemma 2.9. Let G be a graph in S(n, �, c), where � � n+c+1

2
and c � 1. If n � 3c and d(u) = �,

then there must exist some vertex w �∈ V(Ĝ) such that w ∈ N(u).

Proof. On the contrary, suppose that w ∈ N(u) implies w ∈ V(Ĝ). Two cases should be considered

as follows.

Case 1. G = Ĝ.

Then, 2n + 2c − 2 = ∑n
i=1 dG(vi) � 2(n − 1) + � � 2(n − 1) + n+c+1

2
� 2(n − 1) + 4c+1

2
=

2n + 2c − 2 + 1
2
, a contradiction.

Case 2. G �= Ĝ.

Then,Ghasonependant vertexv1. LetG1 = G−v1. It is easy to see thatG1 is a graph inS(n−1, �, c)

because v1 �∈ N(u). If G1 does not have any pendant vertices, then G1 = Ĝ. If G1 has one pendant

vertex v2. Let G2 = G1 − v2. It is easy to see that G2 is a graph in S(n − 2, �, c) because v2 �∈ NG1
(u).
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Repeat the above process, and suppose ω(Ĝ) = b. Then, we can conclude that Ĝ ∈ S(b, �, c).
Thus, we have 2b+2c−2 = ∑n

i=1 dĜ(vi) � 2(b−1)+� � 2(b−1)+ n+c+1
2

� 2(b−1)+ 4c+1
2

=
2b + 2c − 2 + 1

2
, a contradiction. Thus, the result follows. �

If v ∈ V(G) and d(v) �= 1, then v is called a non-pendant vertex of G. As usually, let Pn, Cn and Kn

be the path, cycle and complete graph on n vertices, respectively. Let 2K2 be the graph on 4 vertices,

which is the union of two edges. Here is the main result of this section.

Theorem 2.1. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius

in S(n, �, c), where c � 1, n � 3c and � � n+c+1
2

. Suppose u and v are the vertices of G which share

the maximum degree and the secondmaximum degree of Ĝ, respectively. Then, G must satisfy the following

conditions:

(1) Every non-pendant vertex is adjacent to u.

(2) Ĝ has no induced subgraphs that are isomorphic to 2K2, P4 or C4.

(3) G is obtained from Ĝ by attaching � + 1 − ω(Ĝ) pendant vertices to u, and n − � − 1

pendant vertices to v, respectively.

Proof. Let f be the Perron vector of G. Suppose u0 ∈ V(G) such that d(u0) = �. Since� � n+c+1
2

, u0
is the unique vertex of G with degree � by Lemma 2.4. By Lemmas 2.6 and 2.9, there must exist some

pendant vertex x ∈ N(u0). Now assume that there exists a non-pendant vertex y such that y �∈ N(u0).
Lemma 2.7 implies that f (x) � f (y), while Lemma 2.3 implies that f (x) < f (y), a contradiction. Thus,
every non-pendant vertex is adjacent to u0. Thus, (1) follows, and hence u0 = u.

Assume Ĝ has 2K2 as an induced subgraph. Let V(2K2)={v1, v2, v3, v4} and E(2K2)={v1v2, v3v4}.
By (1) we can conclude that u �∈ {v1, v2, v3, v4} and uvi ∈ E(G), where 1 � i � 4. Without loss of

generality, suppose f (v1) � f (v3). Let G1 = G − v3v4 + v1v4. Then, G1 ∈ S(n, �, c). But Lemma

2.1 implies that ρ(G1) > ρ(G) and μ(G1) > μ(G), a contradiction. Now suppose Ĝ has P4 as an

induced subgraph. LetV(P4) = {v1, v2, v3, v4} and E(P4) = {v1v2, v2v3, v3v4}. By (1)we can conclude

that u �∈ {v1, v2, v3, v4} and uvi ∈ E(G), where 1 � i � 4. Without loss of generality, suppose

f (v2) � f (v3). Let G1 = G − v3v4 + v2v4. Then, G1 ∈ S(n, �, c). But Lemma 2.1 implies that

ρ(G1) > ρ(G) and μ(G1) > μ(G), a contradiction. It can be proved similarly that G has no induced

subgraphs that are isomorphic to C4. Thus, (2) follows.

