
J. Symbolic Computation (1992) 13, 441-461

On Subsumption and Semiunification In
Algebras*

JOCHEN DORRE? AND WILLIAM C. lq:OUNDS ~t

r IBM Deutschland GmbH
Institute]or Knowledge.Based Systems

P.O. Box 80 08 80
D-7000 Stuttgart 80, Germany

$ Artificial Intelligence Laboratory
EECS Department

University of Michigan
Ann Arbor, Michigan 48109, USA

(Received ~3 April 1990)

Feature

We consider a generalization of term subsumption~ or matchingj to a class of
mathematical structures which we call .feature algebras. We show how these gen-
eralize both first-order terms and the feature structures used in computational
linguistics. The notion of term subsumption generalizes to a natural notion of
algebra homomorphism. In the setting of feature algebras, unification corre-
sponds naturally to solving constraints involving equalities between strings of
unary function symbols, and semiunification also allows inequalities rep~esentiltg
subsumption constraints. Our generalization allows us to show that the semiu-
nification problem for finite feature algebras is undecidable. This implies that
the corresponding problem for rational trees (cyclic terms) is also undecidable.

1. I n t r o d u c t i o n

Feature algebras are a generalization of a number of notions in artificial intelligence, espe-
cially knowledge representation schemata like frames and records; the feature structures
in computational linguistics, which are used heavily in unification-based grammar sys-
tems, and the usual first-order terms in logic and logic programming, which are used as
encodings of objects bearing information. They make explicit the no~ion of at tr ibute and
value in a particularly simple way. The simplicity and generality of the notion of feature
algebra allows us to show easily that a case of the semiunification problem is undecidable,

*The inspiration for this paper came from work done at the Institut ffir masehinelle Sprachverar-
beitung, University of Stuttgart, which the second author visited as a Ga~tprofessor in 1989. We would
like to thank our colleagues there for providing such a stimulating atmosphere. The work was in part
supported by ESPRIT Basic Research Action 3175 (DYANA).

0747-7171/92/040441+21 $03.00/0 �9 1992 Academic Press Limited

442 J, DSrre and W. C. Rounds

settling one part of this formerly open problem. While this is the principal technical re-
sult, we would suggest that the algebraic problem-solving and mathematical modelling
techniques associated with this class of structures comprise the major contribution of the
paper.

To expand on this a bit, we think that the setting of the semiunification problem for
feature algebras may be a more natural way to state the problem than for terms. We get
both a natural presentation of both the cyclic and acyclic cases of the problem, and a
short proof of undecidability in the cyclic case, using a reduction from the word problem
for finite semigroups (Gurevich, 1966). Our technique does not apply to the original
semiunification problem, a~ stated, for example, in (Leifl, 1988) or (Kfoury et al., 1989),
because it makes essential use of the cyclic property. However, Kfoury, Tiuryn, and Urzy-
czyn (1990) have shown that the problem as stated for ordinary terms is also undecidable,
Their proof uses a very different technique; namely, a reduction from the boundedness
problem for Turing machines. Comparison of the two proofs suggests that the two cases
of the problem are themselves very different; neither undecidability result implies the
other. What seems to be an obstruction for an algorithm trying to decide an instance
of the acyclie case is the so-called "occurs check", the need to detect the case when a
solution would possibly become cyclic. So, the reduction in (Kfoury et al., 1990) does
not need to use constants, and it fails for the cyclic case of the problem. Our reduction,
on the other hand, must use constants, because otherwise there is always a trivial cyclic
solution. Our proof thus shows that even if terms can be cyclic, the semiunification
problem stays undecidable.

In natural-language applications, one needs circular structures, because one can have
self-referential sentences like the Liar, as well as self-referential type descriptors (for
example, the type of person who is self-employed.) Our results therefore have bearing if
one models subsumption for feature terms (C-terms of Ai't-Kaci (1986)) as we do here.
However, it may be possible to get by with a weaker notion in the natural language case.
If one models subsumption not by using functions (see below), but by using relations,
then the semiunification problem becomes decidable. This result appears in DSrre (1990).

Our paper is organized as follows. Section 2 contains basic definitions. Here we
use notation borrowed from an unpublished draft by Gert Sm~lka. Our definition of
subsumption owes much to his work on feature logic (Smolka, 1988), which is a version
for arbitrary domains of the original Kasper-Rounds logic (Rounds & Kasper, 1986) for
the domain of feature structures. Mark Johnson (1988) and Smolka had the idea to
introduce these domains, and the present paper works out some of the consequences of
this insight. The mathematical model provides us with some powerful new tools, in that
the algebraic and model-theoretic techniques can be combined to prove what is actually
a rather surprising undecidability result.

Before we get to the details of this result, we present in Section 3 some motivational
material showing how feature algebras arise in the context of analyzing natural languages
and programming languages. The reader who is only interested in the technical results
can skip this section, which is presented informally. This motivation includes a way (using
feature constraints) of modelling both natural language and ML-style type inferencing
problems, sketching material from Shieber's dissertation (1989).

The undecidability results appear in Section 4, where we prove the undecidability of '
the semiunification problem for finite feature algebras, and in Section 5, where we reduce
this decision problem to a more standard one: that for rational trees.

Subsumption and Semiunification in Foaturr Algebras 443

2. F e a t u r e a lgeb ra s : Bas ic de f in i t i ons

We begin by assuming two disjoint alphabets L and A, called the sets of features and
a~oms respectively. Features are unary function symbols, and atoms are atomic constants
in our interpretation. Generally we use the letters f , g, h for features and a, b, c for atoms,

A feature algebra A consists of a nonempty set D "4 and a function ..4 defined on L
and A such that

�9 If f is a feature then fA is a unary partial functiont on]9"4;

�9 a ~4ED " a f o r a E A ;

�9 I f a c b t h e n a - ~ r

�9 No feature is defined on an atom.

NOTATION. We write function symbols on the right, so that f(d) is writ ten dr. If
f is defined at d, we write df ~, and otherwise df T. We use p, q, s , t to denote strings
of features, and if we write an equation dp = eq it is intended that the appropriate
composed function is defined.

EXAMPLES. The following are two canonical examples of feature algebras, though
there are many others of interest. For other examples, see Sections 4.3 and 5.2.

* THE TERM ALGEBRA "T(•, X). Let Y] be a ranked alphabet of function symbolst,
and X a countable set of variables. The elements of T(X~,X) are first-order terms
over X~ and X, together with the set ~3 itself. For the atoms of T(~, X) we take
the elements of X~; i.e., atoms are the function symbols of all arities. The features
are the natural numbers i, 2,..., and one extra feature FUN. Thc feature i gives
us the ith argument term of a term, if it exists, and the feature FUN gives us the
topmost function symbol of a term. This feature is not defined on variables. For
example, we have (~(~, r(a), b))2 = r(,), and (~(~, ,(,), b))ru~ = ~, where, has
rank 3, and v rank 1.

