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Feature 

We consider a generalization of term subsumption~ or matchingj to a class of 
mathematical structures which we call .feature algebras. We show how these gen- 
eralize both first-order terms and the feature structures used in computational 
linguistics. The notion of term subsumption generalizes to a natural notion of 
algebra homomorphism. In the setting of feature algebras, unification corre- 
sponds naturally to solving constraints involving equalities between strings of 
unary function symbols, and semiunification also allows inequalities rep~esentiltg 
subsumption constraints. Our generalization allows us to show that the semiu- 
nification problem for finite feature algebras is undecidable. This implies that 
the corresponding problem for rational trees (cyclic terms) is also undecidable. 

1. I n t r o d u c t i o n  

Feature algebras are a generalization of a number of notions in artificial intelligence, espe- 
cially knowledge representation schemata like frames and records; the feature structures 
in computational linguistics, which are used heavily in unification-based grammar  sys- 
tems, and the usual first-order terms in logic and logic programming, which are used as 
encodings of objects bearing information. They make explicit the no~ion of at tr ibute and 
value in a particularly simple way. The simplicity and generality of the notion of feature 
algebra allows us to show easily that a case of the semiunification problem is undecidable, 
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settling one part of this formerly open problem. While this is the principal technical re- 
sult, we would suggest that the algebraic problem-solving and mathematical modelling 
techniques associated with this class of structures comprise the major contribution of the 
paper. 

To expand on this a bit, we think that the setting of the semiunification problem for 
feature algebras may be a more natural way to state the problem than for terms. We get 
both a natural presentation of both the cyclic and acyclic cases of the problem, and a 
short proof of undecidability in the cyclic case, using a reduction from the word problem 
for finite semigroups (Gurevich, 1966). Our technique does not apply to the original 
semiunification problem, a~ stated, for example, in (Leifl, 1988) or (Kfoury et al., 1989), 
because it makes essential use of the cyclic property. However, Kfoury, Tiuryn, and Urzy- 
czyn (1990) have shown that the problem as stated for ordinary terms is also undecidable, 
Their proof uses a very different technique; namely, a reduction from the boundedness 
problem for Turing machines. Comparison of the two proofs suggests that the two cases 
of the problem are themselves very different; neither undecidability result implies the 
other. What  seems to be an obstruction for an algorithm trying to decide an instance 
of the acyclie case is the so-called "occurs check", the need to detect the case when a 
solution would possibly become cyclic. So, the reduction in (Kfoury et al., 1990) does 
not need to use constants, and it fails for the cyclic case of the problem. Our reduction, 
on the other hand, must use constants, because otherwise there is always a trivial cyclic 
solution. Our proof thus shows that even if terms can be cyclic, the semiunification 
problem stays undecidable. 

In natural-language applications, one needs circular structures, because one can have 
self-referential sentences like the Liar, as well as self-referential type descriptors (for 
example, the type of person who is self-employed.) Our results therefore have bearing if 
one models subsumption for feature terms (C-terms of Ai't-Kaci (1986)) as we do here. 
However, it may be possible to get by with a weaker notion in the natural language case. 
If  one models subsumption not by using functions (see below), but by using relations, 
then the semiunification problem becomes decidable. This result appears in DSrre (1990). 

Our paper is organized as follows. Section 2 contains basic definitions. Here we 
use notation borrowed from an unpublished draft by Gert Sm~lka. Our definition of 
subsumption owes much to his work on feature logic (Smolka, 1988), which is a version 
for arbitrary domains of the original Kasper-Rounds logic (Rounds & Kasper, 1986) for 
the domain of feature structures. Mark Johnson (1988) and Smolka had the idea to 
introduce these domains, and the present paper works out some of the consequences of 
this insight. The mathematical model provides us with some powerful new tools, in that  
the algebraic and model-theoretic techniques can be combined to prove what is actually 
a rather surprising undecidability result. 

Before we get to the details of this result, we present in Section 3 some motivational 
material showing how feature algebras arise in the context of analyzing natural languages 
and programming languages. The reader who is only interested in the technical results 
can skip this section, which is presented informally. This motivation includes a way (using 
feature constraints) of modelling both natural language and ML-style type inferencing 
problems, sketching material from Shieber's dissertation (1989). 

The undecidability results appear in Section 4, where we prove the undecidability of '  
the semiunification problem for finite feature algebras, and in Section 5, where we reduce 
this decision problem to a more standard one: that for rational trees. 
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2. F e a t u r e  a lgeb ra s  : Bas ic  de f in i t i ons  

We begin by assuming two disjoint alphabets L and A, called the sets of features and 
a~oms respectively. Features are unary function symbols, and atoms are atomic constants 
in our interpretation. Generally we use the letters f ,  g, h for features and a, b, c for atoms, 

A feature algebra A consists of a nonempty set D "4 and a function ..4 defined on L 
and A such that  

�9 If f is a feature then fA is a unary partial functiont on ]9"4; 

�9 a ~4ED " a f o r a E A ;  

�9 I f a c b t h e n a  - ~ r  

�9 No feature is defined on an atom. 

NOTATION. We write function symbols on the right, so that f(d) is writ ten dr. If 
f is defined at d, we write df ~, and otherwise df T. We use p, q, s , t  to denote strings 
of  features, and if we write an equation dp = eq it is intended that  the appropriate 
composed function is defined. 

EXAMPLES. The following are two canonical examples of feature algebras, though 
there are many others of interest. For other examples, see Sections 4.3 and 5.2. 

* THE TERM ALGEBRA "T(•, X). Let Y] be a ranked alphabet of function symbolst, 
and X a countable set of variables. The elements of T(X~,X) are first-order terms 
over X~ and X, together with the set ~3 itself. For the atoms of T(~, X) we take 
the elements of X~; i.e., atoms are the function symbols of all arities. The features 
are the natural numbers i, 2,..., and one extra feature FUN. Thc feature i gives 
us the ith argument term of a term, if it exists, and the feature FUN gives us the 
topmost function symbol of a term. This feature is not defined on variables. For 
example, we have (~(~, r(a), b))2 = r(,), and (~(~, ,(,), b))ru~ = ~, where, has 
rank 3, and v rank 1. 

