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In this study, we have performed a systematic analysis of Pseudomonas sp. strain phDV1 mem-

brane protein complexes by growing the strain in lysogeny broth medium, and medium

containing glucose or phenol as sole carbon sources. In order to study the membrane com-

plexome, we developed an approach for the extraction and the analysis of the membrane

protein complexes in native conditions. Our strategy involves (a) enrichment of the mem-

brane proteome from Pseudomonas sp. strain phDV1 by two washing steps; (b) solubilization

using n-dodecyl-�-maltoside; (c) a combination of BN-PAGE with Tricine-SDS-PAGE; and (d)

protein identification of tryptic peptides by mass spectrometry.

brought to you, citation and similar papers at core.ac.uk

provided by Elsevier - Publi
omplexome

embrane protein complexes

-D native/SDS-PAGE

ass spectrometry

© 2014 The Authors. Published by Elsevier B.V. on behalf of European Proteomics

Association (EuPA). This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

proteins on the individual amino acid level. Typically, the
seudomonas

. Introduction

trains belonging to the Pseudomonas genus have been
idely used to elucidate the adaptive mechanisms underly-

ng increased tolerance against toxic concentrations of organic
olvents in gram-negative bacteria [1] and using them as a
arbon source [2]. A new Pseudomonas sp. strain phDV1 was iso-
ated from enriched mixed culture from samples of petroleum
ontaminated soil in Denmark. The strain shows high phenol

emoval efficiency and proteomics studies of the water sol-
ble sub-proteome of this strain have shown that phenol is
etabolized via the meta cleavage pathway as a sole source
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of carbon and energy [3,4]. Recently, the profile of the mem-
brane proteome was characterized by the analysis of soluble
and insoluble sarcosyl fractions after growth with three dif-
ferent carbon sources [5]. The dSDS-PAGE map of the three
carbon sources allowed the identification of inducible outer
membrane proteins by growth in medium containing glucose
or phenol.

Mass spectrometry based proteomics studies have
emerged as a powerful tool to identify and characterize
proteome is prefractionated by e.g. two-dimensional elec-
trophoresis (2DE) and subsequently identified by mass
spectrometry (MS), giving a two-dimensional map of soluble
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and membrane proteins and membrane protein complexes
present in the sample representative for the growth condi-
tions [6]. Although this strategy allows the identification of
expressed proteins, only little information on the stoichiom-
etry and functional composition of protein complexes can be
derived. It is known that many cellular processes are carried
out by multi-subunit protein machines. The identification and
characterization of these multi subunit protein complexes,
also termed complexome [7], is essential for comprehen-
sive understanding of their functions in the cell [8]. This is
particularly important in cellular membranes, where many
well characterized proteins require assembly into functional
complexes to perform important steps in energy metabolism,
protein trafficking, and molecule transport. Our knowledge
of protein complexes in cellular membranes is limited,
mainly because membrane proteins are incompatible with
commonly used protein interaction assays.

Protein complexes are maintained with weak bonds and
need specific separation strategies to prevent protein disso-
ciation. Blue native (BN)-PAGE has been established as an
effective proteomics tool for the analysis of both soluble pro-
tein complexes and membrane protein complexes [9,10]. We
used an anionic dye, Coomasie Blue (CBB G-250), that binds to
the surface of all proteins and thus introduces a large number
of negatively charged dye molecules to the proteins [9]. This
binding facilitates the migration of the protein complexes in
the first-dimensional electrophoresis (BN-PAGE). Due to the
fact that the tendency of protein aggregation is reduced, the
native protein complexes are separated according to their
molecular weight. In a denatured, second-dimensional elec-
trophoresis (SDS-PAGE) the interacting proteins of the native
complexes can be visualized.

Although 2D BN/SDS-PAGE was developed for the separa-
tion of protein complexes belonging to the respiratory chain of
mitochondria [9,11] and Paracoccus denitrificans cells [12,13], the
method has been successfully applied to study the assembly
of photosynthetic complexes of cyanobacteria [14], green sul-
fur bacteria [15], protein complexes of chloroplast membranes
of plants [16] and green algae [17]. Furthermore the power
of the method was demonstrated by the detection of protein
complex deficiencies in mitochondrial membranes [14,18].

The aim of this study was to characterize the membrane
complexome of a new Pseudomonas strain. In order to assess
information about the protein composition of key membrane
protein complexes involved in the biodegradation of aromatic
compounds, we have grown the strain with different carbon
sources. In this study, we present an optimized protocol for the
isolation and solubilization of the membrane proteome. We
analyzed the membrane complexome using 2DE (BN/Tricine-
SDS-PAGE) and identified the protein subunits using a set of
complementary MS-based techniques.