Nowwe prove (3). By Lemmas 2.5 and 2.8, G is obtained from Ĝ by attaching some pendant vertices

to at most two vertices, say w1, w2, of Ĝ, respectively. Since n � 3c, by Lemmas 2.6 and 2.9 we can

conclude that w1 = u. Next we shall show that w2 = v if there is a root tree Tw2
. On the contrary,

suppose w2 �= v, then d
Ĝ
(w2) < d

Ĝ
(v).

If f (w2) � f (v), then theremust exist x ∈ N(v)∩V(Ĝ) such that x �∈ N(w2). By (1), u �∈ {x, v,w2},
uw2 ∈ E(G) and uv ∈ E(G). Let G1 = G − xv + xw2. Then, G1 ∈ S(n, �, c). But Lemma 2.1 implies

that ρ(G1) > ρ(G) and μ(G1) > μ(G), a contradiction.

If f (w2) < f (v), then there must exist y ∈ N(w2) ∩ V(Tw2
). By (1), u �∈ {y, v,w2}, uw2 ∈ E(G) and

uv ∈ E(G). Let G1 = G− yw2 + yv. Then, G1 ∈ S(n, �, c). But Lemma 2.1 implies that ρ(G1) > ρ(G)
and μ(G1) > μ(G), a contradiction.

Thus, w2 = v and hence (3) follows from (1). �

Remark 2.1. In some literature (for instance, see [11]), ifG has no 2K2, P4 or C4 as an induced subgraph,

thenG is called a split graph. By Theorem2.1, ifG is the graphwithmaximum spectral radius or signless

Laplacian spectral radius in S(n, �, c), where c � 1, n � 3c and � � n+c+1
2

, then Ĝ is a split graph.

In the following, as shown in Fig. 1, letM(n, �, c) be the c-cyclic graph on n vertices andmaximum

degree �, where c � 1 and � � n+c+1
2

, and let H1,H2, H3, H4 and H5 be the tricyclic graphs as shown

in Fig. 2. For convenience, we write M(n, �, 3) as F1(�). Let F2(�) be the tricyclic graph obtained

from K4 by attaching � − 3 and n − 1 − � pendant vertices to two vertices of K4, respectively.
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Fig. 1. The c-cyclic graph M(n, �, c).

Fig. 2. The tricyclic graphs Hi , i = 1, 2, ..., 5.

Corollary 2.1. Let G be the graph with the maximum spectral radius or signless Laplacian spectral radius

in S(n, �, c), where c � 1 and �(G) � n+c+1
2

.

(1) If G is a unicyclic graph, then G ∼= M(n, �, 1).
(2) If n � 6 and G is a bicyclic graph, then G ∼= M(n, �, 2).
(3) If n � 9 and G is a tricyclic graph, then G ∼= F1(�) or G ∼= F2(�).

Proof. We only prove (3), because the other cases can be proved similarly. By Theorem 2.1, every

non-pendant vertex is adjacent to the vertex with maximum degree of Ĝ. Thus, there are only five

possible candidates of Ĝ (see Fig. 2) because Ĝ is also a tricyclic graph. Moreover, Ĝ has no induced

subgraphs that are 2K2 and P4 by (2) of Theorem 2.1, then we have G ∼= F1(�) or G ∼= F2(�). �

Remark 2.2. For the cases of spectral radii of unicyclic and bicyclic graphs, the corresponding results

of Corollary 2.1 had been obtained in [4] and [5], respectively.

Theorem 2.2. Let G be the graph with the maximum spectral radius (resp. signless Laplacian spectral

radius) in S(n, �, c). If � � n − 2, then there must exist some graph G1 ∈ S(n, � + 1, c) such that

ρ(G) < ρ(G1) (resp. μ(G) < μ(G1)).