�9 THE FEATURE GRAPH ALGEBRA .~'. The nonatomic elements of this algebra are 
pairs (G, n), where G is a (possibly infinite) directed graph, and n is a node of G. 
Nodes are taken from a fixed countable set; say the integers. Each arc is labeled 
with an element of L, and no two outgoing arcs are labeled with the same element 
of L. Nodes with no outgoing arcs may optionally be labeled with elements of A. 
In this algebra, we interpret features f as follows: let (G, n)f  be the graph (G, n f) ,  
where n f  is the unique node of G pointed to by the arc starting at n and labeled 
by f ,  if there is such an arc, and if n.f is not labeled with an atom. If the node n f  
is labeled with an atom a then we define (G, n)f  = a. Atoms in this algebra are 
thus just  the elements of A themselves. 

This last example is a bit complex; we want it because it gives us an easy way of 
generalizing ordinary terms to the circular case, and, in the case where the graphs are 
finite, of picturing the feature structures of computational linguistics. One can think of 

tThese functions will also be called features. 
SRank is the same as arlty. 
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graph-node pairs (G, n) as generalized terms, where n identifies the root node or head of 
the term, or as transition graphs for automata,  where n is the initial state. (An example 
feature graph appears in Section 3.) In addition, ~" is an example of a general algebra 
which is canonical with respect to various solution properties; see Section 4.3 for the 
notion of "canonical". 

In a general feature algebra, features are used to identify attr ibutes of objects in 
the domain.  Examples abound in computer science; in relational database systems, one 
has at t r ibutes  age, salary, and so forth. Slots in frame formalisms are another class of 
examples. The atoms in a general feature algebra are like atomic constants, and retain 
the syntactic flavor which they have in the term algebra and the feature graph algebra. 
In a sense, a toms give us constant types. In Section 5 we will consider a generalization 
of feature algebras, where atoms are more liberally interpreted, but our undecidability 
results can be formulated for the present version. 

Notice that  any nonempty subset of a feature algebra containing interpretations for 
all the a toms is again a feature algebra. (We could allow atoms to be partially interpreted 
so that  the above restriction was not necessary to make.) 

We say tha t  a feature algebra is finite if its domain is a finite set. Given a feature 
algebra .A and a point d E D ~t, the extent of d, written Ext(d), is the set 

{dP ~t I P E L* and dp "a ~ }. 

We say tha t  a feature algebra is path-finite if for each d, the set Paths(d) is finite, 
where Paths(d)  = {w E L* ] dw ~4 ~}. The semiunification decision problem in Section 4 
concerns finite feature algebras; the same problem for path-finite algebras is equivalent 
to the semiunification problem stated, say, in (Kfoury et al., 1989). The next definition 
introduces the key concept used to state these problems, and which is our real object of 
concern in this paper. 

A homomorphism between two feature algebras A and B is a partial map ~/between 
the two domains satisfying 

1. ( an )7  = a t~ for each atom a; 

2. For any d E D ~t and f E L, if d 7 I and df ~ 1, then dfA7 = dTf  B. (In particular, 
d7 f  s is defined.) 

If  7 maps ,4 to itself it is an endomorphism. 

DEFINITION. Let  .A be a fea ture  algebra. The subsumplion preorder E_ on ,4 is defined 
as follows: 

d~e ~ there is an endomorphism7:d7--e. 

We say tha t  d subsumes e. 

In our examples, one term subsumes a second iff the second is more instantiated than 
the first; s ta ted another way, the first matches the second. A feature graph subsumes a 
second essentially when the second has more arcs, and when it makes more identifications 
than  the first. (A feature graph identifies two paths when those two paths lead to a single 
node.) 
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3. Unif icat ion G r a m m a r s  and  Type  Inference  

Here we review the problems which naturally lead to the question of solving systems of 
constraints in feature algebras. The material on unification in natural language has a 
long history, and is reviewed in Shieber (1987). The connections between unification and 
type inference began with Hindley (1969) and Milner (1978). Henglein (1988) and Leifl 
(1988) showed a reduction of ML-style polymorphic type inference to semiunification 
for first-order terms. The paper by Kfoury et al. (1989) gives a proof that ML-style 
type inference with polymorphic recursion and the (acyclic) semiunification problem are 
recursively equivalent, as does Henglein (1989). Moshier (1988) showed for the first 
time how unification grammars from natural language studies could be applied to type 
inference in programming languages, and Shieber (1989) shows that in fact some weak 
forms of semiunification problems seem to occur in natural language itself, completing 
the connection. 

Our presentation of this material is taken from Shieber's very readable 1989 thesis, 
which treats both the programming and natural language cases, using feature structures 
as the bearers of information. We begin with the ML-style polymorphic type inference 
problem. Consider the problem of defining polymorphically typed expressions, as in the 
program fragment let f (~)  -" z in f(f)(3). This is a standard example of polymorphism, 
where the identifier f ,  of polymorphic type Vot.(~ --* c~), has been used twice, once as a 
function from ( I N T  --* I N T )  to ( I N T  --. I N T ) ,  and once as a function from I N T  to 
I N T .  Each of these uses is consistent with the polymorphic type, but incompatible with 
each other. The whole expression, however, is well-typed as an I N T  with value 3. 

Ignoring details of the let construct, and binding of variables, let us consider the usual 
type inference rule for functional application. 

E ~ - f : A - . - ~ R  E ~ - a : A  

E e / ( a )  : R 

It says the following: Given a function f of type A ---* R and an argument a of  type A 
we can conclude the resulting expression f (a)  of being of type R for a given environment 
E (a map assigning types to identifiers). 

Instead of using this rule directly, however, we encode it using features as a grammar 
rule in the style of Shieber's PATR-II (1987). 

ExprR ~ EzprF "(" EzprA ")":  

F type conslr "-" FUNCTION; 

F typearg "--A type; 
F type result - R type ; 

F env "-A env; 
R env " - A  env.  

It consists of a context-free rule describing the form of expressions as well as an associated 
feature clause which must be satisfied at the appropriate node of the parse treeJ The 
occurences of the nonterminal Expr  in the rule carry indices, which are best regarded 

t l n  this framework nodes of a parse tree hear a richer structure t h a n  only a symbol label  inc lud ing  
in  our case an  encoding of the type of the dominated expression. 
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int --eonstr  I I o n s t r  

int int 

Figure  1. An environment. 

as variables which are bound to the corresponding node of a parse tree if we apply the 
rule. We can thus require certain properties to hold at the different nodes using feature 
constraints over these variables. In the example, lype, conslr, arg, result, and env are 
features. The  first three constraints enforce the matching conditions in the rule, namely 
that the type  of F is a function, indicated with the a tom FUNCTION, whose argument and 
result types are identical to A's type and R's type, respectively. The last two constraints, 
using the feature  env, encode the sharing of the environment E among the three nodes. 

