Multivalued Differential Equations in Banach Spaces

D. O'Regan
Department of Mathematics, National University of Ireland
Galway, Ireland

(Received and accepted September 1998)

Abstract—New existence principles and results are presented for differential inclusions in Banach spaces. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords—Differential inclusions, Proximate retracts.

1. INTRODUCTION

This paper has two main goals. First, we establish new existence principles for the differential inclusion

\[x' \in F(t, x), \quad \text{a.e. on } [0, T], \]
\[x(0) = x_0 \in E. \]

(1.1)

Here \(F : [0, T] \times E \to 2^E \), where \(E = (E, \| \cdot \|) \) is a real Banach space (note \(2^E \) denotes the family of all nonempty subsets of \(E \)). The principles will then give us a new existence theory for (1.1). Our results extend well-known results in the literature (see [1, Section 9]). Second, we will use what we have derived for (1.1) to study the existence of solutions \(y : [0, T] \to K \subseteq E \) (so-called viable solutions) to the differential inclusion

\[y'(t) \in \phi(t, y(t)), \quad \text{a.e. } t \in [0, T], \]
\[y(0) = y_0 \in K. \]

(1.2)

Here \(K \) is a proximate retract and \(\phi : [0, T] \times K \to 2^E \). The results presented give partial answers to some of the questions raised by Deimling in [1, Section 9].

2. DIFFERENTIAL INCLUSIONS

In this section, we discuss in detail the differential inclusion

\[x' \in F(t, x), \quad \text{a.e. on } [0, T], \]
\[x(0) = x_0 \in E, \]

(2.1)

where \(F : [0, T] \times E \to C(E) \) (here \(C(E) \) denotes the family of all nonempty, compact subsets of \(E \)). We look for solutions to (2.1) in \(W^{1,1}([0, T], E) \). Recall \(W^{1,1}([0, T], E) \) is the set of
continuous functions \(u \) such that there exists \(v \in L^1([0,T], E) \) with \(u(t) - u(0) = \int_0^t v(s) \, ds \) for all \(t \in [0,T] \). (Notice if \(u \in W^{1,1}([0,T], E) \), then \(u \) is differentiable almost everywhere on \([0,T] \), \(u' \in L^1([0,T], E) \), and \(u(t) - u(0) = \int_0^t u'(s) \, ds \), for \(t \in [0,T] \).) Before we specify conditions on \(F \), we first recall some well-known concepts [2]. Let \(E_1 \) and \(E_2 \) be two Banach spaces, \(X \) a nonempty closed subset of \(E_1 \), and \(S \) a measurable space (respectively, \(S = I \times E \), where \(I \) is a real interval, and \(A \subseteq S \) is \(\mathcal{L} \otimes \mathcal{B} \) measurable if \(A \) belongs to the \(\sigma \)-algebra generated by all sets of the form \(N \times D \) where \(N \) is Lebesgue measurable and \(D \) is Borel measurable). Let \(H : X \to E_2 \) and \(G : S \to E_2 \) be two multifunctions with nonempty closed values. The function \(G \) is measurable (respectively, \(\mathcal{L} \otimes \mathcal{B} \) measurable) if the set \(\{ t \in S : G(t) \cap B \neq \emptyset \} \) is measurable for any closed \(B \) in \(E_2 \). The function \(H \) is lower semicontinuous (l.s.c) (respectively, upper semicontinuous (u.s.c.)) if the set \(\{ x \in X : H(x) \cap B \neq \emptyset \} \) is open (respectively, closed) for any open (respectively, closed) set \(B \) in \(E_2 \).

When we examine (2.1), we assume \(F : [0,T] \times E \to C(E) \) satisfies some of the following conditions (to be specified later).

\begin{align}
\text{(i)} & \quad t \mapsto F(t, x) \text{ is measurable for every } x \in E. \\
\text{(ii)} & \quad x \mapsto F(t, x) \text{ is u.s.c. for a.e. } t \in [0, T]. \\
\text{(iii)} & \quad t \mapsto F(t, x) \text{ is measurable for every } x \in E. \\
\text{(iv)} & \quad x \mapsto F(t, x) \text{ is continuous for a.e. } t \in [0, T].
\end{align}

For each \(r > 0 \), there exists \(h_r \in L^1[0,T] \) such that \(\|F(t, x)\| \leq h_r(t) \) for a.e. \(t \in [0,T] \) and every \(x \in E \) with \(\|x\| \leq r \).