Proof. Let f be the Perron vector of G. Suppose x ∈ V(G) such that d(x) = � and f (x) = max{f (u),
d(u) = �}. Since �(G) � n − 2, there must exist y ∈ N(x) and z �∈ N(x) such that yz ∈ E(G).

If d(x) > d(y), Lemma2.3 implies that f (x) > f (y). LetG1 = G−yz+xz. Then,G1 ∈ S(n, �+1, c).
By Lemma 2.1, we have ρ(G) < ρ(G1) and μ(G) < μ(G1).

If d(x) = d(y), by the choice of x we have f (x) � f (y). Let G1 = G − yz + xz. Then, G1 ∈
S(n, � + 1, c). By Lemma 2.1, we have ρ(G) < ρ(G1 and μ(G) < μ(G1).

Thus, the result follows. �

3. A relation between ρ(G) and �(G) of a graph G in C(n)

The following result is often used to calculate the characteristic polynomials of graphs.

Lemma 3.1 [12] (Schwenk’s formulas). Let G be a (simple) graph. Denote by Cv the set of all cycles in G

containing a vertex v. Then,

�(G, x) = x�(G − v, x) − ∑
w∼v

�(G − v − w, x) − 2
∑
C∈Cv

�(G − V(C), x).



M. Liu, B. Liu / Linear Algebra and its Applications 435 (2011) 3045–3055 3051

Theorem 3.1. Let G be the tricyclic graph with the maximum spectral radius in S(n, �, 3), where n � 9

and � � n
2

+ 2. (1) If � � n − 5, then G ∼= F1(�). (2) If n − 4 � � � n − 1, then G ∼= F2(�).

Proof. Let f1(x) = x4 − (n + 2)x2 − 6x − �2 + 3� − n + n� − 11, f2(x) = x5 − x4 − (n + 1)x3 +
(n − 7)x2 + (n� + 2� − n − �2 − 5)x + 3n + �2 − n� − 3 − 2�. By Lemma 3.1, we have

�(F1(�), x) = xn−4f1(x); �(F2(�), x) = xn−6(x + 1)f2(x). (1)

By Eq. (1), ρ(F1(�)) is equal to the maximum root of f1(x) = 0, and ρ(F2(�)) is equal to the

maximum root of f2(x) = 0. Set γ1(x) = x3 − 3x2 − �x + 2n + � − 14, and denote by α1 the

maximum root of γ1(x) = 0. Let γ2(x) = (� + 7 − n)x2 − 2(n − 4 − �)x + (n� − �2 − 7n + 31).
It is easy to see that

f2(x) = f1(x)(x − 1) + γ1(x). (2)

f1(x) = (x + 3)γ1(x) + γ2(x); f2(x) = (x2 + 2x − 2)γ1(x) + (x − 1)γ2(x). (3)

By Corollary 2.1, we have G ∼= F1(�) or G ∼= F2(�). We consider the next three cases:

Case 1: � � n − 7.

Since n
2

+ 2 � � � n − 7, we have n � 18 and � � 11. When x >
√

� > 1 +
√
1 + �

3
, Since

γ ′
1(x) = 3x2 − 6x − � > 0, it follows that γ1(x) > γ1(

√
�) = 2(n − 7 − �) � 0. Combining with

Eq. (2), we have f2(x) > 0 when x � ρ(F1(�)) >
√

�. Moreover, note that lim
x−→+∞f2(x) = +∞,

hence ρ(F2(�)) < ρ(F1(�)). Then, G ∼= F1(�).
Case 2: n − 4 � � � n − 1.