2. Materials and methods

2.1. Isolation and washing of membranes
The bacterium was cultured in LB medium or in a modified
minimal medium as described in containing glucose or phe-
nol at concentration of 200 mg/l [3]. Cultures were grown at
c s 4 ( 2 0 1 4 ) 1–9

30 ◦C and the growth was followed by measuring the optical
density at 600 nm [3,5]. The concentration of phenol in the cul-
ture was estimated by HPLC using a C18 columns at 254 nm
after calibration with known concentrations. The isolation
of the membrane proteome of Pseudomonas was performed
according to Tsirogianni et al. [3]. Membrane-associated pro-
teins were removed using 5 mM EDTA as described in [15].
To enrich further the membrane proteome, the resulted
membranes were incubated with 0.1% (w/v) sodium lauryl
sarcosinate solution at 4 ◦C for 20 min, followed by centrifu-
gation at 100,000 × g for 1 h at 4 ◦C. The protein concentration
in the resulted membrane fraction was determined according
to Bradford [19].

2.1.1. Solubilization of membranes
Membranes were incubated for 30 min at 8 ◦C in solubilization
buffer (50 mM Tris–H2SO4, pH 8.0) containing dodecyl-�-
maltoside under gentle agitation. The detergent/protein ratio
was 5:1, 10:1, and 15:1 and 30:1. Nonsolubilized proteins
were sedimented at 50,000 × g for 90 min at 8 ◦C. Dodecyl-
�-maltoside (DM) was obtained from Biomol (Hamburg,
Germany).

2.2. Gel electrophoresis

2.2.1. First-dimensional electrophoresis (BN-PAGE)
The BN-PAGE was carried out in a gradient system 4–13% as
described in Kantzilakis et al. [17]. The molecular weight esti-
mation of the separated complexes was by using of the high
molecular weight calibration kit for native electrophoresis
(Amersham Biosciences), containing thyroglobulin 669 kDa,
ferritin 440 kDa, catalase 232 kDa, lactate dehydrogenase
140 kDa, and albumin 66 kDa.

2.2.2. Second-dimensional electrophoresis
(Tricine-SDS-PAGE)
Tricine-SDS-PAGE was performed according to Schaegger and
von Jagow [20] using a self-built system with 10% acrylamide
gels (26 cm × 24 cm × 0.1 cm) as described in [21]. Staining was
carried out with 0.02% Coomassie Brilliant Blue G-250 in 10%
acetic acid or colloidal Coomassie solution [22,23].

2.3. Protein Identification

2.3.1. In-gel digestion
The gel pieces were destained using sequentially 100 �L 50%
ACN and 50 mM ammonium bicarbonate at least three times
and subjected to the “in-gel digestion” protocol according to
Shevchenko et al. [24]. The gel spots were reduced in 100 �L
dithiothreitol (10 mM) at 56 ◦C for 1 h and then alkylated in
100 �L iodoacetamide (55 mM) at room temperature in the
dark for 1 h. Subsequently the protein spots were digested
overnight at 37 ◦C using a 10 mM ammonium bicarbonate/10%
ACN buffer containing 0.125 �g of porcine pancreas trypsin

(proteomics grade, Sigma, Steinheim, Germany). The extracts
were collected in three pooling steps (1) nanopure water, (2)
50% ACN/0.1% TFA, and (3) 50% ACN. The samples were then
dried and stored at −20 ◦C.

dx.doi.org/10.1016/j.euprot.2014.04.003
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.3.2. MALDI-TOF/TOF
S and MS/MS experiments were performed using an
ltrafleXtreme MALDI-TOF/TOF mass spectrometer (Bruker
altonics, Bremen, Germany). Dissolved samples in 8 �L
0% acetonitrile, 0.1% trifluoroacetic acid were used for the
o-crystallization with 8.33 mg/mL alpha-cyano-4-hydroxy-
innamic acid at equal volume (1 �L). MALDI-TOF mass
pectra were externally calibrated with a peptide mix-
ure containing Bradykinin 1–7 (757.3992 Da), Angiotensin
(1296.6848 Da), Angiotensin II (1046.5418 Da), Substance P