To be more precise, we assume the nodes of a parse tree to be elements of a feature 
algebra A which interprets the features and atoms appearing in the constraints. For a 
given parse tree we get - induced by the grammar rule applications which coristructed 
it - a collection of feature constraints over .its nodes. Now, the feature algebra ,4 has to 
satisfy this collection, i.e., for each "dotted equality" the left-hand side and the right- 
hand side have to  be defined and denote identical elements. Without  loss of generMity 
we can think of the elements of A as feature graphs, like in our example in Section 2. 
The types of expressions as well as environments are encoded in these feature graphs. 

For example, the graph in Figure 1 encodes an environment giving to the identifiers 
id and + the typings 

id : (Vc~)c~ ~ a, and 

+ : I N T  --, ( I N T  --, I N T ) .  

This environment,  or symbol table, would be available at the point of application of 
the above rule, through recursive uses of tlle last two constraints, which pass environments 
up and down a tree. In this case we postulate constant definitions of symbols like + and 
id, and use them as feature names. Then to round out this simple grammar,  we could 
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introduce the rule 
ExprA  - -~  w (w E ~)  

where E is a prespecified set of identifier names like id and +, to be used both as terminal 
symbols and as features indexing into the environment. 

To achieve ML-style type inferencing, this rule might be constrained by 

A ~ y p e  "-:-A ear w, 

corresponding to the traditional type inference rule 

= T 

E F ' w : T  

And finally, we could have a rule 

ExprA  ~. ~ (~ e N )  

for integers, constrained by 
A type constr - INT. 

We ignore the details of how to construct environments here; Shieber's thesis treats 
the problems of binding, and the typing of bound variables, in more detail, as does 
Moshier's. It will suffice here to suppose that environments are explicitly supplied with 
the start  rule of the grammar by means of explicit constraints. Then this grammar, used 
schematically, allows the following typings: 

* id : Va.ot --+ o~ ; 

�9 + : I N T  --+ ( I N T  ---+ I N T )  ; 

�9 / d ( + ) :  I N T  --~ ( I N T  --+ I N T )  ; 

�9 id (+(3) ( id (4) ) )  : I N T  

Unfortunately, it does not allow id(id)(3) to be well-typed, as in our problem above. This 
is because the two uses of the identity function are not consistent (fail to unify) with 
each other. An obvious solution to this problem is to relax the identity constraint 

A e n v w - A t y p e  

in the second rule, and replace it with a less restrictive one: 

A e n v w ~ A t y p e  

This  requires only that  the type of a use be more instantiated than a type given by the 
original definition of the identifier. In the case of id, the original definition gives a type 
where the argument and result types are equal (Figure 1). It is easy' to see that  this 
matching corresponds to the existence of a feature graph homomorphism from the less 
instantiated type to the more instantiated one. 

Continuing with Shieber's examples, we notice that the polymorphism problem above 
occurs in natural language processing as well. Consider coordinate constructions involv- 
ing the conjunction "and", as in (1,2). 
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(1) Pat  hired [NP a Republican ] and [NP a banker ]. 
* (2) Pat  hired [NP a Republican ] and [•p proud of it ]. 

Example (2) is ungrammatical, so it would seem that the types of the coordinated phrases 
should be identical, and be the same as that of the whole coordinated complement of 
the verb "hire", which requires a noun-phrase object complement. But certain verbs, 
used very frequently, do not require this strict identity. The verb "become" allows either 
noun-phrase or adjective-phrase arguments, while "to be" allows prepositional and verb 
phrase arguments in addition. In fact, these arguments can be intermixed, as in (3,4). 

(3) Pat  has become [NP a Republican ] and lAP very stingy ]. 
(4) Pat  is [AP healthy ] and [pp of sound mind ]. 

(See (Shieber, 1989) for sources and further discussion of these examples.) 
The "identity view" of coordinate conjunction might be expressed by a schematic rule 

like the following: 
E ::-~- C AND D 

E'-C 

E'=D 

requiring that  the type of the phrase E be identical with that of both its constituents. 
However, the "polymorphic view" would suggest instead a rule like 

E : : -  C AND D 

E ~ C  
E E D  

which, given appropriate feature structures for the phrase types involved, and feature 
requirements of the verbs "to be" and "become" would allow the intermixed sentences 
to be grammatical.t 

There is much more to the story of feature algebras. They are being used as a basis the 
formal semantics of the programming language LIFE, by Ait-Kaci and Podelski (1991). 
Here feature algebras appear generalized in an order-sorted framework. The reader can 
find another generalization and a characterization of the subsumption relation in our 
conference article (D6rre & Rounds, 1990). Here we again treat an order-sorted version, 
using the work of Smotka (1988), and a logical characterization of the subsumption 
relation extending the characterizations in (Rounds & Kasper, 1986). These results show 
explicitly how the subsumption relation corresponds to an information-theoretic ordering. 

4. Undec idab i l i ty  resul t s  

We now turn to the technical results. We first prove our undecidablility results for 
feature algebras. In Section 5, we further reduce the problem to the semiunification 
problem for so-called rational terms. We have to leave unsolved, however, the existence 
of an algorithm to find path-finite solutions (this is essentially the original semiunification 
problem; it has just been shown undecidable by Kfoury et al. (1990)). 

t Shieber  uses a technically different not ion of subsumpt ion t han  we do. 
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4.1. CONSTRAINTS 

To begin, we assume that we have an infinite set X of variables written as x, y and so 
forth. Then a constraint is a piece of syntax having one of the forms 

zp "-" yq, zp "-- a, zp E yq 

where p and q are paths, i.e., elements of L ~ and a E A. A clause is a finite set of 
constraints of the above forms. Given a feature algebra ,4, an assignment is a mapping 

of  variables to the elements of A. The solutions in a feature algebra A of a constraint 
@ are those assignments o~ which satisfy the constraint in the expected way: 

(,4, ) "- yq 

(,4, xp - 

(.A, c~) ~ zp U_" yq 

iff o r (z ) / t  = a(y)q "4 ; 
iff a(x)p -'t = a "t ; 

iff ~(x)p A E a(y)q a, 

An assignment is a solution in .,4 of a clause C iff it is a solution for all constraints in C. 
A clause is satisfiable if it has a solution in some feature algebra, and finitely satisfiable 
iff i t  has a solution in some finite feature algebra. 