Since lim
x−→−∞γ1(x) = −∞, γ1(0) = 2n + � − 14 > 0, γ1(

√
�) = 2(n − 7 − �) < 0,

lim
x−→+∞γ1(x) = +∞, we have α1 >

√
�. When x >

√
� > 2, note that γ ′

2(x) = 2(� + 7 − n)x −
2(n−�−4) > 6(�+6−n) > 0,henceγ2(x) > γ2(

√
�) = (�−n+4)(7+2

√
�)+3 > 0.ByEq. (3),

we have f1(x) > 0 and f2(x) > 0 when x � α1 >
√

�. Thus, ρ(F1(�)), ρ(F2(�)) ∈ (
√

�, α1). Once
again, Eq. (2) implies that f2(ρ(F1(�))) = γ1(ρ(F1(�))) < 0. Combining with lim

x−→+∞f2(x) = +∞,

we have ρ(F1(�)) < ρ(F2(�)), the result follows.

Case 3: n − 6 � � � n − 5.
Here we only consider the case of � = n − 5, because the case of � = n − 6 can be proved

similarly. By n
2

+ 2 � � = n − 5, we have n � 14. When n = 14, by Eq. (1) the result follows.

Next we may suppose that n � 15. Since γ1(
√

n) = 5
√

n − 19 > 0, by the discussion of Case 2

we can conclude that
√

n − 5 < α1 <
√

n. When
√

n − 5 < x <
√

n, since γ ′
2(x) > 0, we have

γ2(x) = 2(x2 − x − n + 3) < γ2(
√

n) = 2(3 − √
n) < 0. By Eq. (3), it follows that f1(α1) =

γ2(α1) < 0, f2(α1) = (α1 − 1)γ2(α1) < 0, hence ρ(F1(�)), ρ(F2(�)) > α1. Therefore, when

x � ρ(F1(�)) > α1, Eq. (2) implies that f2(x) � γ1(x) > 0. Thus, ρ(F2(�)) < ρ(F1(�)), the result

follows. �

In the following, let S1 = F2(n − 1), S2 = F1(n − 1), S3 be the graph obtained from H1 by

attaching n − 5 pendant vertices to v1, S4 be the graph obtained from H2 by attaching n − 6 pen-

dant vertices to v1, S5 be the graph obtained from H3 by attaching n − 7 pendant vertices to v1, and

S6 = F2(n − 2).
In 1981, Cvetković [13] indicated 12 directions in further investigations of graph spectra, one of

which is classifying and ordering graphs. After then, ordering graphs with various properties by their

spectra, becomes an attractive topic (see [16–20]). There are many corresponding results of order of

trees, unicyclic and bicyclic graphs via their spectral radii [16–20], while few results on the tricyclic

graphs. Up to now, to our best knowledge, only the tricyclic graph which has the maximum spectral

radius in C(n) had been determined.
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Theorem 3.2 [14]. Let G be the graph with the maximum spectral radius in C(n), then G ∼= S1.

By Theorem3.1, nextwe shall extend the order of Theorem3.2 to the first six largest tricyclic graphs.

Theorem 3.3. Suppose n � 18. If G ∈ C(n) \ {S1, S2, ..., S6}, then ρ(G) < ρ(S6) < ρ(S5) < · · · <
ρ(S1).

Let K1,n−1 be the star on n vertices. The proof of Theorem 3.3 needs the next Lemma.

Lemma 3.2 [15]. If G is a connected graph on n vertices andm edges, then ρ(G) �
√

2m − n + 1,where

equality holds if and only if G ∼= Kn or G ∼= K1,n−1.

The proof of Theorem 3.3. Since n � 18, Theorems 2.2 and 3.1 imply that ρ(G) < ρ(S6) because

S1, S2, ..., S5 are all the tricyclic graphs on n vertices with maximum degree n− 1. By Theorem 3.2, we

only need to show that ρ(S6) < ρ(S5) < · · · < ρ(S2).
By Lemma 3.1 and Eq. (1), we have

�(S2, x) = xn−4(x4 − (n + 2)x2 − 6x + 3(n − 5)).

�(S3, x) = xn−6(x2 + x − 1)(x4 − x3 − nx2 + (n − 7)x + (n − 5)).