�9 THE FEATURE GRAPH ALGEBRA .~'. The nonatomic elements of this algebra are
pairs (G, n), where G is a (possibly infinite) directed graph, and n is a node of G.
Nodes are taken from a fixed countable set; say the integers. Each arc is labeled
with an element of L, and no two outgoing arcs are labeled with the same element
of L. Nodes with no outgoing arcs may optionally be labeled with elements of A.
In this algebra, we interpret features f as follows: let (G, n)f be the graph (G, n f) ,
where n f is the unique node of G pointed to by the arc starting at n and labeled
by f , if there is such an arc, and if n.f is not labeled with an atom. If the node n f
is labeled with an atom a then we define (G, n)f = a. Atoms in this algebra are
thus just the elements of A themselves.

This last example is a bit complex; we want it because it gives us an easy way of
generalizing ordinary terms to the circular case, and, in the case where the graphs are
finite, of picturing the feature structures of computational linguistics. One can think of

tThese functions will also be called features.
SRank is the same as arlty.

444 J. Dfrre and W. C. Rounds

graph-node pairs (G, n) as generalized terms, where n identifies the root node or head of
the term, or as transition graphs for automata, where n is the initial state. (An example
feature graph appears in Section 3.) In addition, ~" is an example of a general algebra
which is canonical with respect to various solution properties; see Section 4.3 for the
notion of "canonical".

In a general feature algebra, features are used to identify attr ibutes of objects in
the domain. Examples abound in computer science; in relational database systems, one
has at t r ibutes age, salary, and so forth. Slots in frame formalisms are another class of
examples. The atoms in a general feature algebra are like atomic constants, and retain
the syntactic flavor which they have in the term algebra and the feature graph algebra.
In a sense, a toms give us constant types. In Section 5 we will consider a generalization
of feature algebras, where atoms are more liberally interpreted, but our undecidability
results can be formulated for the present version.

Notice that any nonempty subset of a feature algebra containing interpretations for
all the a toms is again a feature algebra. (We could allow atoms to be partially interpreted
so that the above restriction was not necessary to make.)

We say tha t a feature algebra is finite if its domain is a finite set. Given a feature
algebra .A and a point d E D ~t, the extent of d, written Ext(d), is the set

{dP ~t I P E L* and dp "a ~ }.

We say tha t a feature algebra is path-finite if for each d, the set Paths(d) is finite,
where Paths(d) = {w E L*] dw ~4 ~}. The semiunification decision problem in Section 4
concerns finite feature algebras; the same problem for path-finite algebras is equivalent
to the semiunification problem stated, say, in (Kfoury et al., 1989). The next definition
introduces the key concept used to state these problems, and which is our real object of
concern in this paper.

A homomorphism between two feature algebras A and B is a partial map ~/between
the two domains satisfying

1. (an)7 = a t~ for each atom a;

2. For any d E D ~t and f E L, if d 7 I and df ~ 1, then dfA7 = dTf B. (In particular,
d7 f s is defined.)

If 7 maps ,4 to itself it is an endomorphism.

DEFINITION. Let .A be a fea ture algebra. The subsumplion preorder E_ on ,4 is defined
as follows:

d~e ~ there is an endomorphism7:d7--e.

We say tha t d subsumes e.

In our examples, one term subsumes a second iff the second is more instantiated than
the first; s ta ted another way, the first matches the second. A feature graph subsumes a
second essentially when the second has more arcs, and when it makes more identifications
than the first. (A feature graph identifies two paths when those two paths lead to a single
node.)

Subsumption and Semiunifieation in Feature Algebras 445

3. Unif icat ion G r a m m a r s and Type Inference

Here we review the problems which naturally lead to the question of solving systems of
constraints in feature algebras. The material on unification in natural language has a
long history, and is reviewed in Shieber (1987). The connections between unification and
type inference began with Hindley (1969) and Milner (1978). Henglein (1988) and Leifl
(1988) showed a reduction of ML-style polymorphic type inference to semiunification
for first-order terms. The paper by Kfoury et al. (1989) gives a proof that ML-style
type inference with polymorphic recursion and the (acyclic) semiunification problem are
recursively equivalent, as does Henglein (1989). Moshier (1988) showed for the first
time how unification grammars from natural language studies could be applied to type
inference in programming languages, and Shieber (1989) shows that in fact some weak
forms of semiunification problems seem to occur in natural language itself, completing
the connection.

Our presentation of this material is taken from Shieber's very readable 1989 thesis,
which treats both the programming and natural language cases, using feature structures
as the bearers of information. We begin with the ML-style polymorphic type inference
problem. Consider the problem of defining polymorphically typed expressions, as in the
program fragment let f (~) -" z in f(f)(3). This is a standard example of polymorphism,
where the identifier f , of polymorphic type Vot.(~ --* c~), has been used twice, once as a
function from (I N T --* I N T) to (I N T --. I N T) , and once as a function from I N T to
I N T . Each of these uses is consistent with the polymorphic type, but incompatible with
each other. The whole expression, however, is well-typed as an I N T with value 3.

Ignoring details of the let construct, and binding of variables, let us consider the usual
type inference rule for functional application.

E ~ - f : A - . - ~ R E ~ - a : A

E e / (a) : R

It says the following: Given a function f of type A ---* R and an argument a of type A
we can conclude the resulting expression f (a) of being of type R for a given environment
E (a map assigning types to identifiers).

Instead of using this rule directly, however, we encode it using features as a grammar
rule in the style of Shieber's PATR-II (1987).

ExprR ~ EzprF "(" EzprA ")":

F type conslr "-" FUNCTION;

F typearg "--A type;
F type result - R type ;

F env "-A env;
R env " - A env.

It consists of a context-free rule describing the form of expressions as well as an associated
feature clause which must be satisfied at the appropriate node of the parse treeJ The
occurences of the nonterminal Expr in the rule carry indices, which are best regarded

t l n this framework nodes of a parse tree hear a richer structure t h a n only a symbol label inc lud ing
in our case an encoding of the type of the dominated expression.

446 J. D/Srre and W. C. Rounds

int --eonstr I I o n s t r

int int

Figure 1. An environment.

as variables which are bound to the corresponding node of a parse tree if we apply the
rule. We can thus require certain properties to hold at the different nodes using feature
constraints over these variables. In the example, lype, conslr, arg, result, and env are
features. The first three constraints enforce the matching conditions in the rule, namely
that the type of F is a function, indicated with the a tom FUNCTION, whose argument and
result types are identical to A's type and R's type, respectively. The last two constraints,
using the feature env, encode the sharing of the environment E among the three nodes.