We now state the semiunification problem for feature clauses: 

Given finite L and A, and a clause C over these alphabets, is C satisfiable? 

The finite semiunification problem asks the same question about finite satisfiability. 

THEOREM 1. Both lhe semiunification problem and the finite semiunification problem 
are undecidable. 

Proof. We use a result due to Gurevich (1966), which is that  the word problem for 
finitely generated finite semigroups is undecidable. We reduce this problem to the finite 
semiunification problem. (The same proof works to reduce the well-known word problem 
for arbitrary semigroups to the arbitrary semiunification problem.) The original use of 
th is  technique is due to Schmidt-Schaul3 (1989), who used it to show that  subsumption 
in KL-ONE is undecidable (note, however, that  this use of subsumption is not the same 
as ours,) 

The word problem for finite semigroups is the following. Given a finite alphabet  E, 
consider the class r of finite semigroups finitely generated by E. Let E be a finite set 
of  equations si = tl, i = 1 , . . . ,  n, where the sl and ti are nonempty strings over E. Let 
s -- t be another such equation; then the word problem is to determine whether or not 
every  semigroup in F satisfying all the equations in E also satisfies the equation s = t. 

Suppose therefore that a system of equations E over some finite alphabet E is given, 
together  with a test equation s = t. We first choose our feature alphabet to be the 
a lphabet  

L = E U { k }  

where k is not in E. We also choose two distinct constants a and b. 
We construct a clause CE from E as follows: 

1. For each f E E, add the constraint z U z f  to CE; 

2. For each equation sl = ti in E, add a constraint zs~ - ztl; 
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3. Add  the constraints z ~ y, ysk  - a, and ytk - b to CE. 

W e  claim that  C~ has a solution in some finite feature algebra if and only if there is 
a f in i te  semigroup satisfying every equation in E but not  the equation s -- t. 

T o  verify this claim, we first establish two easy lemmas. 

LEMMA 1. Let A be a feature algebra satisfying the constraints (1)  fo r  each element  
f E ~2, and let ot be a solution. Then  a ( x ) p  "~ ~ f o r  any p E E +. 

Proo f .  First let us unclutter our notation by  dropping the explicit mention of the 
a s s i g n m e n t  c~ and the superscripts ,4. To prove the lemma, use induction on the length 
o f  p. I f  this length is 1, the constraints themselves give the result. In the inductive 
ease ,  p = f q  for some string q. We know that there is an endomorphism 3' such that  
a: 7 -- a:f.  By the definition of homomorphism, then, zq7 = z' /q = z f q  = zp.  Therefore 
in  pa r t i cu l a r  xp ~ . This completes the proof. 

In  the next lemma,  we continue with the uncluttered notation. 

LEMMA 2. Under the same  hypotheses on the feature  algebra, let u, v be any strings in 
~,* a n d  let p E ~2". I f  z u  = xv  in A ,  then also z p u  = zpv  in A .  

Proo f .  Again by induction on the length ofp. The case of length 0 is trivial. Suppose 
t h e n  t ha t  p = f q  and that  zqu  = zqv .  Since x E z f ,  we have that as in Lemma 1 a:q3' = 
x p  for  some homomorphism 7. We have zqu3' -" zqTu  -- xpu,  and zqv3" = ;eq3"v = zpv .  
B u t  x q u  -- zqv,  so this completes the proof of the lemma. 

Now let us re turn  to the main proof. Suppose first there is a finite algebra -4 satisfying 
(1), (2), and (3) of CE. Construct  a finite semigroup S as follows. Let J be the set 
{ z P  "t I P E ~+}.  Then  J is a subset of D "a and so is finite. The collection of all 
pA res t r ic ted  to J is a finite semigroup S under composition, where p is an arbi t rary 
n o n e m p t y  composit ion of interpreted features in ,4. Now the constraints (2), together 
w i t h  L e m m a  2, imply that  S satisfies the equations in E.  (The conclusion of Lemma 2 
j u s t  says  tha t  S works in exactly the right way as a semigroup of functions.) Now if S 
sa t i s f ied  the equation s = t, we would have in part icular  that  zs = xt  in .4. But now 
a: C y in .4, which implie s that  ys = yt in A, impossible in view of the constraints (3). 
T h u s  the  constructed semigroup satisfies the equations in E but  not the equation s = t. 
T h i s  completes the first par t  of our claim. 

F o r  the second part ,  suppose there is a finite semigroup 23 satisfying everything in E 
b u t  n o t  s = t. Const ruct  a finite feature algebra A as follows. First adjoin an identi ty 
e to  S if one is not  there already. We will still call the result S. Now let S 1 and S 2 
b e  i somorphic  disjoint copies of S. Let a and b be two extra atomic elements. Then  
D ~t = S 1 U S 2 U {a, b}. Let us write f l  and f2 for the elements corresponding to f in 
S 1 a n d  S 2, respectively, and let a string of symbols with a superscript, s i, denote the 
p r o d u c t  of the corresponding elements in S i , i  = 1, 2. Now, for each f E E define ( s i ) f  "4 
t o  b e  the product  s i . f l  in S i , i  = 1, 2. Let s and t be the strings in the given test 
e q u a t i o n  s = t, and let s 2 and t 2 be their values in S 2. Then set s2k ~ = a and t2k "4 = b. 
Since  s 2 r t 2, this is possible. Now we check that .4 satisfies the constraints of CE. Map 
2r to  e x, and y to e 2. For u in S 1, and f E E, the mapping sending u to f - u  in S x is an 
r  mapping e to f ,  so (1) is satisfied. (2) is satisfied because S x satisfies 
E .  As  for (3), the mapping sending u 1 E S 1 to its copy u 2 E S 2 is an A-endomorphism 
v e r i f y i n g  z U y, and we have already satisfied the last two constraints. This proves the 
t h e o r e m .  
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4.2. R]~LATED UNDECIDABLE PROBLEMS FOR FEATURE ALGEBRAS 

Here we state two further undeeidability results following from the same technique that 
we used in Theorem 1. Notice first that if a feature constraint is satisfiable, say in a finite 
algebra, then it is satisfiable in an infinite one obtained by adding arbitrary elements to 
the domain, unconnected to the original elements. We might, however, be concerned 
with the existence of an infinite "reachable" solution. So we define the cardinality of a 
solution o~ of a clause C to be the cardinality of the set 

U{Ext(c~(x)) I x is a variable of C}. 