�(S4, x) = xn−6(x + 1)(x5 − x4 − (n + 1)x3 + (n − 5)x2 + (2n − 4)x − 2n + 12).

�(S5, x) = xn−8(x − 1)2(x + 1)3(x3 − x2 − (n − 1)x + n − 7).

�(S6, x) = xn−6(x + 1)(x5 − x4 − (n + 1)x3 + (n − 7)x2 + (3n − 13)x − n + 5).

When x �
√

n − 1, since �(S3, x) − �(S2, x) = xn−6(3x2 + 2x − n + 5) � xn−6(2n + 2 +
2
√

n − 1) > 0, it follows that ρ(S3) < ρ(S2).

When x �
√

n − 1, Since �(S4, x) − �(S3, x) = xn−6(3x2 + 6x − n + 7) � xn−6(2n + 4 +
6
√

n − 1) > 0, we have ρ(S4) < ρ(S3).

When x �
√

n − 1, since �(S5, x) − �(S4, x) = xn−8(3x4 + 4x3 − (n − 2)x2 − 6x + n − 7) >
xn−8(x2(3(n−1)−(n−2))+x(4(n−1)−6)+n−7) = xn−8((2n−1)x2+(4n−10)x+n−7) > 0,

we have ρ(S5) < ρ(S4).
Next we shall show that ρ(S6) < ρ(S5).
When n = 18, by �(S5, x) and �(S6, x), it is easily checked that ρ(S6) < ρ(S5). Next we may

suppose that n � 19. Let f3(x) = x3 − x2 − (n − 1)x + n − 7, f4(x) = x5 − x4 − (n + 1)x3 + (n −
7)x2 + (3n − 13)x − n + 5. Then, ρ(S5) and ρ(S6) are equal to the maximum roots of f3(x) = 0 and

f4(x) = 0, respectively. Let γ3(x) = −2x2 + (n − 11)x + n − 9. Then,

f4(x) = (x2 − 2)f3(x) + γ3(x). (4)

By Lemma 3.2, it follows that
√

n − 2 < ρ(S6) <
√

n + 5, and
√

n − 1 < ρ(S5) <
√

n + 5.

When
√

n − 1 < x <
√

n + 5, we have γ3(x) > min{γ3(
√

n − 1), γ3(
√

n + 5)} = min{(n −
11)

√
n − 1− (n+ 7), (n− 11)

√
n + 5− (n+ 19)} > 0. Thus, when ρ(S5) � x <

√
n + 5, we have

f4(x) � γ3(x) > 0 by Eq. (4). Hence, ρ(S6) < ρ(S5). �

Note that S1, S2, ..., S5 are all the tricyclic graphs on n vertices with maximum degree n − 1. Thus,

we may consider the next problem: Whether the spectral radius of a tricyclic graph strictly increases

with its maximum degree. The answer is positive when � is enough large because we have

Theorem 3.4. Suppose G, G′ are two tricyclic graphs on n vertices. If �(G) �
(
1 +

√
6 + 2n

3

)2
and

�(G) > �(G′), then ρ(G) > ρ(G′).

The proof of Theorem 3.4 needs the next Lemma.
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Lemma 3.3. If � �
(
1 +

√
6 + 2n

3

)2 − 1, then ρ(F1(�)) �
√

� + 1.

Proof. By Eq. (1), ρ(F1(�)) is equal to the maximum root of f1(x) = 0. When x �
√

� + 1 >
√

2n
3
,

since f ′′1 (x) = 12x2 − 2n − 4 > 0, we have

f ′1(x) = 4x3 − 2(n + 2)x − 6 > 4

⎛
⎝

√
2n

3

⎞
⎠

3

− 2(n + 2)

√
2n

3
− 6 =

(
2n

3
− 4

) √
2n

3
− 6 > 0.