There exists \(\gamma \geq 0 \) with \(\gamma T < 1 \) and with \(\alpha(F([0,t] \times \Omega)) \leq \gamma \alpha(\Omega) \) for any bounded subset \(\Omega \) of \(E \); here \(\alpha \) denotes the Kuratowskii measure of noncompactness.

There exists \(k \in L^1([0,T]) \) with \(\lim_{h \to 0^+} \alpha(F(J_{t,h} \times \Omega)) \leq k(t)\alpha(\Omega) \) for \(t \in [0,T] \) and for any bounded subset \(\Omega \) of \(E \); here \(J_{t,h} = [t-h,t] \cap [0,T] \).

We first state a result from [3] for u.s.c. type maps.

Theorem 2.1. (See [3].) Let \(E = (E, \|\cdot\|) \) be a separable Banach space with \(F : [0,T] \times E \to \mathcal{C}(E) \) (here \(\mathcal{C}(E) \) denotes the family of nonempty, compact, convex subsets of \(E \)). Assume (2.2), (2.5), and (2.6) hold. Define the operator

\[N : C([0,T], E) \to 2^{C([0,T], E)} \]

by \(N = S \circ \mathcal{F} \), where

\[\mathcal{F} : C([0,T], E) \to 2^{L^1([0,T], E)} \]

is given by

\[\mathcal{F}(y) = \{ v \in L^1([0,T], E) : v(t) \in F(t, y(t)) \text{ a.e. } t \in [0,T] \} \]

and

\[S : L^1([0,T], E) \to C([0,T], E) \]

is given by

\[Sv(t) = x_0 + \int_0^t v(s) \, ds. \]
Suppose there exists a nonempty, closed, convex, equicontinuous set X of $C([0,T], E)$ such that X is mapped into itself by the multi-N and also $N(X)$ is a subset of a bounded set in $C([0,T], E)$ (2.10) holds. Then (2.1) has a solution $u \in W^{1,1}([0,T], E)$.

Our next result is new and in the spirit of results presented by Deimling [1].

Theorem 2.2. Let $E = (E, \| \cdot \|)$ be a separable Banach space with $F : [0,T] \times E \rightarrow CK(E)$. Assume (2.2), (2.5), and (2.7) hold. Define the operator $N : C([0,T], E) \rightarrow 2^{C([0,T], E)}$ by $N = S \circ F$ (F and S are given in (2.8) and (2.9), respectively) and suppose (2.10) holds. Then (2.1) has a solution $u \in W^{1,1}([0,T], E)$.

Proof. Let $K_0 = X$, $K_{n+1} = \cap_{n \geq 0} N(K_n)$ for $n \geq 0$ and $K_\infty = \cap_{n \geq 0} K_n$. A standard argument (see [1, p. 118]) using (2.7) shows $K_\infty \neq \emptyset$ is a convex, compact set. In addition, it is easy to see (since N takes X into X) that $N : K_\infty \rightarrow 2^{K_\infty}$. In addition (follow the argument in [3]), $N : K_\infty \rightarrow Cc(K_\infty)$ has closed graph (here $Cc(K_\infty)$ denotes the family of nonempty, closed, convex subsets of K_∞). Now [4, p. 465] implies $N|_{K_\infty}$ is u.s.c. Consequently, $N|_{K_\infty} : K_\infty \rightarrow CK(K_\infty)$ is u.s.c. and K_∞ is convex and compact. Ky Fan’s Fixed Point Theorem [5] implies N has a fixed point in K_∞. □

Next we state a result from [3] for l.s.c. type maps.