We will show that it is undecidable whether or not a clause C has a solution of infinite 
cardinality. To do this we use a classical word problem undecidability result due to Adjan 
(1955) and also to Rabin (1958). To state the result fully we need some definitions. Say 
that  a class of groups T is invariant iff for any groups G and H, if G E P and H is 
isomorphic to G, then H E T. The class P is nontrivial iff there is a group in F and a 
group not in T. Finally, T is hereditary iff whenever G is in F, and H is a subgroup of G, 
then H is in T. The Adjan-Rabin theorem, a kind of Rice's theorem for word problems 
on groups, reads as follows. 

THEOREM 2. (ADJAN-RABIN) Let r be an invariant, nontrivial, and hereditary class of 
groups. Then there is no algorithm to determine, given a finite presentation of a group 
G, whether or not G E r. 

For this theorem~ a presentation is just a finite set of words in the generator symbols 
and their inverses, which intuitively rewrite to the identity. For groups~ we can consider 
the smallest normal subgroup of the free group over the generators, containing the words 
in the presentation. The quotient group is the group G presented by the given set of 
words. 

Now for our application, we have to consider a modified version of the Adjan-l:tabin 
theorem, stated for monoids. This time, a presentation is a set of equations in the 
generators, as in the word problem for semigroups above. However, we also allow an 
equation s = e, where s is a string of generator symbols, and e denotes the identity 
of the monoid. The monoid ME presented by the set of equations E is the collection 
of equivalence classes of words under the congruence relation --, which is the reflexive, 
transitive closure of the usual rewriting relation on ~" given by the equations E. Our 
modified restatement of the Adjan-Rabin theorem is as follows. 

LEMMA 3. Let T be an invariant class of monoids, such that the class of groups in T is a 
nontrivial and hereditary class of groups. Then there is no algorithm to determine, given 
a finite presentation of a monoid M, whether or not M E T .  

Proof. We simply reduce the Adjan-Rabin decision problem to this one. Given a 
group presentation P, construct the set of equations Ep (over the expanded alphabet 
containing generator symbols and their inverses.) Add the equations which state that 
j r - 1  = e for the generators f.  These equations induce a congruence relation (on the 
expanded alphabet) in the usual way, and the congruence classes have a group structure; 
this group (say G) is the monoid defined by the presentation, and is of course isomorphic 
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to the group defined by the group presentation. Let F ~ be the set of groups in P. Then 
G is in r if and only if it is in P~, so the Adjan-Rabin theorem gives us our result. 

Now let us state our application. 

THEOREM 3. I t  is undecidable whether or not a clause C has a solution of infinite car- 
dinality. 

Proof. We take the class F to be the class of finite monoids in the modified Adjan- 
Rabin lemma. Clearly r satisfies the hypotheses of the lemma. It follows that, given a 
set of equations in the generators of a monoid, it is undecidable if the presented monoid is 
finite or not. Given the presentation E, we build a constraint system C~ as in Theorem 1, 
but more simply. Cs consists of the constraints (2) used to define the monoid together 
with the constraints (1). 

Let ME be the monoid defined by the presentation E. We claim that Ms is infinite 
if and only if there is a solution of CE of infinite cardinality. To see this, proceed as in 
Theorem 1. Suppose there is a solution to CE of infinite cardinality; that is, there is a 
feature algebra .A and an assignment o~ such that J = Ex t (a ( x ) )  is infinite, where x is 
the single variable of Ca. Now J is by definition 

a Iv e L' aria 

Since this set is infinite~ the collection of all p.4 restricted to J must be an infinite 
monoid M under composition, where p is an arbitrary nonempty composition of inter- 
preted features in ~4. As in Theorem 1, M satisfies the equations E. But then M is a 
homomorphic image of Ms,  because Ms  is initial in the variety of monoids generated 
by ~ and satisfying the equations E. So Ms is infinite. 

Conversely, if ME is infinite, we make it into a feature algebra as in the second half 
of the proof of Theorem 1. If we let ~(x)be  the identity element of ME, then it is 
straightforward to check that this provides a solution to Cs of infinite cardinality. This 
completes the proof of Theorem 3. 

We close the section with a strengthening of Theorem 1. 

THEOREM 4. It  is undecidable whether or not a given clause has a solution in a finite 
.feature algebra, even when subsumption homomorphisms are required to be injective. 

Proof. We use the undecidability of the word problem for finite groups (Slobodskoi, 
1981), and proceed as in the proof of Theorem 2, using the same reduction. (Note that 
we are assuming the equational presentation of a group word problem, so that f f -1 -_ e 
is always an equation.) We need to check that the proof works when all morphisms are 
required to be injective. 

As above, suppose there is a finite feature algebra ,4 satisfying (1), (2), and (3) of 
CE. Construct a finite monoid S as follows. Let J be the s"et {xp ~t I P E ~*}. Then J is 
a subset of D "a and so is finite. The collection of all p.4 restricted to J is a finite monoid 
S under composition, where p is an arbitrary (possibly null) composition of interpreted 
features in A. We need to show that in fact S is a finite group. 

To do this, we will show that for each function f.a in S, where f is a feature, there 
is a natural  number m such that fm is the identity function e on J.  This element is the 
required inverse of f ,  and since S is generated by'the f functions, this will suffice. 
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We show that  for each function f ,  there is an integer m such that ~:fm = z, where x 
is tha t  element of D "a interpreting the variable x of Cg. By lemma 2, this equation will 
hold for any element of J reachable from x, which is what we want. Now since J is finite, 
there are integers j < k such that xfJ = x f  k. Since x _E x f ,  we have for some injective 
morphism 7, x7 = x f .  By induction, 

~'yJ = x f  j = x f  ~: = X~ 'k 

whence zTk-JT: = x7 j .  But 7 j must be injective, so z7 k-j = z. Thus 

x f k-j  = z7 ~-j = z 

so we may choose m = k - j .  This completes the proof that S is a finite group. 
Now we may proceed as in the proof of Theorem 1. The first part of the reduction 

g~oes just as in that  theorem. For the converse, notice if S is a finite group satisfying the 
equations E, then the morphisms defined in the second part of the proof of Theorem 1 
are all injective. This completes the proof of Theorem 4. 