To be more precise, we assume the nodes of a parse tree to be elements of a feature
algebra A which interprets the features and atoms appearing in the constraints. For a
given parse tree we get - induced by the grammar rule applications which coristructed
it - a collection of feature constraints over .its nodes. Now, the feature algebra ,4 has to
satisfy this collection, i.e., for each "dotted equality" the left-hand side and the right-
hand side have to be defined and denote identical elements. Without loss of generMity
we can think of the elements of A as feature graphs, like in our example in Section 2.
The types of expressions as well as environments are encoded in these feature graphs.

For example, the graph in Figure 1 encodes an environment giving to the identifiers
id and + the typings

id : (Vc~)c~ ~ a, and

+ : I N T --, (I N T --, I N T) .

This environment, or symbol table, would be available at the point of application of
the above rule, through recursive uses of tlle last two constraints, which pass environments
up and down a tree. In this case we postulate constant definitions of symbols like + and
id, and use them as feature names. Then to round out this simple grammar, we could

$ubsumption and Semiunification in Feature Algebras 447

introduce the rule
ExprA - -~ w (w E ~)

where E is a prespecified set of identifier names like id and +, to be used both as terminal
symbols and as features indexing into the environment.

To achieve ML-style type inferencing, this rule might be constrained by

A ~ y p e "-:-A ear w,

corresponding to the traditional type inference rule

= T

E F ' w : T

And finally, we could have a rule

ExprA ~. ~ (~ e N)

for integers, constrained by
A type constr - INT.

We ignore the details of how to construct environments here; Shieber's thesis treats
the problems of binding, and the typing of bound variables, in more detail, as does
Moshier's. It will suffice here to suppose that environments are explicitly supplied with
the start rule of the grammar by means of explicit constraints. Then this grammar, used
schematically, allows the following typings:

* id : Va.ot --+ o~ ;

�9 + : I N T --+ (I N T ---+ I N T) ;

�9 / d (+) : I N T --~ (I N T --+ I N T) ;

�9 id (+(3) (id (4))) : I N T

Unfortunately, it does not allow id(id)(3) to be well-typed, as in our problem above. This
is because the two uses of the identity function are not consistent (fail to unify) with
each other. An obvious solution to this problem is to relax the identity constraint

A e n v w - A t y p e

in the second rule, and replace it with a less restrictive one:

A e n v w ~ A t y p e

This requires only that the type of a use be more instantiated than a type given by the
original definition of the identifier. In the case of id, the original definition gives a type
where the argument and result types are equal (Figure 1). It is easy' to see that this
matching corresponds to the existence of a feature graph homomorphism from the less
instantiated type to the more instantiated one.

Continuing with Shieber's examples, we notice that the polymorphism problem above
occurs in natural language processing as well. Consider coordinate constructions involv-
ing the conjunction "and", as in (1,2).

448 J. D6rre and W. C. Rounds

(1) Pat hired [NP a Republican] and [NP a banker].
* (2) Pat hired [NP a Republican] and [•p proud of it].

Example (2) is ungrammatical, so it would seem that the types of the coordinated phrases
should be identical, and be the same as that of the whole coordinated complement of
the verb "hire", which requires a noun-phrase object complement. But certain verbs,
used very frequently, do not require this strict identity. The verb "become" allows either
noun-phrase or adjective-phrase arguments, while "to be" allows prepositional and verb
phrase arguments in addition. In fact, these arguments can be intermixed, as in (3,4).

(3) Pat has become [NP a Republican] and lAP very stingy].
(4) Pat is [AP healthy] and [pp of sound mind].

(See (Shieber, 1989) for sources and further discussion of these examples.)
The "identity view" of coordinate conjunction might be expressed by a schematic rule

like the following:
E ::-~- C AND D

E'-C

E'=D

requiring that the type of the phrase E be identical with that of both its constituents.
However, the "polymorphic view" would suggest instead a rule like

E : : - C AND D

E ~ C
E E D

which, given appropriate feature structures for the phrase types involved, and feature
requirements of the verbs "to be" and "become" would allow the intermixed sentences
to be grammatical.t

There is much more to the story of feature algebras. They are being used as a basis the
formal semantics of the programming language LIFE, by Ait-Kaci and Podelski (1991).
Here feature algebras appear generalized in an order-sorted framework. The reader can
find another generalization and a characterization of the subsumption relation in our
conference article (D6rre & Rounds, 1990). Here we again treat an order-sorted version,
using the work of Smotka (1988), and a logical characterization of the subsumption
relation extending the characterizations in (Rounds & Kasper, 1986). These results show
explicitly how the subsumption relation corresponds to an information-theoretic ordering.

4. Undec idab i l i ty resul t s

We now turn to the technical results. We first prove our undecidablility results for
feature algebras. In Section 5, we further reduce the problem to the semiunification
problem for so-called rational terms. We have to leave unsolved, however, the existence
of an algorithm to find path-finite solutions (this is essentially the original semiunification
problem; it has just been shown undecidable by Kfoury et al. (1990)).

t Shieber uses a technically different not ion of subsumpt ion t han we do.

Subsumption and Semiurtification in Feature Algebras 449

4.1. CONSTRAINTS

To begin, we assume that we have an infinite set X of variables written as x, y and so
forth. Then a constraint is a piece of syntax having one of the forms

zp "-" yq, zp "-- a, zp E yq

where p and q are paths, i.e., elements of L ~ and a E A. A clause is a finite set of
constraints of the above forms. Given a feature algebra ,4, an assignment is a mapping

of variables to the elements of A. The solutions in a feature algebra A of a constraint
@ are those assignments o~ which satisfy the constraint in the expected way:

(,4,) "- yq

(,4, xp -

(.A, c~) ~ zp U_" yq

iff o r (z) / t = a(y)q "4 ;
iff a(x)p -'t = a "t ;

iff ~(x)p A E a(y)q a,

An assignment is a solution in .,4 of a clause C iff it is a solution for all constraints in C.
A clause is satisfiable if it has a solution in some feature algebra, and finitely satisfiable
iff i t has a solution in some finite feature algebra.

We now state the semiunification problem for feature clauses:

Given finite L and A, and a clause C over these alphabets, is C satisfiable?

The finite semiunification problem asks the same question about finite satisfiability.

THEOREM 1. Both lhe semiunification problem and the finite semiunification problem
are undecidable.

Proof. We use a result due to Gurevich (1966), which is that the word problem for
finitely generated finite semigroups is undecidable. We reduce this problem to the finite
semiunification problem. (The same proof works to reduce the well-known word problem
for arbitrary semigroups to the arbitrary semiunification problem.) The original use of
th is technique is due to Schmidt-Schaul3 (1989), who used it to show that subsumption
in KL-ONE is undecidable (note, however, that this use of subsumption is not the same
as ours,)

The word problem for finite semigroups is the following. Given a finite alphabet E,
consider the class r of finite semigroups finitely generated by E. Let E be a finite set
of equations si = tl, i = 1 , . . . , n, where the sl and ti are nonempty strings over E. Let
s -- t be another such equation; then the word problem is to determine whether or not
every semigroup in F satisfying all the equations in E also satisfies the equation s = t.