Theorem 2.3. (See [3].) Let $E = (E, \| \cdot \|)$ be a separable Banach space and let $F : [0,T] \times E \rightarrow C(E)$ satisfy (2.5), (2.6), and either (2.3) or (2.4). Define the operator $N : C([0,T], E) \rightarrow 2^{C([0,T], E)}$ by $N = S \circ F$ (F and S are given in (2.8) and (2.9), respectively), and suppose (2.10) holds. Then (2.1) has a solution $u \in W^{1,1}([0,T], E)$.

Proof. Now [3] implies F has a continuous selection $f : C([0,T], E) \rightarrow L^1([0,T], E)$. Now consider the problem

$$y'(t) = f(t, y(t)), \quad t \in [0,T],$$

$$y(0) = x_0. \quad (2.11)$$

Define $N_1 : C([0,T], E) \rightarrow C([0,T], E)$ by

$$N_1y(t) = x_0 + \int_0^t f(s, y(s)) \, ds$$

and let K_0, K_1, and K_∞ be as in Theorem 2.2. Again we have $N_1 : K_\infty \rightarrow K_\infty$ with $K_\infty \neq \emptyset$ convex and compact. Also $N_1 : K_\infty \rightarrow K_\infty$ is continuous. Schauder’s Fixed Point Theorem [5] implies (2.11) has a solution. Consequently, (2.1) has a solution. □

It is easy to see how the theorems in this section can be used to establish new existence results. We illustrate the generality of our existence principles with the following existence result.

Theorem 2.5. Let $E = (E, \| \cdot \|)$ be a separable Banach space.

1. Let $F : [0,T] \times E \rightarrow CK(E)$ satisfy (2.2), (2.5), and (2.7). In addition, suppose

$$\alpha \in L^1[0,T] \text{ and } \psi : [0, \infty) \rightarrow (0, \infty) \text{ a nondecreasing, continuous function such that } \| F(s, u) \| \leq \alpha(s) \psi(\| u \|) \quad \text{for a.e. } s \in [0,T] \text{ and all } u \in E$$

and

$$\int_0^T \alpha(s) \, ds < \int_{\| u_0 \|}^{\infty} \frac{dx}{\psi(x)} \quad (2.13)$$

hold. Then (2.1) has a solution $u \in W^{1,1}([0,T], E)$.

Let $F : [0, T] \times E \to C(E)$ satisfy (2.5), (2.7), (2.12), (2.13), and either (2.3) or (2.4). Then (2.1) has a solution $u \in W^{1,1}([0, T], E)$.

Proof. Let

$$X = \{ y \in C([0, T], E) : \|y(t)\| \leq b(t), \text{ for } t \in [0, T] \}
\text{ and } \|y(t) - y(s)\| \leq |b(t) - b(s)|, \text{ for } t, s \in [0, T] \},$$

where

$$b(t) = I^{-1} \left(\int_{0}^{t} \alpha(s) \, ds \right) \quad \text{and} \quad I(z) = \int_{\|x_0\|}^{z} \frac{dx}{\psi(x)}.$$

Notice X is a closed, convex, bounded, equicontinuous subset of $C([0, T], E)$. Let $N = S \circ F$ (F and S are given in (2.8) and (2.9), respectively). The result follows immediately from Theorem 2.2 (in Case (I)) and Theorem 2.4 (in Case (II)) once we show N maps X into X. To see this, take $y \in X$. We must show $Ny \in X$. Notice first that

$$\|Ny(t)\| \leq \|x_0\| + \int_{0}^{t} \alpha(s) \psi(\|y(s)\|) \, ds \leq \|x_0\| + \int_{0}^{t} \alpha(s) \psi(b(s)) \, ds$$

$$= \|x_0\| + \int_{0}^{b(t)} \frac{dx}{\psi(x)} = \int_{0}^{b(t)} \alpha(s) \, ds.$$

Also for $u \in Ny$ there exists $v \in L^1([0, T], E)$ with $u(t) = x_0 + \int_{0}^{t} v(s) \, ds$ and $v(t) \in F(t, y(t))$ a.e. on $[0, T]$. Now for $t, s \in [0, T]$ with $t > s$, we have

$$\|u(t) - u(s)\| \leq \int_{s}^{t} \alpha(x) \psi(\|y(x)\|) \, dx \leq \int_{s}^{t} \alpha(x) \psi(b(x)) \, dx = \int_{s}^{t} b'(x) \, dx = b(t) - b(s).$$

Consequently, $Ny \in X$.