A consequence of this theorem, as indicated in the next sections, is that  the semiuni- 
fication problem for rational terms remains undecidable even if all "matching substitu- 
tions" are required to be one-to-one. We do not know if this result holds for first-order 
terms or not. 

4.3. CANONICAL ALGEBRAS 

We say that a feature algebra B is canonical for arbitrary solutions iff for every clause 
C, we have that C is satisfiable if and only if there is a solution to C in B. Similarly, we 
define an algebra B to be canonical for finite solutions iff for every C, we have that  C is 
finitely satisfiable if and only if C is satisfiable in B. Note that  in this case we do not  
require B to be finite. However, the elements of B will usually have finite representations. 

In this section we will show that  the algebra of finite feature graphs is canonical for 
finite solutions. In the next section, we will show that the algebra of rational trees also 
has this property. An obvious corollary of Theorem 1 is thus that the semiunification 
problem for these special feature algebras is undecidable. 

Recalling the definition of Section 2, we define the finite feature graph algebra ~0. 
The  nonatomie elements consist of pairs (G, n), where G is a finite directed graph, and 
n is a node of G. Again, nodes are taken from a fixed set N. Each arc is labeled with an 
element of L, and no two outgoing arcs are labeled with the same element of L. Nodes 
with no outgoing arcs may optionally be labeled with elements of A. As in the full feature 
graph algebra, we interpret features f as follows: let (G, n ) f  be the graph (G, n f ) ,  where 
n f  is the unique node of G pointed to by the arc starting at n and labeled by f ,  if  it 
exists, and if it is not labeled with an atom. If the node n f  is labeled with an atom a 
then we define (G, n ) f  = a. Atoms in this algebra are the elements of A themselves. 
(From now on, we will assume that  A, the set of atoms, is finite.) 

One can think profitably of the elements (G, n) of ~r0 as (disconnected) transition 
graphs for finite state machines, where n is the initial state. (One can also get a canonicity 
result for an algebra of graphs where every node is reachable from the initial one.) 

THEOREM 5. The feature algebra .To is canonical for finite solutions. 
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Proof. Let C be a clause. Put C into s~andard farm by adding new variables and 
constraints as necessary. In the standard form, each constraint has one of the forms 

x ~ y f ,  z - a ,  z ~ y ,  z - y  

where x and y are variables, a is a constant, and f is a feature symbol. It will suffice 
to show tha t  ~0 is canonical for standard-form clauses. Suppose therefore that there 
is a solution a to C in some algebra A. Define a graph G-a E .To as follows. For 
the nodes, take the set D-a (in reality, an isomorphic copy of D-a in the fixed node 
set N.) Put  an arc f from the node d to node d I just in case d]-a = d'. Define the 
solution fl(x) to be (G -4, o~(x)) if a(x) r a "a for an atom a; otherwise let fl(x) = a. It is 
straightforward to check that  fl satisfies all equational constraints of C. To show that  fl 
satisfies all subsumption constraints of the form x ~ y, proceed as follows. Let 7 be an 
endomorphism of .4. Then ~' induces an endomorphism 70 of .To using the equations 

a i fd  7 = a  ~ for s o m e a E A ;  
(G-a, d)70 -" (G "a, d7) otherwise. 

Since cx verifies z ~ y, we have ~(x) U a(y) in .A. Let 7 witness this relation in ,4; clearly 
then ~(x)To = fl(y), which is what we needed. 

Conversely~ suppose there is a solution fl to C in :To. Define a finite feature algebra 
,4 as follows: take 

D "a = AtJ  {(G,m) l (~n)((G,n ) = j3(x) for some variable x of C) }. 

,4 is to be a finite subalgebra of.T0; so we define (G, m ) f  "~ = (G, m f )  i f m f  is nonatomic, 
and (G, m)f-a = a if m f  is labeled with the atom a. We can then take the solution o~ = 8. 
This completes the proof of the theorem. 

5. T h e  semiuni f ica t ion  p rob lem for ra t iona l  t rees  

Theorem I also implies that the semiunification problem for rational trees is undecidable. 
Before we state this problem, we say what these trees are, and discuss notations for them. 
Then we state the semiunification problem (using the presentation in (LeiB, 1988)), and 
prove that  it is undecidable using a series of reductions from the finite semiunification 
problem for feature algebras. Most of this is straightforward, but it shows precisely 
how to relate feature algebras with terms, encoding feature information using argument 
positions. 

5 . 1 .  I:~ATIONAL TREES: DEFINITION AND NOTATION 

Let ~ be an ordinary finite ranked alphabet, and X a countable set of variables. We 
consider T-labeled, ordered infinite trees. Each node labeled with an n-ary operator 
symbol has n descendants. Leaf nodes may be labeled with 0-ary symbols, or with 
variables. We say that a tree is rational if it has only finitely many nonisomorphic 
subtrees. Rational trees are also called cyclic terms. Let /~T(~.,X) denote the set of 
rational trees. 

There are a number of differing notations for representing these trees; we use one like 
that used by Colmerauer (1988). We explain the notation informally. 
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Consider the equation 

z - , ( z )  (1) 

where a is a unary function symbol. This equation defines a rational unary tree consisting 
o f  one infinite path with each node labeled By a. We also can use the notat ion ~t.a(t),  a 
kind of fixed-point formula, to be the unique tree t such that t = a(t), up to isomorphism, 
o f  course. This notation takes into account the fact that in equation (1) the variable z 
really occurs bound. Now we also notice that the equational representation of a tree need 
no t  be unique, as in (2, 3). 

= ( 2 )  

y = (3 )  

Here, the system defines the same term for x as does (1). Without  getting into details, 
i t  is fairly clear that  we can always decide if two equation systems repre~nt  the same 
rat ional  tree. 

A more complex example is (now ~ is a binary function symbol): 

= (4 )  

= (5 )  

In this case, there is a free variable xl involved; but  the variables z and z are bound. 
T h e  equations (4, 5) are equivalent to the single equation 

= 

T h e  tree represented By these equations has leaf nodes labeled with the variable x l .  It  
m a y  also be denoted #t.a(t, zl) which makes explicit the bound variable. 

We will generally use solved-forra systems of equations as in (4,5) to define rational 
trees. In this form, only variables occur on the left side of a system, and no variable will 
occur there more than once. Such variables will Be considered Bound in the system. 