Suppose therefore that a system of equations E over some finite alphabet E is given,
together with a test equation s = t. We first choose our feature alphabet to be the
a lphabet

L = E U { k }

where k is not in E. We also choose two distinct constants a and b.
We construct a clause CE from E as follows:

1. For each f E E, add the constraint z U z f to CE;

2. For each equation sl = ti in E, add a constraint zs~ - ztl;

,150 J. DSrre and W. C. Rounds

3. Add the constraints z ~ y, ysk - a, and ytk - b to CE.

W e claim that C~ has a solution in some finite feature algebra if and only if there is
a f in i te semigroup satisfying every equation in E but not the equation s -- t.

T o verify this claim, we first establish two easy lemmas.

LEMMA 1. Let A be a feature algebra satisfying the constraints (1) fo r each element
f E ~2, and let ot be a solution. Then a (x) p "~ ~ f o r any p E E +.

Proo f . First let us unclutter our notation by dropping the explicit mention of the
a s s i g n m e n t c~ and the superscripts ,4. To prove the lemma, use induction on the length
o f p. I f this length is 1, the constraints themselves give the result. In the inductive
ease , p = f q for some string q. We know that there is an endomorphism 3' such that
a: 7 -- a:f. By the definition of homomorphism, then, zq7 = z' /q = z f q = zp. Therefore
in pa r t i cu l a r xp ~ . This completes the proof.

In the next lemma, we continue with the uncluttered notation.

LEMMA 2. Under the same hypotheses on the feature algebra, let u, v be any strings in
~,* a n d let p E ~2". I f z u = xv in A , then also z p u = zpv in A .

Proo f . Again by induction on the length ofp. The case of length 0 is trivial. Suppose
t h e n t ha t p = f q and that zqu = zqv . Since x E z f , we have that as in Lemma 1 a:q3' =
x p for some homomorphism 7. We have zqu3' -" zqTu -- xpu, and zqv3" = ;eq3"v = zpv .
B u t x q u -- zqv, so this completes the proof of the lemma.

Now let us re turn to the main proof. Suppose first there is a finite algebra -4 satisfying
(1), (2), and (3) of CE. Construct a finite semigroup S as follows. Let J be the set
{ z P "t I P E ~+}. Then J is a subset of D "a and so is finite. The collection of all
pA res t r ic ted to J is a finite semigroup S under composition, where p is an arbi t rary
n o n e m p t y composit ion of interpreted features in ,4. Now the constraints (2), together
w i t h L e m m a 2, imply that S satisfies the equations in E. (The conclusion of Lemma 2
j u s t says tha t S works in exactly the right way as a semigroup of functions.) Now if S
sa t i s f ied the equation s = t, we would have in part icular that zs = xt in .4. But now
a: C y in .4, which implie s that ys = yt in A, impossible in view of the constraints (3).
T h u s the constructed semigroup satisfies the equations in E but not the equation s = t.
T h i s completes the first par t of our claim.

F o r the second part , suppose there is a finite semigroup 23 satisfying everything in E
b u t n o t s = t. Const ruct a finite feature algebra A as follows. First adjoin an identi ty
e to S if one is not there already. We will still call the result S. Now let S 1 and S 2
b e i somorphic disjoint copies of S. Let a and b be two extra atomic elements. Then
D ~t = S 1 U S 2 U {a, b}. Let us write f l and f2 for the elements corresponding to f in
S 1 a n d S 2, respectively, and let a string of symbols with a superscript, s i, denote the
p r o d u c t of the corresponding elements in S i , i = 1, 2. Now, for each f E E define (s i) f "4
t o b e the product s i . f l in S i , i = 1, 2. Let s and t be the strings in the given test
e q u a t i o n s = t, and let s 2 and t 2 be their values in S 2. Then set s2k ~ = a and t2k "4 = b.
Since s 2 r t 2, this is possible. Now we check that .4 satisfies the constraints of CE. Map
2r to e x, and y to e 2. For u in S 1, and f E E, the mapping sending u to f - u in S x is an
r mapping e to f , so (1) is satisfied. (2) is satisfied because S x satisfies
E . As for (3), the mapping sending u 1 E S 1 to its copy u 2 E S 2 is an A-endomorphism
v e r i f y i n g z U y, and we have already satisfied the last two constraints. This proves the
t h e o r e m .

Subsumption and Semiunifieation in Feature Algebras 451

4.2. R]~LATED UNDECIDABLE PROBLEMS FOR FEATURE ALGEBRAS

Here we state two further undeeidability results following from the same technique that
we used in Theorem 1. Notice first that if a feature constraint is satisfiable, say in a finite
algebra, then it is satisfiable in an infinite one obtained by adding arbitrary elements to
the domain, unconnected to the original elements. We might, however, be concerned
with the existence of an infinite "reachable" solution. So we define the cardinality of a
solution o~ of a clause C to be the cardinality of the set

U{Ext(c~(x)) I x is a variable of C}.

We will show that it is undecidable whether or not a clause C has a solution of infinite
cardinality. To do this we use a classical word problem undecidability result due to Adjan
(1955) and also to Rabin (1958). To state the result fully we need some definitions. Say
that a class of groups T is invariant iff for any groups G and H, if G E P and H is
isomorphic to G, then H E T. The class P is nontrivial iff there is a group in F and a
group not in T. Finally, T is hereditary iff whenever G is in F, and H is a subgroup of G,
then H is in T. The Adjan-Rabin theorem, a kind of Rice's theorem for word problems
on groups, reads as follows.

THEOREM 2. (ADJAN-RABIN) Let r be an invariant, nontrivial, and hereditary class of
groups. Then there is no algorithm to determine, given a finite presentation of a group
G, whether or not G E r.

For this theorem~ a presentation is just a finite set of words in the generator symbols
and their inverses, which intuitively rewrite to the identity. For groups~ we can consider
the smallest normal subgroup of the free group over the generators, containing the words
in the presentation. The quotient group is the group G presented by the given set of
words.

Now for our application, we have to consider a modified version of the Adjan-l:tabin
theorem, stated for monoids. This time, a presentation is a set of equations in the
generators, as in the word problem for semigroups above. However, we also allow an
equation s = e, where s is a string of generator symbols, and e denotes the identity
of the monoid. The monoid ME presented by the set of equations E is the collection
of equivalence classes of words under the congruence relation --, which is the reflexive,
transitive closure of the usual rewriting relation on ~" given by the equations E. Our
modified restatement of the Adjan-Rabin theorem is as follows.