1347.7454 Da), Bombensin (1619.8223 Da), Renin Substrate
1758.9326 Da), ACTH clip 1–17 (2093.0862 Da), ACTH clip
8–39 (2465.1983 Da), Somatostatin 28 (3147.4710 Da), yielding
0 ppm mass accuracy. MS measurements were performed
pplying the following criteria: 200 kHz smartbeam-II laser
perated at 200 Hz repetition rate and accumulation of 1500
pectra in positive reflector mode by accelerating potential of
0.15 kV for the ion source 1 and 18.10 kV for the ion source 2
ith 90 ns delayed extraction and output signal digitalization

t 4 GHz. For measurements of MS/MS data, the LIFT mode was
sed employing standard manufacture’s settings. Bruker Dal-
onics software “flexControl (v3.3)” was used for instrument
peration and “flexAnalysis (v3.3)” for peak labeling. Resulting
S/MS spectra were used for automated protein identification

y BioTools (v3.2) and a local MASCOT (v2.2) search engine
sing a data set containing the all Pseudomonas genomes
ownload from NCBI on 01.06.2011. Matrix Sciences; param-
ters: enzyme: trypsin; modifications: carbamidomethylation
f cysteins (fixed), oxidation of methionines (variable); missed
leavages: 1; peptide tolerance: ±30 ppm; mass values: MH+
nd monoisotopic; only protein scores [P] as represented by
he probability-based Mowse score were considered for sig-
ificant protein identification (p value 0.05).

.3.3. LC-nESI-MSn (Q-TOF)
or proteins not identified by MALDI-TOF/TOF, nano-HPLC-
oupled ESI-MSn experiments were performed.

Proteolytic digests were loaded using a nano-HPLC (Prox-
on easy-nLC) on reverse phase columns (trapping column:
article size 5 �m, C18, L = 20 mm; analytical column: particle
ize 3 �m, C18, L = 15 cm; NanoSeparations, Nieuwkoop, The
etherlands), and eluted in gradients of water (0.1% formic
cid, buffer A) and acetonitrile (0.1% formic acid, buffer B).
ypically, gradients were ramped from 5% to 55% B in 50 min
t flowrates of 300 nl/min. Peptides eluting from the column
ere ionized online using a Advion Triversa NanoMate chip-
ased ion source (LC coupling mode, pos. ion mode, 2.5 �M
ozzle size) and analyzed in a quadrupole time-of-flight mass
pectrometer (Bruker maXis). Mass spectra were acquired over
he mass range 50–2200 m/z, and sequence information was
cquired by computer-controlled, data-dependent automated
witching to MS/MS mode using collision energies based on
ass and charge state of the candidate ions.
The data sets were processed using a standard proteomics

cript with the software Bruker DataAnalysis 4.0 Service Pack
Build 253 and exported as mascot generic files. Spectra were
nternally recalibrated on autoproteolytic trypsin fragments
hen applicable.

Proteins were identified by matching the derived mass
ists against a Pseudomonas database (downloaded from
s 4 ( 2 0 1 4 ) 1–9 3

http://www.ncbi.nlm.nih.gov/) on a local Mascot server (ver.
2.3, Matrix Science, UK). In general, a mass tolerance ±0.05 Da
for parent ion and fragment spectra, two missed cleavages,
oxidation of Met and fixed modification of carbamidomethyl
cysteine were selected as matching parameters in the search
program.

The 2D BN/SDS-PAGE and subsequent MS analyses were
repeated twice with similar results.

3. Results and discussion

Bacterial biodegradation of hydrocarbons requires the pas-
sage of hydrophobic substrates across the cell membrane.
The involvement of membrane proteins in the monoaro-
matic hydrocarbons uptake was demonstrated in vivo by
the enhanced toluene metabolism upon expression of the
Pseudomonas putida F1 TodX and Ralstonia pickettii PKO1 TbuX
proteins [25,26]. Recently, proteomics studies indicate the
presence of membrane proteins involved in the hydrocar-
bon degradation in a new Pseudomonas strain but until today
no information are their protein interactions are available
[5].

3.1. Membrane sample preparation

Pseudomonas cells were grown in LB and minimal medium con-
taining glucose and phenol. The cells were harvested in the
exponential growth phase. Similar to earlier reports in glucose,
the cells have a faster growth-rate compared to phenol [3,21].
The bright-yellow coloration appeared in the culture contain-
ing phenol indicate the accumulation of 2-hydroxymuconic
semialdehyde (HMSA). This coloration is typically observed
upon phenol degradation via the catechol meta-cleavage path-
way [3,4].