5.2. I~ATIONAL TREES AS A FEATURE ALGEBRA 

We make RT(~ ,  X)  into a feature algebra just  as in the first example of Section 2. Once 
again, feature i picks out the i-th immediate subtree of a given tree. If ~ is finite then 
so is the feature alphabet. We will be interested especially in the case where E has just 
one n-ary function symbol, for some n >. 1, and a finite collection A of 0-ary atomic 
symbols. We will call the corresponding feature algebra 7r In this case the feature FUN 
is uninteresting (!), so we do not define it. 

The notion of substitution makes sense for rational trees as well as for ordinary terms. 
Substitutions are specified by assigning rational trees to variables in the usual way; these 
assignments then extend to the full domain R T ( ~ , X )  as expected. We will use the 
letters /~, S , . . .  for substitutions. If t and u are in RT(~., X) ,  we say that  t ma~ches if, 
written t _~ u, if there is a substitution T such that T(t) = u. 

EXAMPLE 1. Consider the solved-form equations 

= (7)  

z = (8 )  
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Here, the t e rm  defined as the value of x is different f rom the term defined as the value 
for z, because zl and z2 are differing free variables. But if we make the substitution 
T(z l )  = x2 and T(x2) = xi in (7,8), we get a system 

= ~(z, ~) (9) 

z ---- o'(x, xl). (i0) 

in which the equation for z (10) defines the same term as equation (7) in the previous 
pair (7,8). So if t is defined to be the solution for x in (7,8), and u is the solution for z 
in the same system, then t matches u. 

REMARK 1. In ~ n ,  as well as in RT(E ,X) ,  notice that t < u if and only i f t  C u. 
Further ,  this remark holds when feature morphisms and substitutions are injective. 

5.3. THE SEMIUNIFICATION PROBLEM FOR RATIONAL TREES 

Moving to the semiunification problem itself once again, we first recall the statement of 
the semiunification problem for ordinary terms (Henglein, 1988). 

Consider a system C of equations and inequalities between first-order terms, using 
different inequality symbols <:I,..., ~m. We say that a substitution R is a semiunifier 
for C if 

�9 R(8) = R(t) for each equation s = t in C; 

�9 There  are residual substitutions T t , . . . ,  Tm such that  ~ ( R ( s ) )  = R(t) whenever 
s ~i  ~ is in C. 

For rat ional  trees, we will have to make a slightly different presentation, because each 
tree is itself given by solved-form equations as above. The details of this presentation 
are straightforward;  the system C will be a set of equations and inequalities between 
variables, each of which is the leading variable of the appropriate solved-form system of 
equations, t 

The semiunification problem for rational trees is to decide, for a finite system C, 
whether or not it has a semiunifier. 

EXAMPLE 2. Consider the system consisting of one inequality z <_ a(z). (Here a is a 
unary function symbol.) We can take R to be the identity substitution and T to be the 
substitution x ~-~ a(x). 

EXAMPLE 3. The reverse system a(x) <_ x has no semiunifier in acyclic terms, but 
does have one in rational trees, namely/~, mapping x to pt.a(t). In this case the residual 
substitution is the identity. 

5.4. THE REDUCTIONS 

From now on, we will assume that  our feature alphabet L and the atom alphabet A are 
finite, and tha t  L has n symbols. We also fix the set X of variables. X will be used both 
to s ta te  fea ture  constraints and to serve as the variable set in rational trees. 

tit will actually turn out that the semiunification problem is undecidable, even if cyclic terms do not 
appear in the presentation of the constraint system C, so we do not need to worry about the official 
presentation. 
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For our first reduction, we take a system C of feature constraints and, as in Theorem 5i 
pu t  it into standard form where each constraint looks like one of 

x - - y f ,  x - a ,  x ~ y ,  x "--y 

where z and y are variables, a is a constant, and f is a feature symbol. It is clear tha t  
this  transformation preserves the finite solution property, and from now on, clauses will 
be  in this form. 

Next, let n be the size of L. We say that a feature algebra is n-s ty  iff for each d in 
the  domain, either d has all n features defined, or d has no features defined. Notice that  
TC-n is n-ary. 

LEMMA 4. A system of constraints over A and L has a solution in a finite fealure algebra 
i f  and only if it has a solution in an n-ary finite feature algebra. 

Proof. The "if" direction is trivial, so suppose that C has a solution in a finite feature 
algebra. For each element d with a feature defined at it, suppose that  the feature  g is 
no t  defined. Adjoin a distinct new element re(d, g) to D, and let d g =  re(d, g) in the 
new algebra. The new algebra is finite and n-ary. Clearly the equational constraints in 
C still hold in the new algebra. It is also straightforward to check that each morphism 
mapping d to e can be extended to a morphism of the new algebra, so that  subsumption 
constraints still hold. This completes the proof. 

LEMM& 5. Let C be a standard-form clause over A and L. Then we may effectively find 
a standard-form clause Cn over the feature alphabet In = { 1 , . . . , n }  such that C has a 
solution in a finite n-ary algebra over A and L iff Cn has a solution in 7~,~, where the 
constant symbols are taken from A. 

Proof. Let C be a standard-form clause over the finite alphabets A and L. Let 
L = { f i , . . . ,  fn}. Replace each occurrence of a feature fl occurring in constraints of C 
by  the feature i. This  defines the clause Ca. 

Suppose that C has a solution a in a finite n-sty algebra ,4. Build a finite feature 
algebra .41 isomorphic to A as follows. Replace the 0-ary nonconstant elements in D ~t 
by  distinct variables taken from X and (for safety) different from the variables used in 
the  constraint C. (We also may assume that the domain D a is disjoint from X. )  By 
abuse of notation, let a be the solution to the clause C in ,41. We construct a solution 
fl to the constraint Cn in 7~n. To define fl(z), consider a (x) .  The set E z t ( a ( x ) )  is 
the  set of states of a finite-st.ate machine with initial state a(~),  transitions f rom the 
alphabet  L, and with terminating states (no outgoing transitions) labeled with variables 
or constants. Unroll this machine into an infinite tree in the standard manner, labeling 
the  interior nodes with the n-ary function symbol or, and replacing the arc label f~ with 
the  arc label i. In this manner we get a rational tree in 7~n, and this tree will be/~(z) .  
More generally, we can take any element d in the domain of  .41 and unroll it into a 
rat ional  tree U(d); thus in particular fl(x) = U(o~(x)). It is not hard to check that  fl 
satisfies the equality constraints of Ca, so let us check the subsumption constraints. We 
show that if d E e in At,  then U(d) E U(e) in 7~,~. Since the subsumption constraints 
are of the form z E y, this will suffice. By Remark 1, we need only show that  if  d _E e, 
then  U(d) <_ U(e). Suppose 7 is a morphism taking d to e. Let  z be a 0-ary nonatomic  
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element of Ext(d);  then 7 is defined at z. Consider the substitution T(z)  = U(zT). We 
have T(U(d) )  = U(e)~ as desired. 