LEMMA 3. Let T be an invariant class of monoids, such that the class of groups in T is a
nontrivial and hereditary class of groups. Then there is no algorithm to determine, given
a finite presentation of a monoid M, whether or not M E T .

Proof. We simply reduce the Adjan-Rabin decision problem to this one. Given a
group presentation P, construct the set of equations Ep (over the expanded alphabet
containing generator symbols and their inverses.) Add the equations which state that
j r - 1 = e for the generators f. These equations induce a congruence relation (on the
expanded alphabet) in the usual way, and the congruence classes have a group structure;
this group (say G) is the monoid defined by the presentation, and is of course isomorphic

452 J. DSrre and W. C. Rounds

to the group defined by the group presentation. Let F ~ be the set of groups in P. Then
G is in r if and only if it is in P~, so the Adjan-Rabin theorem gives us our result.

Now let us state our application.

THEOREM 3. I t is undecidable whether or not a clause C has a solution of infinite car-
dinality.

Proof. We take the class F to be the class of finite monoids in the modified Adjan-
Rabin lemma. Clearly r satisfies the hypotheses of the lemma. It follows that, given a
set of equations in the generators of a monoid, it is undecidable if the presented monoid is
finite or not. Given the presentation E, we build a constraint system C~ as in Theorem 1,
but more simply. Cs consists of the constraints (2) used to define the monoid together
with the constraints (1).

Let ME be the monoid defined by the presentation E. We claim that Ms is infinite
if and only if there is a solution of CE of infinite cardinality. To see this, proceed as in
Theorem 1. Suppose there is a solution to CE of infinite cardinality; that is, there is a
feature algebra .A and an assignment o~ such that J = Ex t (a (x)) is infinite, where x is
the single variable of Ca. Now J is by definition

a Iv e L' aria

Since this set is infinite~ the collection of all p.4 restricted to J must be an infinite
monoid M under composition, where p is an arbitrary nonempty composition of inter-
preted features in ~4. As in Theorem 1, M satisfies the equations E. But then M is a
homomorphic image of Ms, because Ms is initial in the variety of monoids generated
by ~ and satisfying the equations E. So Ms is infinite.

Conversely, if ME is infinite, we make it into a feature algebra as in the second half
of the proof of Theorem 1. If we let ~(x)be the identity element of ME, then it is
straightforward to check that this provides a solution to Cs of infinite cardinality. This
completes the proof of Theorem 3.

We close the section with a strengthening of Theorem 1.

THEOREM 4. It is undecidable whether or not a given clause has a solution in a finite
.feature algebra, even when subsumption homomorphisms are required to be injective.

Proof. We use the undecidability of the word problem for finite groups (Slobodskoi,
1981), and proceed as in the proof of Theorem 2, using the same reduction. (Note that
we are assuming the equational presentation of a group word problem, so that f f -1 -_ e
is always an equation.) We need to check that the proof works when all morphisms are
required to be injective.

As above, suppose there is a finite feature algebra ,4 satisfying (1), (2), and (3) of
CE. Construct a finite monoid S as follows. Let J be the s"et {xp ~t I P E ~*}. Then J is
a subset of D "a and so is finite. The collection of all p.4 restricted to J is a finite monoid
S under composition, where p is an arbitrary (possibly null) composition of interpreted
features in A. We need to show that in fact S is a finite group.

To do this, we will show that for each function f.a in S, where f is a feature, there
is a natural number m such that fm is the identity function e on J. This element is the
required inverse of f , and since S is generated by'the f functions, this will suffice.

Subsumption and Semiunification in Fvature Algebras 453

We show that for each function f , there is an integer m such that ~:fm = z, where x
is tha t element of D "a interpreting the variable x of Cg. By lemma 2, this equation will
hold for any element of J reachable from x, which is what we want. Now since J is finite,
there are integers j < k such that xfJ = x f k. Since x _E x f , we have for some injective
morphism 7, x7 = x f . By induction,

~'yJ = x f j = x f ~: = X~ 'k

whence zTk-JT: = x7 j . But 7 j must be injective, so z7 k-j = z. Thus

x f k-j = z7 ~-j = z

so we may choose m = k - j . This completes the proof that S is a finite group.
Now we may proceed as in the proof of Theorem 1. The first part of the reduction

g~oes just as in that theorem. For the converse, notice if S is a finite group satisfying the
equations E, then the morphisms defined in the second part of the proof of Theorem 1
are all injective. This completes the proof of Theorem 4.

A consequence of this theorem, as indicated in the next sections, is that the semiuni-
fication problem for rational terms remains undecidable even if all "matching substitu-
tions" are required to be one-to-one. We do not know if this result holds for first-order
terms or not.

4.3. CANONICAL ALGEBRAS

We say that a feature algebra B is canonical for arbitrary solutions iff for every clause
C, we have that C is satisfiable if and only if there is a solution to C in B. Similarly, we
define an algebra B to be canonical for finite solutions iff for every C, we have that C is
finitely satisfiable if and only if C is satisfiable in B. Note that in this case we do not
require B to be finite. However, the elements of B will usually have finite representations.

In this section we will show that the algebra of finite feature graphs is canonical for
finite solutions. In the next section, we will show that the algebra of rational trees also
has this property. An obvious corollary of Theorem 1 is thus that the semiunification
problem for these special feature algebras is undecidable.

Recalling the definition of Section 2, we define the finite feature graph algebra ~0.
The nonatomie elements consist of pairs (G, n), where G is a finite directed graph, and
n is a node of G. Again, nodes are taken from a fixed set N. Each arc is labeled with an
element of L, and no two outgoing arcs are labeled with the same element of L. Nodes
with no outgoing arcs may optionally be labeled with elements of A. As in the full feature
graph algebra, we interpret features f as follows: let (G, n) f be the graph (G, n f) , where
n f is the unique node of G pointed to by the arc starting at n and labeled by f , if it
exists, and if it is not labeled with an atom. If the node n f is labeled with an atom a
then we define (G, n) f = a. Atoms in this algebra are the elements of A themselves.
(From now on, we will assume that A, the set of atoms, is finite.)

One can think profitably of the elements (G, n) of ~r0 as (disconnected) transition
graphs for finite state machines, where n is the initial state. (One can also get a canonicity
result for an algebra of graphs where every node is reachable from the initial one.)

THEOREM 5. The feature algebra .To is canonical for finite solutions.