Hence, when x �
√

� + 1 � 1 +
√
6 + 2n

3
, it follows that

f1(x) � (� + 1)2 − (n + 2)(� + 1) − 6
√

� + 1 + (n − � + 3)� − n − 11

= 3� − 6
√

� + 1 − 2n − 12

= 3
(√

� + 1 − 1
)2 − 2n − 18

� 0.

Therefore, ρ(F1(�)) �
√

� + 1. �

The proof of Theorem 3.4. In the proof of this result, we write �(G′) as �′, and �(G) as �. Let

a =
(
1 +

√
6 + 2n

3

)2 − 1. We consider the next two cases.

Case 1. � � n − 5.

Subcase 1.1. �′ � a.

Since�′ � a > n
2
+2, by Theorem3.1 and Lemma 3.3we can conclude thatρ(G′) � ρ(F1(�

′)) �√
�′ + 1. On the other hand, since � > �′, we have ρ(G) >

√
� �

√
�′ + 1, hence the result

follows.

Subcase 1.2. �′ < a.

Note that a > n
2

+ 2. By Theorem 2.2 and Lemma 3.3 we can conclude that ρ(G′) < ρ(F1(a)) �
√

a + 1. Moreover, since � �
(
1 +

√
6 + 2n

3

)2 = a + 1, it follows that ρ(G) >
√

� �
√

a + 1, the

result also follows.

Case 2. n − 4 � � � n − 1.

By Theorem 3.3, we only need to consider the cases of n − 4 � � � n − 2.

Subcase 2.1. � = n − 4.

Then, �′ � n − 5. By n − 4 �
(
1 +

√
6 + 2n

3

)2
, it follows that n � 79. Since n − 5 > n

2
+ 2, by

Theorems 2.2 and 3.1 we have ρ(G′) � ρ(F1(n − 5)). Let f5(x) = x4 − (n + 2)x2 − 6x + 7n − 51.

By Eq. (1), ρ(F1(n − 5)) equals to the maximum root of f5(x) = 0. When x �
√

n − 4, since f ′′5 (x) =
12x2−2n−4 � 10n−52 > 0,we have f ′5(x) = 4x3−(2n+4)x−6 � (2n−20)

√
n − 4−6 > 0, and

hence f5(x) � f5(
√

n − 4) = n−27−6
√

n − 4 > 0. Then,ρ(G′) � ρ(F1(n−5)) <
√

n − 4 < ρ(G),
the result follows.

Subcase 2.2. � = n − 3.

Then, �′ � n − 4. By n − 3 �
(
1 +

√
6 + 2n

3

)2
, it follows that n � 75. Thus, n − 4 > n

2
+ 2. By

Theorems 2.2 and 3.1, we have ρ(G′) � ρ(F2(n− 4)). Let f6(x) = x5 − x4 − (n+ 1)x3 + (n− 7)x2 +
(5n − 29)x − 3(n − 7). By Eq. (1), ρ(F2(n − 4)) equals to the maximum root of f6(x) = 0.

Since lim
x−→−∞f6(x) = −∞, f6(−3) = 18n− 252 > 0, f6(0) = 21− 3n < 0, f6(1) = 2n− 16 > 0,

f6(3) = 6 − 6n < 0, and f6(
√

n − 3) = (n − 17)(
√

n − 3 − 7) − 86 > 0, we have ρ(G′) �
ρ(F2(n − 4)) <

√
n − 3 < ρ(G).

Subcase 2.3. � = n − 2.
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Fig. 3. The tricyclic graphs W1 and W2.

Then, �′ � n − 3. By n − 2 �
(
1 +

√
6 + 2n

3

)2
, it follows that n � 71. Thus, n − 3 > n

2
+ 2. By

Theorems 2.2 and 3.1, we have ρ(G′) � ρ(F2(n− 3)). Let f7(x) = x5 − x4 − (n+ 1)x3 + (n− 7)x2 +
(4n − 20)x − 2(n − 6). By Eq. (1), ρ(F2(n − 3)) equals to the maximum root of f7(x) = 0.