3. Differential Inclusions on Proximate Retracts

In this section, we study the existence of viable solutions $x : [0, T] \to K \subseteq E$ to the differential inclusion

$$x'(t) \in \phi(t, x(t)), \quad \text{a.e. } t \in [0, T],$$

$$x(0) = y_0 \in K. \quad (3.1)$$

By a solution (viable) to (3.1), we mean an $x \in W^{1,1}([0, T], E)$ with $x' \in \phi(t, x)$ a.e. on $[0, T]$, $x(0) = y_0$ and $x(t) \in K$ for $t \in [0, T]$. Throughout this section we assume

$$K \text{ is a proximate retract.} \quad (3.2)$$

Definition 3.1. (See [6].) A nonempty closed subset K of E is said to be a proximate retract if there exists an open neighborhood U of K in E and a continuous (single-valued) mapping $r : U \to K$ (called a metric retraction) such that the following two conditions are satisfied:

(i) $r(x) = x$, for all $x \in K$,

(ii) $\|r(x) - x\| = \text{dist}(x, K)$, for all $x \in U$.

REMARK 3.1. Any closed, convex subset of a uniformly convex Banach space is a proximate retract.

REMARK 3.2. Now since we can take a sufficiently small \(U \) (for example, by restricting \(U \) to \(U \cap \{ y \in E : \text{dist}(y,K) < \delta \} \) for some given \(\delta > 0 \)), we may assume (and we do so) that \(\|r(u) - u\| \leq \delta \), for all \(u \in U \).

Throughout this section, we will assume \(\phi \) satisfies either
\[
\phi : [0,T] \times K \rightarrow CK(E) \text{ satisfies (2.2) and (2.5) (here } F \text{ is replaced by } K \) (3.3)
\]
or
\[
\phi : [0,T] \times K \rightarrow C(E) \text{ satisfies (2.5) and either (2.3) or (2.4) (here } F \text{ is replaced by } \phi \text{ and } E \text{ is replaced by } K \) (3.4)
\]

Now let \(U \) be a fixed neighborhood of \(K \) (chosen as in Remark 3.2) and let \(\lambda \) be an Urysohn function for \((K,E\setminus U) \) with \(\lambda(x) = 1 \) if \(x \in K \) and \(\lambda(x) = 0 \) if \(x \notin U \). Let \(r : U \rightarrow K \) be a metric retraction. Define \(\tilde{\phi} : [0,T] \times E \rightarrow C(E) \) by
\[
\tilde{\phi}(t,x) = \begin{cases} \lambda(x)\phi(t,r(x)), & \text{if } x \in U, \\ \{0\}, & \text{if } x \notin U. \end{cases}
\]

REMARK 3.3. If \(\phi \) satisfies (3.3), then \(\tilde{\phi} \) satisfies (2.2) and (2.5) (with \(F \) replaced by \(\tilde{\phi} \)). A similar remark applies if \(\phi \) satisfies (3.4).

Assume also that
\[
\phi(t,x) \subseteq T_k(x), \quad \text{for all } x \in K \text{ and a.e. } t \in [0,T],
\]

where
\[
T_k(x) = \left\{ v \in E : \liminf_{t \rightarrow 0^+} \frac{\text{dist}(x + tv, K)}{t} = 0 \right\}
\]
is the Bouligand tangent cone to \(K \) at \(x \).

Essentially the same reasoning as in [7, p. 177] establishes the following result.

THEOREM 3.1. Let \(a > 0 \). Assume (3.5) holds. If \(x \in W^{1,1}([0,a], E) \) is such that \(x'(t) \in \tilde{\phi}(t,x(t)) \) for a.e. \(t \in [0,a] \) and \(x(0) = K \), then \(x(t) \in K \) for all \(t \in [0,a] \).