4S4 J. DSrre and W. C. Rounds

Proof. Let C be a clause. Put C into s~andard farm by adding new variables and
constraints as necessary. In the standard form, each constraint has one of the forms

x ~ y f , z - a , z ~ y , z - y

where x and y are variables, a is a constant, and f is a feature symbol. It will suffice
to show tha t ~0 is canonical for standard-form clauses. Suppose therefore that there
is a solution a to C in some algebra A. Define a graph G-a E .To as follows. For
the nodes, take the set D-a (in reality, an isomorphic copy of D-a in the fixed node
set N.) Put an arc f from the node d to node d I just in case d]-a = d'. Define the
solution fl(x) to be (G -4, o~(x)) if a(x) r a "a for an atom a; otherwise let fl(x) = a. It is
straightforward to check that fl satisfies all equational constraints of C. To show that fl
satisfies all subsumption constraints of the form x ~ y, proceed as follows. Let 7 be an
endomorphism of .4. Then ~' induces an endomorphism 70 of .To using the equations

a i fd 7 = a ~ for s o m e a E A ;
(G-a, d)70 -" (G "a, d7) otherwise.

Since cx verifies z ~ y, we have ~(x) U a(y) in .A. Let 7 witness this relation in ,4; clearly
then ~(x)To = fl(y), which is what we needed.

Conversely~ suppose there is a solution fl to C in :To. Define a finite feature algebra
,4 as follows: take

D "a = AtJ {(G,m) l (~n)((G,n) = j3(x) for some variable x of C) }.

,4 is to be a finite subalgebra of.T0; so we define (G, m) f "~ = (G, m f) i f m f is nonatomic,
and (G, m)f-a = a if m f is labeled with the atom a. We can then take the solution o~ = 8.
This completes the proof of the theorem.

5. T h e semiuni f ica t ion p rob lem for ra t iona l t rees

Theorem I also implies that the semiunification problem for rational trees is undecidable.
Before we state this problem, we say what these trees are, and discuss notations for them.
Then we state the semiunification problem (using the presentation in (LeiB, 1988)), and
prove that it is undecidable using a series of reductions from the finite semiunification
problem for feature algebras. Most of this is straightforward, but it shows precisely
how to relate feature algebras with terms, encoding feature information using argument
positions.

5 . 1 . I:~ATIONAL TREES: DEFINITION AND NOTATION

Let ~ be an ordinary finite ranked alphabet, and X a countable set of variables. We
consider T-labeled, ordered infinite trees. Each node labeled with an n-ary operator
symbol has n descendants. Leaf nodes may be labeled with 0-ary symbols, or with
variables. We say that a tree is rational if it has only finitely many nonisomorphic
subtrees. Rational trees are also called cyclic terms. Let /~T(~.,X) denote the set of
rational trees.

There are a number of differing notations for representing these trees; we use one like
that used by Colmerauer (1988). We explain the notation informally.

Subsumption and Semiuniflcation in Feature Algebras 455

Consider the equation

z - , (z) (1)

where a is a unary function symbol. This equation defines a rational unary tree consisting
o f one infinite path with each node labeled By a. We also can use the notat ion ~t.a(t), a
kind of fixed-point formula, to be the unique tree t such that t = a(t), up to isomorphism,
o f course. This notation takes into account the fact that in equation (1) the variable z
really occurs bound. Now we also notice that the equational representation of a tree need
no t be unique, as in (2, 3).

= (2)

y = (3)

Here, the system defines the same term for x as does (1). Without getting into details,
i t is fairly clear that we can always decide if two equation systems repre~nt the same
rat ional tree.

A more complex example is (now ~ is a binary function symbol):

= (4)

= (5)

In this case, there is a free variable xl involved; but the variables z and z are bound.
T h e equations (4, 5) are equivalent to the single equation

=

T h e tree represented By these equations has leaf nodes labeled with the variable x l . It
m a y also be denoted #t.a(t, zl) which makes explicit the bound variable.

We will generally use solved-forra systems of equations as in (4,5) to define rational
trees. In this form, only variables occur on the left side of a system, and no variable will
occur there more than once. Such variables will Be considered Bound in the system.

5.2. I~ATIONAL TREES AS A FEATURE ALGEBRA

We make RT(~ , X) into a feature algebra just as in the first example of Section 2. Once
again, feature i picks out the i-th immediate subtree of a given tree. If ~ is finite then
so is the feature alphabet. We will be interested especially in the case where E has just
one n-ary function symbol, for some n >. 1, and a finite collection A of 0-ary atomic
symbols. We will call the corresponding feature algebra 7r In this case the feature FUN
is uninteresting (!), so we do not define it.

The notion of substitution makes sense for rational trees as well as for ordinary terms.
Substitutions are specified by assigning rational trees to variables in the usual way; these
assignments then extend to the full domain R T (~ , X) as expected. We will use the
letters /~, S , . . . for substitutions. If t and u are in RT(~., X) , we say that t ma~ches if,
written t _~ u, if there is a substitution T such that T(t) = u.

EXAMPLE 1. Consider the solved-form equations

= (7)

z = (8)

456 J, D6rre and W. C. Rounds

Here, the t e rm defined as the value of x is different f rom the term defined as the value
for z, because zl and z2 are differing free variables. But if we make the substitution
T(z l) = x2 and T(x2) = xi in (7,8), we get a system

= ~(z, ~) (9)

z ---- o'(x, xl). (i0)

in which the equation for z (10) defines the same term as equation (7) in the previous
pair (7,8). So if t is defined to be the solution for x in (7,8), and u is the solution for z
in the same system, then t matches u.

REMARK 1. In ~ n , as well as in RT(E ,X) , notice that t < u if and only i f t C u.
Further , this remark holds when feature morphisms and substitutions are injective.

5.3. THE SEMIUNIFICATION PROBLEM FOR RATIONAL TREES

Moving to the semiunification problem itself once again, we first recall the statement of
the semiunification problem for ordinary terms (Henglein, 1988).

Consider a system C of equations and inequalities between first-order terms, using
different inequality symbols <:I,..., ~m. We say that a substitution R is a semiunifier
for C if

�9 R(8) = R(t) for each equation s = t in C;

�9 There are residual substitutions T t , . . . , Tm such that ~ (R (s)) = R(t) whenever
s ~i ~ is in C.

For rat ional trees, we will have to make a slightly different presentation, because each
tree is itself given by solved-form equations as above. The details of this presentation
are straightforward; the system C will be a set of equations and inequalities between
variables, each of which is the leading variable of the appropriate solved-form system of
equations, t

The semiunification problem for rational trees is to decide, for a finite system C,
whether or not it has a semiunifier.

EXAMPLE 2. Consider the system consisting of one inequality z <_ a(z). (Here a is a
unary function symbol.) We can take R to be the identity substitution and T to be the
substitution x ~-~ a(x).

EXAMPLE 3. The reverse system a(x) <_ x has no semiunifier in acyclic terms, but
does have one in rational trees, namely/~, mapping x to pt.a(t). In this case the residual
substitution is the identity.