If n = 71, since� = n− 2, G has T∗ as its proper subgraph, where T∗ is a tree of order 71 obtained

by attaching one pendant vertex to one pendant vertex of the star K1,69. Thus, ρ(G) > ρ(T∗) >
8.3075 > 8.3069 > ρ(F2(68)) � ρ(G′), the result follows.

If n � 72, since lim
x−→−∞f7(x) = −∞, f7(−2) = 2n − 16 > 0, f7(0) = 12 − 2n < 0, f7(1) =

2n − 16 > 0, f7(3) = 24 − 8n < 0, and f7(
√

n − 2) = (n − 14)(
√

n − 2 − 7) − 76 > 0, we have

ρ(G′) � ρ(F2(n − 3)) <
√

n − 2 < ρ(G).
By combining the above arguments, this completes the proof of this result. �

4. Remarks

Bearing Theorems 2.1 and 2.2 in mind, we find there are many similar properties between the

spectral radius and signless Laplacian spectral radius of a graph. Thus, it is natural to consider the

followingquestion: “Whether thesignless Laplacianspectral radiusof a tricyclic graphstrictly increases

with its maximum degree when � is enough large". The answer is given by the next result.

Theorem 4.1 [21]. Let G and G′ be two tricyclic graphs on n vertices. If �(G) � � n−1
2


 + 4 and �(G) >

�(G′), then μ(G) > μ(G′).

Actually, we obtained the similar result for general graphs as follows.

Theorem 4.2 [21]. Let G and G′ be two connected graphs with n vertices and m edges. If �(G) � m −
� n−1

2
� + 1 and �(G) > �(G′), then μ(G) > μ(G′).

As the next Example shown, the bound � n−1
2


 + 4 in Theorem 4.1 is best possible.

Example 4.1. LetW1 andW2 be the tricyclic graphs on 11 vertices as shown in Fig. 3. Though�(W1) >
�(W2), we have μ(W1) < 9.153 < 9.199 < μ(W2).
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[13] D.M. Cvetković, Some Possible Directions in Further Investigations of Graph Spectra, Algebra Methods in Graph Theory,

North-Holland, Amsterdam, 1981, pp. 47–67.

[14] R.A. Brualdi, E.S. Solheid, On the spectral radius of connected graphs, Publ. Inst. Math. (Beograd) 39 (53) (1986) 45–54.
[15] Y. Hong, Bounds on the spectral radius of graphs, Linear Algebra Appl. 108 (1998) 135–139.

[16] M. Hofmeister, On the two largest eigenvalues of trees, Linear Algebra Appl. 260 (1997) 43–59.
[17] A. Chang, Q.X. Huang, Ordering trees by their largest eigenvalues, Linear Algebra Appl. 370 (2003) 175–184.

[18] S.G. Guo, First six unicyclic graphs of order nwith larger spectral radius, Appl.Math. J. Chinese Univ. Ser. A 18 (4) (2003) 480–486
(in Chinese).

[19] J.H. Wu, W.S. Lin, X.F. Guo, The further order of the unicyclic graphs by their largest eigenvalues, J. Math. Study 38 (3) (2005)

302–308 (in Chinese).
[20] C.X. He, Y. Liu, J.Y. Shao, On the spectral radii of bicyclic graphs, J. Math. Res. Exposition 27 (3) (2007) 445–454.

[21] M.H. Liu, B.L. Liu, B. Cheng, Comparing (signless) Laplacian spectral radii via the maximum degrees of connected graphs, Linear
and Multilinear Algebra, submitted for publication.


	On the spectral radii and the signless Laplacian spectral radii of c-cyclic graphs with fixed maximum degree
	1  Introduction
	2 The c-cyclic graphs with maximum spectral radii or signless Laplacian spectral radii inS(n,,c)
	3 A relation between (G) and (G) of a graph G in C(n)
	4 Remarks
	Acknowledgement
	References