The first attempt in the present work was to develop an
efficient method for the mapping of the membrane complex-
ome from Pseudomonas using BN in the first dimension and
Tricine-SDS-PAGE in the second dimension. To this end, first
the membranes were treated with 5 mM EDTA in 50 mM Tris,
pH 8.0, a method that had been successfully applied to remove
ribosomal proteins in Chlorobaculum tepidum [15]. For further
enrichment of the membrane proteome fraction we subse-
quently incubated this fraction with 0.1% lauryl sarcosinate, a
concentration below its critical micelle concentration [27]. The
purity of the treated membranes was investigated by separat-
ing the protein samples using Tricine-SDS-PAGE. As shown in
Fig. 1, the protein patterns of the membrane fractions differ
significantly depending on the growth conditions.

The washed membrane fraction was solubilized using
a non-ionic, mild detergent compatible with BN-PAGE con-
ditions [9]. The solubilization efficiency of DM was tested
and the extracted membrane proteins were analyzed using
Tricine-SDS-PAGE (Fig. 2A). The best result with respect to
the amount of solubilized proteins was obtained in a ratio of
1:10 and 1:15 to the protein (Fig. 2A). In addition the solubi-

lized membrane complexome was characterized by BN-PAGE
(Fig. 2B). As Fig. 2B shows, distinct membrane protein com-
plexes were only obtained by solubilizing the membrane with
DM in a ratio of 1:15. In contrast, higher concentrations of DM

dx.doi.org/10.1016/j.euprot.2014.04.003
http://www.ncbi.nlm.nih.gov/
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Fig. 1 – Tricine-SDS-PAGE. Membrane fraction of the
bacterium grown in LB medium (lane 1), glucose (lane 2)
and phenol (lane 3). Membrane fraction after treatment
with 5 mM EDTA of the bacterium grown in LB medium
(lane 4), glucose (lane 5) and phenol (lane 6). Membrane
fraction after treatment with lauryl sarcosinate of the
bacterium grown in LB medium (lane 7), glucose (lane 8)
and phenol (lane 9).

the BN gel, which indicates the presence of a complex of about
interfered with the BN-PAGE separation, and no distinct bands

were obtained. Thus, we employed DM in a 1:15 (1.5%, w/v)
working ratio concentration according to its ability to resolve
a satisfactory number of complexes in intact form. Further, it

Fig. 2 – (A) Tricine-SDS-PAGE of the dodecyl maltoside soluble m
maltoside soluble membrane protein fraction. Ratios of detergen
Lanes 3A and 3B 15:1. Lanes 4A and 4B 30:1.
c s 4 ( 2 0 1 4 ) 1–9

should be noted that each membrane protein complex may
have different sensitivity to solubilization.

3.2. Membrane protein complexes identification

1-D BN-PAGE was combined with Tricine-SDS-PAGE to elu-
cidate the identities and the subunit composition of the
extracted membrane protein complexes (Fig. 3). For protein
identification, gel spots were excised and identified by mass
spectroscopy. From the three different carbon sources we
identified 46 distinct proteins, which were categorized accord-
ing to their predicted subcellular location: 50% cytoplasmic
membrane proteins, 39.13% outer membrane proteins and
only 6.52% cytoplasmic protein (Table 1). In a previous work
on the same strain the rate of the cytoplasmic proteins was
about 58% indicating the success of the membrane enrich-
ment and the purification procedure [5]. In addition in this
work the rate of the cytoplasmatic and outer membrane pro-
teins was increase from 12% to 50% and from 12% to 39%,
respectively [5].

3.2.1. Common complexes
The majority of the proteins complexes solubilized from the
membrane proteome are involved in bioenergetic processes.

Succinate dehydrogenase is composed from the SdhA-D
gene products and forms trimers with a predicted molecu-
lar mass of 355 kDa [28]. From the SDS gel, we identified the
66-kDa flavoprotein subunit SdhA (Q9I3D5) and the 26-kDa
iron-sulfur protein SdhB (Q9I3D4). The two other subunits,
SdhC (14 kDa) and SdhD (15 kDa) were not detected (Fig. 3).
The SdhA and SdhB subunits were identified in the all carbon
source in contrast to the previous study in which the SdhA
was found only in phenol and the SdhB only in LB medium [5].
Based on the size of the succinate dehydrogenase complex in
440 kDa, we conclude that the (SdhABCD) complex is intact.
The Na+-translocating NADH:ubiquinone oxidoreductase

(Na+-NQR), analogous to mitochondrial Complex I, is involved

embrane protein fraction. (B) BN-PAGE of the dodecyl
t to protein: Lanes 1A and 1B 5:1. Lanes 2A and 2B 10:1.

dx.doi.org/10.1016/j.euprot.2014.04.003
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Table 1 – Identified proteins. 1 LB, 2 carbon source glucose, 3 carbon source phenol. C, cytoplasmic; CM cytoplasmic
membrane; OM, outer membrane.