5.4. THE REDUCTIONS

From now on, we will assume that our feature alphabet L and the atom alphabet A are
finite, and tha t L has n symbols. We also fix the set X of variables. X will be used both
to s ta te fea ture constraints and to serve as the variable set in rational trees.

tit will actually turn out that the semiunification problem is undecidable, even if cyclic terms do not
appear in the presentation of the constraint system C, so we do not need to worry about the official
presentation.

Subsumption and Semiunification in Feature Algebras 457

For our first reduction, we take a system C of feature constraints and, as in Theorem 5i
pu t it into standard form where each constraint looks like one of

x - - y f , x - a , x ~ y , x "--y

where z and y are variables, a is a constant, and f is a feature symbol. It is clear tha t
this transformation preserves the finite solution property, and from now on, clauses will
be in this form.

Next, let n be the size of L. We say that a feature algebra is n-s ty iff for each d in
the domain, either d has all n features defined, or d has no features defined. Notice that
TC-n is n-ary.

LEMMA 4. A system of constraints over A and L has a solution in a finite fealure algebra
i f and only if it has a solution in an n-ary finite feature algebra.

Proof. The "if" direction is trivial, so suppose that C has a solution in a finite feature
algebra. For each element d with a feature defined at it, suppose that the feature g is
no t defined. Adjoin a distinct new element re(d, g) to D, and let d g = re(d, g) in the
new algebra. The new algebra is finite and n-ary. Clearly the equational constraints in
C still hold in the new algebra. It is also straightforward to check that each morphism
mapping d to e can be extended to a morphism of the new algebra, so that subsumption
constraints still hold. This completes the proof.

LEMM& 5. Let C be a standard-form clause over A and L. Then we may effectively find
a standard-form clause Cn over the feature alphabet In = { 1 , . . . , n } such that C has a
solution in a finite n-ary algebra over A and L iff Cn has a solution in 7~,~, where the
constant symbols are taken from A.

Proof. Let C be a standard-form clause over the finite alphabets A and L. Let
L = { f i , . . . , fn}. Replace each occurrence of a feature fl occurring in constraints of C
by the feature i. This defines the clause Ca.

Suppose that C has a solution a in a finite n-sty algebra ,4. Build a finite feature
algebra .41 isomorphic to A as follows. Replace the 0-ary nonconstant elements in D ~t
by distinct variables taken from X and (for safety) different from the variables used in
the constraint C. (We also may assume that the domain D a is disjoint from X.) By
abuse of notation, let a be the solution to the clause C in ,41. We construct a solution
fl to the constraint Cn in 7~n. To define fl(z), consider a (x) . The set E z t (a (x)) is
the set of states of a finite-st.ate machine with initial state a(~), transitions f rom the
alphabet L, and with terminating states (no outgoing transitions) labeled with variables
or constants. Unroll this machine into an infinite tree in the standard manner, labeling
the interior nodes with the n-ary function symbol or, and replacing the arc label f~ with
the arc label i. In this manner we get a rational tree in 7~n, and this tree will be/~(z) .
More generally, we can take any element d in the domain of .41 and unroll it into a
rat ional tree U(d); thus in particular fl(x) = U(o~(x)). It is not hard to check that fl
satisfies the equality constraints of Ca, so let us check the subsumption constraints. We
show that if d E e in At, then U(d) E U(e) in 7~,~. Since the subsumption constraints
are of the form z E y, this will suffice. By Remark 1, we need only show that if d _E e,
then U(d) <_ U(e). Suppose 7 is a morphism taking d to e. Let z be a 0-ary nonatomic

458 J. DSrre and W. C. Rounds

element of Ext(d); then 7 is defined at z. Consider the substitution T(z) = U(zT). We
have T(U(d)) = U(e)~ as desired.

Conversely, suppose fl is a solution to Ca. Define a finite n-sty algebra ,4 as follows;
For D ~t take A together with all possible subtrees of fl(z), as z ranges over the variables
of the constraint Ca. Since the trees are rational, D is finite. Let u f (a = ui if this is
defined in the tree algebra. Then obviously a(x) = /~(~) is a solution to C, and A is
n-s ty because 7~n is. This completes the proof.

A consequence of the preceding lamina is that, modulo a slight change of feature
alphabet, the algebra of rational trees is canonical for finite solutions. Also, it is easy
to check tha t the lemma holds when the morphisms and substitutions are injective. But
now let us continue with our final reduction.

LEMMA 6. Let Cn be a standard.form system over At and In. Then we may effectively
transform Cn into a presentation Pn of the semiunifica~ion problem for rational terms,
such ~ha~ Cn has a solution in T~n iff Pn has a semiunifier.

Proof. Let Cn be a standard-form feature clause. We construct the presentation Pn
as follows: For each constraint of the form x - a or z - y of C, , add the same equation
to Pn. For each subsumption constraint z E y, add an inequality z <q y to In , where
q is a new integer each time. Let r be a constraint in Gn of the form z - yi. Then for
j # i let x(~b,j) be a new variable, distinct from all variables for other constraints and
from the variables in the clause C. Add the equation

u = i), x , . . . , n))

to P , , where the variable z occurs in position i on the right. This completes the con-
struction; we claim that C', has a solution iff Pn has a semiunifier.

To prove the claim, suppose first that Cn has a solution a. Then we may take R(z) ,
the semiunifier, to be a (a) if x is a variable of C, , and R(z(r to be a(y) j , where
is the constraint ~ --- yi. Since 7~n is n-ary, this is well-defined. Observe that the values
of R are rational trees. To check that R is a semiunifier, first notice that the trivial
equations of Pn are automatically verified. Now consider an equation of the form

Y = a(~(r i) , . . . , z , . . . , ~(r n)).

We know ~(y) i = o,(~.) because a is a solution in 7Z,. The desired conclusion thus follows
from the identi ty

a(y) = , (a (y) l , . . . , ~(y)i, . . . , a(y)n).

Finally, consider a subsurnption constraint z <i y. We know that in 7~ , a(a') E a(y).
Therefore a (x) < o~(y) as rational trees, i.e., there is a substitution T mapping ae(x) to
c~(y), and thus R(x) to R(y) as desired.

For the converse, given the semiunifier R, we may take the solution a~(z) = / ~ (z) for
each variable z of the constraint system. It is immediate to' check that a is a solution,
so this completes the proof.

Now the foregoing lemmas, together with Theorem 1, imply the principal result of
this section:

THEOREM 6. The semiunification problem for rational trees is undecidable.

Subsumption and Semiunification in Feature Algebras 459

REMARK 2. The same method shows that the semiunification problem for arbitrary
trees is also undecidable; just apply the "arbitrary feature algebra" version of Theorem 1,
and carry out the same proofs, Finally, the method works in the case when all matching
substitutions and endomorphisms are required to be one-to-one. This requires check-
ing that the lemmas used in the reductions still hold~ and using Theorem 4 instead of
Theorem i.

We close the section with an example of the total construction.