Because of Theorem 3.1, we now concentrate our study on the differential inclusion
\[
x'(t) \in \tilde{\phi}(t,x(t)), \quad \text{a.e. } t \in [0,T],
\]
\[
x(0) = y_0 \in K.
\]

Notice any solution of (3.6) is a viable solution of (3.1); to see this, notice if \(x \) is a solution of (3.6), then \(x(t) \in K \) for all \(t \in [0,T] \) by Theorem 3.1 so \(\phi(t,x(t)) = \lambda(x(t))\phi(t,r(x(t))) = \phi(t,x(t)) \).

Conversely, if \(y \) is a viable solution of (3.1), then \(y \) is a solution of (3.6).

Now suppose there is a constant \(M \) with \(\|y\|_0 = \sup_{[0,T]} \|y(t)\| < M \) for any possible viable solution to (3.1). Let \(\epsilon > 0 \) be given and let \(\tau_\epsilon : E \rightarrow [0,1] \) be the Urysohn function for
\[
(B(0,M), E\setminus B(0,M + \epsilon))
\]
such that \(\tau_\epsilon(x) = 1 \) if \(\|x\| \leq M \), and \(\tau_\epsilon(x) = 0 \) if \(\|x\| \geq M + \epsilon \). Let \(\tilde{\phi}_\epsilon(t,x) = \tau_\epsilon(x)\tilde{\phi}(t,x) \) and we look at the differential inclusion
\[
x'(t) \in \tilde{\phi}_\epsilon(t,x(t)), \quad \text{a.e. } t \in [0,T],
\]
\[
x(0) = y_0.
\]
THEOREM 3.2. Let \(E = (E, \|\cdot\|) \) be a separable Banach space and assume (3.2) and (3.5) hold. In addition, suppose \(\phi : [0, T] \times K \to C(E) \) satisfies either (3.3) or (3.4), and also assume there is a constant \(M \) with \(\|y\|_0 < M \) for any possible viable solution \(y \in W^{1,1}([0, T], E) \) to (3.1). Let \(\epsilon > 0 \) be given and let \(\tau_\epsilon, \phi_\epsilon \) be as above. Suppose

\[
\text{there exists } k \in L^1[0, T] \text{ with } \lim_{h \to 0^+} \alpha(\phi_\epsilon(J_{t,h} \times \Omega)) \leq k(t)\alpha(\Omega) \text{ for } t \in (0, T] \text{ and for any bounded subset } \Omega \text{ of } E; \text{ here } J_{t,h} = [t - h, t] \cap [0, T]
\]

(3.8)

holds. Define the operator \(N_\epsilon : C([0, T], E) \to 2^{C([0, T], E)} \) by \(N_\epsilon = S \circ \mathcal{F}_\epsilon \); here \(S \) is given as in (2.9) and

\[
\mathcal{F}_\epsilon : C([0, T], E) \to 2^{L^1([0, T], E)}
\]

is given by

\[
\mathcal{F}_\epsilon(y) = \left\{ v \in L^1([0, T], E) : v(t) \in \phi_\epsilon(t, y(t)) \text{ a.e. } t \in [0, T] \right\}.
\]

(3.9)

Assume

there exists a nonempty, closed, convex, bounded, equicontinuous set \(X \) of \(C([0, T], E) \) such that \(X \) is mapped into itself by the multi-N_\epsilon

(3.10)

and

\[
\|w\|_0 < M \text{ for any possible solution } w \in W^{1,1}([0, T], E) \text{ to (3.7)}
\]

(3.11)

hold. Then (3.1) has a viable solution \(u \) with \(\|u\|_0 < M \).

PROOF. From Theorem 2.2 or Theorem 2.4 (note (2.5) is satisfied with \(F \) replaced by \(\phi_\epsilon \)), we have immediately that (3.7) has a solution \(y \). By assumption (3.11), \(\|y\|_0 < M \) and so by definition \(\phi_\epsilon(t, y(t)) = \phi(t, y(t)) \). Thus \(y \) is a solution of (3.6). Now Theorem 3.1 implies \(y(t) \in K \) for every \(t \in [0, T] \), and so \(y \) is a solution of (3.1).