Conversely, suppose fl is a solution to Ca. Define a finite n-sty algebra ,4 as follows; 
For D ~t take A together with all possible subtrees of fl(z), as z ranges over the variables 
of the constraint Ca. Since the trees are rational, D is finite. Let u f (  a = ui if this is 
defined in the tree algebra. Then obviously a(x) = /~(~) is a solution to C, and A is 
n-s ty  because 7~n is. This completes the proof. 

A consequence of the preceding lamina is that,  modulo a slight change of feature 
alphabet,  the algebra of rational trees is canonical for finite solutions. Also, it is easy 
to check tha t  the lemma holds when the morphisms and substitutions are injective. But 
now let us continue with our final reduction. 

LEMMA 6. Let Cn be a standard.form system over At and In. Then we may effectively 
transform Cn into a presentation Pn of the semiunifica~ion problem for rational terms, 
such ~ha~ Cn has a solution in T~n iff Pn has a semiunifier. 

Proof. Let  Cn be a standard-form feature clause. We construct the presentation Pn 
as follows: For each constraint of the form x - a or z - y of C, ,  add the same equation 
to Pn. For each subsumption constraint z E y, add an inequality z <q y to In ,  where 
q is a new integer each time. Let r be a constraint in Gn of the form z - yi. Then for 
j # i let x(~b,j) be a new variable, distinct from all variables for other constraints and 
from the variables in the clause C. Add the equation 

u = i), . . . .  x , . . . ,  n ) )  

to P , ,  where the variable z occurs in position i on the right. This completes the con- 
struction; we claim that  C', has a solution iff Pn has a semiunifier. 

To prove the claim, suppose first that  Cn has a solution a. Then we may take R(z) ,  
the semiunifier, to be a (a )  if x is a variable of C, ,  and R(z( r  to be a(y) j ,  where 
is the constraint  ~ --- yi. Since 7~n is n-ary, this is well-defined. Observe that  the values 
of R are rational trees. To check that  R is a semiunifier, first notice that  the trivial 
equations of Pn are automatically verified. Now consider an equation of the form 

Y = a(~(r i ) , . . . ,  z , . . . ,  ~(r n)). 

We know ~(y) i  = o,(~.) because a is a solution in 7Z,. The desired conclusion thus follows 
from the identi ty 

a(y) = , ( a ( y ) l , . . . ,  ~(y)i, . . . , a(y)n). 

Finally, consider a subsurnption constraint z <i y. We know that in 7~ ,  a(a') E a(y).  
Therefore a (x )  < o~(y) as rational trees, i.e., there is a substitution T mapping ae(x) to 
c~(y), and thus R(x) to R(y) as desired. 

For the converse, given the semiunifier R, we may take the solution a~(z) = / ~ ( z )  for 
each variable z of the constraint system. It is immediate to' check that  a is a solution, 
so this completes the proof. 

Now the foregoing lemmas, together with Theorem 1, imply the principal result of 
this section: 

THEOREM 6. The semiunification problem for rational trees is undecidable. 
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REMARK 2. The same method shows that the semiunification problem for arbitrary 
trees is also undecidable; just apply the "arbitrary feature algebra" version of Theorem 1, 
and carry out the same proofs, Finally, the method works in the case when all matching 
substitutions and endomorphisms are required to be one-to-one. This requires check- 
ing that the lemmas used in the reductions still hold~ and using Theorem 4 instead of 
Theorem i. 

We close the section with an example of the total construction. 

EXAMPLE 4. Consider the feature constraint used in the proof of Theorem I, derived 
from the semigroup Z2, the two-element cyclic group. This group is generated by one 
element f, subject to the equation ]2 = e. The equation f - e fails in the group (e is 
the identity.) The equation p - e yields the feature constraint zf 2 = z. So for the total 
feature constraint system we have 

z _U z;  

z f  = z ;  

z . f  = z ;  

z E Y ;  

y k  = a ; 

y f  = w ; 

w k  = b. 

We have expanded the Cs clause to standard form. Converting to a presentation of the 
semiunification problem for rational trees, we get 

z ~I z;  

x = a ( z , x l ) ;  

z = a ( ~ , z _ ~ ) ;  

z <:2 y;  

y = a ( l l , a )  ; 

y = a ( w , z ~ ) ;  

w = , r ( t2 ,  b).  

Our function symbol a is binary since we have two feature symbols f and k in our 
alphabet. If we draw the finite-state machine for the solution to the feature clause, 
it is fairly easy to write down the semiunifier R. In the example, we have R ( z )  = 

~a.~(~(~, z2), xl),  n ( y )  = ~t.~(~(~, b), a), T1(~1) = ~2, T~(zx) = a, and T 2 ( ~ )  = b. 

6. Conclusion 

We think that the setting of the semiunification problem for finite feature algebras is 
perhaps a more natural way to state the problem than for cyclic terms. Certainly the 
presentation of the problem is simpler, as is the proof of undecidability. This suggests 
looking at other unification problems in the feature algebra setting. For example, unifi- 
cation modulo equational theories might have interesting properties. 
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Our technique does not apply to the original semiunification problem, because it 
makes essential use of the cyclic property. However, Kfoury, Tiuryn, and Urzyczyn 
(1990) have shown that the original problem (for path-finite feature algebra~) is also 
undecidable. Their proof uses a very different technique, and one project might be to 
phrase their results using feature theory. Along this same line, Paris Kanellakis has cMled 
our attention to work by Mitchell (1983), and Cosmadakis and Kanellakis (1985), which 
shows that  the inference problem and finite inference problem for mixed functional and 
inclusion database dependencies are both unsolvable. The techniques used resemble very 
much the techniques used to solve the two cases of the semiunification problem, though 
both our reduction and that in (Kfoury et al., 1990) are different from the ones used in 
these papers, Perhaps feature theory could be used to help understand the full story. 
We do feel that it is a worthwhile tool for attacking these and similar questions. 
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