EXAMPLE 4. Consider the feature constraint used in the proof of Theorem I, derived
from the semigroup Z2, the two-element cyclic group. This group is generated by one
element f, subject to the equation]2 = e. The equation f - e fails in the group (e is
the identity.) The equation p - e yields the feature constraint zf 2 = z. So for the total
feature constraint system we have

z _U z;

z f = z ;

z . f = z ;

z E Y ;

y k = a ;

y f = w ;

w k = b.

We have expanded the Cs clause to standard form. Converting to a presentation of the
semiunification problem for rational trees, we get

z ~I z;

x = a (z , x l) ;

z = a (~ , z _ ~) ;

z <:2 y;

y = a (l l , a) ;

y = a (w , z ~) ;

w = , r (t2 , b).

Our function symbol a is binary since we have two feature symbols f and k in our
alphabet. If we draw the finite-state machine for the solution to the feature clause,
it is fairly easy to write down the semiunifier R. In the example, we have R (z) =

~a.~(~(~, z2), xl), n (y) = ~t.~(~(~, b), a), T1(~1) = ~2, T~(zx) = a, and T 2 (~) = b.

6. Conclusion

We think that the setting of the semiunification problem for finite feature algebras is
perhaps a more natural way to state the problem than for cyclic terms. Certainly the
presentation of the problem is simpler, as is the proof of undecidability. This suggests
looking at other unification problems in the feature algebra setting. For example, unifi-
cation modulo equational theories might have interesting properties.

460 J. D~rre and W. C. Rounds

Our technique does not apply to the original semiunification problem, because it
makes essential use of the cyclic property. However, Kfoury, Tiuryn, and Urzyczyn
(1990) have shown that the original problem (for path-finite feature algebra~) is also
undecidable. Their proof uses a very different technique, and one project might be to
phrase their results using feature theory. Along this same line, Paris Kanellakis has cMled
our attention to work by Mitchell (1983), and Cosmadakis and Kanellakis (1985), which
shows that the inference problem and finite inference problem for mixed functional and
inclusion database dependencies are both unsolvable. The techniques used resemble very
much the techniques used to solve the two cases of the semiunification problem, though
both our reduction and that in (Kfoury et al., 1990) are different from the ones used in
these papers, Perhaps feature theory could be used to help understand the full story.
We do feel that it is a worthwhile tool for attacking these and similar questions.

References

Adjan, S. I. (1955). The algorithmic unsolvability of problems concerning certain properties of
groups. Dokl. Akad. Nauk. SSSR, voI. 103, 533-535 (l~ussian).

Aft-Kaci, H., and Nasr R. (1986). Logic and Inheritance. In Proc. 13th ACM Symposium on
Principles of Programming Languages, 219-228.

A~t-Kaci, H., and Podelski, A. (1991). Towards the meaning of LIFE? PaL Research Report
11, Digital Equipment Corporation.

Barwise, Jan (1989). The situation in logic. CSLI Lecture Notes 17, Center for Study of Lan-
guage and Information.

Colmerauer, A. (1988). Prolog and infinite trees. In Clark and Tarnlund, eds. Logic Program.
ruing, 231-251, Academic Press.

Cosmadakis, S., and Kanellakis, P. (1985). Equational Theories and Database Constraints, In
Proc. 15th ACM Syrup. on Theory of Computing, 273-281.

Dfrre, J. (1990). Feature Logic with Weak Subsumption Constraints. IWBS report 101, IBM
Deutschland, Stuttgart. (To appear in Proceedings o] ~9th Annual Meeting o] the A CL,
Berkeley, CA, June 1991.)

D6rre, J,, and Rounds, W. (1990). On Subsumption and Semiunification in Feature Algebras.
Proceedings of Fifth IEEE Symposium on Logic in Computer Science, 300-310.

Henglein, F. (1988). Type inference and semi-unification. In Proe. 1988 ACM Conference on
LISP and Functional Programming , Snowbird, Utah, 184-197,

Henglein, F. (1989). Polymorphic type inference and semi-unification. Tech. Report 443, New
York University.

Hindley, R. (1969). The principal type scheme of an object in combinatory logic. Transactions
of the AMS 146.

Gurevich, Y. (1966). The word problem for certain classes of semigroups. Algebra and Logic
vol. 5, 25-35 (Russian). A proof also appears in Gurevich and H. Lewis, The word problem
for cancellation semigroups with zero, in Journal of Symbolic Logic vol. 49, no.l, 184-191,
1984.

Johnson, Mark (1988). Attribute-value logic and the theory of grammar. CSLI Lecture Notes
16, Center for Study of Language and Information.

Kfoury, A. J., Tiuryn, J., and Urzyczyn, P. (1989). Computational consequences and partial
solutions of a generalized unification problem. In ~th Annual Symposium on Logic in
Computer Scie1~ce, 98-105.

Kfoury, A. J., Tiuryn, J,, and Urzyczyn, P. (1990). Undecidability of the semiunification prob-
lem. In Proc. 2$nd A CM Symposium on Theory of Computing.

Subsumption and Semiunification in Feature Algebras 461

Leifl, Hans (198S). On type inference for object-oriented programming languages. In E. B6rger,
If. Kleine-B~ning, and M. Richter, eds., CSL '87. Ist Workahop on Computer Science
Logic. Springer LNCS 329, 151-172.

Milner, R. (1978). A theory of type polymorphism in programming. Jour. Comput. ~ys. Sci,
17, 348-375.

Mitchell, J. C. (1983). The Implication Problem for Functional and Inclusion Dependencies,
Information and ControlS6,3, 154-173.

Moshier, M. (1988). Eztenaions to Unification Grammar for the Description of Progrumming
Languagea. Ph.D. thesis, University of Michigan.

Robin, M.O. (1958). The recursive unsolvability of group-theoretic problems. Ann. Math. vol.
67, 172-194.

Rounds, W., and Kasper~ 11. (1986). A complete logical calculus for record structures repre-
senting linguistic information. In 1st Annual S~mposiurn on Logic and Computer Science.

Schmidt-SchauB, M, (1989). Subsumption in KL-ONE is undecidable. Proceedings of First
International Con]erence on Principles of Knowledge Representation and Reasoning,
Toronto, 421-431.

Shieber, Stuart (1987). Introduction to unification.based approaches to grammar. CSLI Lecture
Notes 4, Center for Study of Language and Information.

Shieber, Stuart (1989). Parsing and type inference for natural and computer languages. Ph.
D. thesis, Stanford University, March 1989. Also appears as SKI Technical Note 460, SRI
International.

Slobodskoi, A.M. (1981). Unsolvability of the universal theory of finite groups. Algebra and
Logic vol. 20, 139-156.

Smolka, Gert (1988). A feature logic with subsorts. LILOG report 33, IBM Deutschland. (To
appear, Journal o/Automated Reasoning.)