COROLLARY 3.3. Let \(K \) be a closed, convex subset of a separable Hilbert space \(E = (E, \|\cdot\|) \) and assume (3.5) holds. Suppose \(\phi : [0, T] \times K \to C(E) \) satisfies either (3.3) or (3.4), and also assume there is a constant \(M \) with \(\|y\|_0 < M \) for any possible viable solution \(y \in W^{1,1}([0, T], E) \) to (3.1). In addition, suppose

\[
\text{there exists } k \in L^1[0, T] \text{ with } \lim_{h \to 0^+} \alpha(\phi(J_{t,h} \times \Omega)) \leq k(t)\alpha(\Omega) \text{ for } t \in (0, T] \text{ and for any bounded subset } \Omega \text{ of } K; \text{ here } J_{t,h} = [t - h, t] \cap [0, T]
\]

(3.12)

holds. Let \(\epsilon > 0 \) be given and let \(\tau_\epsilon, \phi_\epsilon \) be as above. Define the operator \(N_\epsilon : C([0, T], E) \to 2^{C([0, T], E)} \) by \(N_\epsilon = S \circ \mathcal{F}_\epsilon \) (\(S \) and \(\mathcal{F}_\epsilon \) are given in (2.9) and (3.9), respectively). Assume (3.10) and (3.11) hold. Then (3.1) has a viable solution \(u \) with \(\|u\|_0 < M \).

PROOF. The result follows from Theorem 3.2 once we show (3.8) is true. To see this, notice \(r \) in this case is nonexpansive. Now if \(\Omega \) is a bounded subset of \(E \), then since

\[
\phi_\epsilon(J_{t,h} \times \Omega) \subseteq \overline{\phi(J_{t,h} \times \Omega) \cup \{0\}} \subseteq \overline{\overline{\phi(J_{t,h} \times r(\Omega)) \cup \{0\}}} \cup \{0\},
\]

we have

\[
\alpha(\phi_\epsilon(J_{t,h} \times \Omega)) \leq \alpha(\phi(J_{t,h} \times r(\Omega))).
\]

This, together with (3.12) and the fact that \(r \) is nonexpansive, yields

\[
\lim_{h \to 0^+} \alpha(\phi_\epsilon(J_{t,h} \times \Omega)) \leq \lim_{h \to 0^+} \alpha(\phi(J_{t,h} \times r(\Omega))) \leq k(t)\alpha(\Omega) \leq k(t)\alpha(\Omega).
\]

\]
We now use Corollary 3.3 to obtain a new and very general existence result for (3.1). Our result gives a partial answer to some questions raised in [1, Section 9].

Theorem 3.4. Let K be a closed, convex subset of a separable Hilbert space $E = (E, \| \cdot \|)$, $0 \in K$, and assume (3.5) holds. Suppose $\phi : [0, T] \times K \to C(E)$ satisfies (3.12) and either (3.3) or (3.4). In addition, assume

\[
\alpha \in L^1[0,T] \text{ and } \psi : [0, \infty) \to (0, \infty) \text{ a nondecreasing, continuous function such that } \|\phi(s, u)\| \leq \alpha(s)\psi(\|u\|), \text{ for a.e. } s \in [0,T] \text{ and all } u \in K
\]

and

\[
\int_0^T \alpha(s) \, ds < \int_0^\infty \frac{dx}{\psi(x)}
\]

hold. Then (3.1) has a viable solution.

Proof. Let

\[X = \{ y \in C([0,T], E) : \|y(t)\| \leq b(t), \text{ for } t \in [0,T] \text{ and } \|y(t) - y(s)\| \leq |b(t) - b(s)|, \text{ for } t, s \in [0,T] \}, \]

where

\[b(t) = I^{-1} \left(\int_0^t \alpha(s) \, ds \right) \quad \text{and} \quad I(x) = \int_{\|y_0\|}^{x} \frac{dx}{\psi(x)}. \]

Also let

\[M_0 = I^{-1} \left(\int_0^T \alpha(s) \, ds \right) \quad \text{and} \quad M = M_0 + 1. \]

Notice X is a closed, convex, bounded, equicontinuous subset of $C([0,T], E)$. Fix $\epsilon > 0$, and let $\tau_\epsilon, \tilde{\phi}_\epsilon$ be as above. Let $N_\epsilon = S \circ F_\epsilon$ (S and F_ϵ are given in (2.9) and (3.9), respectively). We wish to apply Corollary 3.3.

First we show N_ϵ maps X into X. Before we prove this, recall r (the metric retraction) is nonexpansive, i.e., $\|r(x) - r(z)\| \leq \|x - z\|$, for all $x, z \in E$. In particular, since $0 \in K$ (so $r(0) = 0$), we have $\|r(x)\| \leq \|x\|$, for all $x \in E$. Let $y \in X$. Notice first (since $\tau_\epsilon : E \to [0,1]$) that

\[
\|N_\epsilon y(t)\| \leq \|y_0\| + \int_0^t \alpha(s)\psi(\|r(y(s))\|) \, ds
\]

\[
\leq \|y_0\| + \int_0^t \alpha(s)\psi(\|y(s)\|) \, ds
\]

\[
\leq \|y_0\| + \int_0^t \alpha(s)\psi(b(s)) \, ds = b(t).
\]

Also for $u \in N_\epsilon y$ and $t, s \in [0,T]$ with $t > s$, we have

\[
\|u(t) - u(s)\| \leq \int_s^t \alpha(x)\psi(\|r(y(x))\|) \, dx \leq \int_s^t \alpha(x)\psi(\|y(x)\|) \, dx
\]

\[
\leq \int_s^t \alpha(x)\psi(b(x)) \, dx = b(t) - b(s).
\]

Consequently, $N_\epsilon y \in X$, so (3.10) is satisfied.

Next, suppose y is any possible viable solution of (3.1). Then we have

\[
\|y(t)\|' \leq \alpha(t)\psi(\|y(t)\|), \quad \text{a.e. on } \{ t \in [0,T] : \|y(t)\| > 0 \}.
\]
A standard argument (see [8]) implies \(|y(t)| \leq M_0\) for \(t \in [0, T]\) (here \(M_0\) is as in (3.15)). Thus, any possible viable solution \(y\) of (3.1) satisfies \(|y|_0 \leq M_0 < M\).

Finally, we show (3.11) is true. Let \(u\) be a solution of (3.7). Suppose there exists \(t \in (0, T]\) with \(|u(t)| \geq M\). Now since \(u(0) = y_0\), there exists \([0, t_0] \subseteq [0, T]\) with \(0 \leq |u(t)| < M\) for \(t \in (0, t_0)\) and \(|u(t_0)| = M\). Thus, \(u\) satisfies the differential inclusion

\[
x'(t) \in \phi(t, x(t)), \quad \text{a.e. } t \in [0, t_0],
\]

\[
x(0) = y_0.
\]

(3.16)

Now Theorem 3.1 (with \(a = t_0\)) implies any solution \(w\) of (3.16) satisfies \(w(t) \in K\) for \(t \in [0, t_0]\). Thus, in particular, \(u(t) \in K\) for \(t \in [0, t_0]\). Hence \(u\) satisfies

\[
x'(t) \in \phi(t, x(t)), \quad \text{a.e. } t \in [0, t_0],
\]

\[
x(0) = y_0.
\]

A standard argument (see [8]) implies \(|u(t)| \leq M_0\) for \(t \in [0, t_0]\). This is a contradiction. Thus, \(|u(t)| < M\) for \(t \in [0, T]\) and so (3.11) is true.

Consequently, all the conditions in Corollary 3.3 hold, and so (3.1) has a viable solution \(u\) with \(|u|_0 < M\).

\begin{flushright}
\textbf{REFERENCES}
\end{flushright}