Accession no. Identified protein accession no as in [5] 1 2 3 Method MW Localization

1 Q3KFU8 Dihydrolipoamide succinyltransferase + MALDI TOF/TOF 42251 C
2 A4XPY9 HflK protein + + + MALDI TOF/TOF 43072 CM
3 A4XPZ0 HflC protein + + + MALDI TOF/TOF 33007 C
4 Q88N55 Chaperonin GroEL (A4XYM0) + + + MALDI TOF/TOF 56765 C
5 A4XYP8 Hydrophobe/amphiphile efflux-1 (HAE1) family

protein
+ + + MALDI TOF/TOF 113532 CM

6 Q9I3D5 Succinate dehydrogenase flavoprotein subunit + + + MALDI TOF/TOF 64062 CM
7 Q9I3D4 Succinate dehydrogenase iron-sulfur subunit

(A4XV94)
+ + + MALDI TOF/TOF 26765 CM

8 A4XSP3 Na(+)-translocating NADH-quinone reductase
subunit A

+ + + MALDI TOF/TOF 48406 CM

9 A4XSP8 Na(+)-translocating NADH-quinone reductase
subunit F

+ + + MALDI TOF/TOF 46039 CM

10 A4XSP4 Na(+)-translocating NADH-quinone reductase
subunit B

+ + + MALDI TOF/TOF 44120 CM

11 A4VMV2 Na(+)-translocating NADH-quinone reductase
subunit C

+ + + MALDI TOF/TOF 28523 CM

12 A4XWT3 Surface antigen (D15) + MALDI TOF/TOF 87173 OM
13 A4XTL3 Acyl-CoA dehydrogenase + + + MALDI TOF/TOF 89054 CM
14 A4XU22 Hypothetical protein Pmen 2077 + MALDI TOF/TOF 56668 CM
15 A4XNZ0 Protein of unknown function DUF513, hemX + + + MALDI TOF/TOF 41217 CM
16 A4XP25 Secretion protein HlyD family protein + + + MALDI TOF/TOF 38349 CM
17 A4XZJ1 Organic solvent tolerance protein + + + MALDI TOF/TOF 106928 OM
18 A4XU37 OmpF family protein + + + MALDI TOF/TOF 34795 OM
19 A4XVJ5 Cytochrome c oxidase, cbb3-type, subunit II + + + MALDI TOF/TOF 22852 CM
20 Q883S8 Outer membrane lipoprotein OprI (O85420) + + + MALDI TOF/TOF 8865 OM
21 Q9HTV8 Hypothetical protein PA5232 + MALDI TOF/TOF 38586 CM
22 A4XVR4 TonB-dependent siderophore receptor + MALDI TOF/TOF 87450 OM
23 A4VI97 Putative outer membrane receptor + MALDI TOF/TOF 80634 OM
24 A4XWV9 ABC-type uncharacterized transport system + MALDI TOF/TOF 67924 CM
25 Q4KAU8 Hypothetical protein PFL 3532 + + + MALDI TOF/TOF 63925 OM
26 Q9HT18 F0F1 ATP synthase subunit alpha (A4Y189) + + + MALDI TOF/TOF 55486 CM
27 A4Y187 F0F1 ATP synthase subunit beta (A4Y187) + + + MALDI TOF/TOF 49641 CM
28 A4XZ52 MotA/TolQ/ExbB proton channel + MALDI TOF/TOF 48289 CM
29 Q4KF29 GGDEF domain-containing protein + MALDI TOF/TOF 58246 CM
30 A4XPB8 Amino acid carrier protein + MALDI TOF/TOF 53329 CM
31 A4XQQ7 Cytochrome c1-like protein + MALDI TOF/TOF 29304 CM
32 A4XS71 OmpA/MotB domain-containing protein + + + MALDI TOF/TOF 22156 OM
33 Q4KJP2 Outer membrane lipoprotein Blc + MALDI TOF/TOF 21974 OM
34 A4XRS7 OmpA domain-containing protein + + + MALDI TOF/TOF 17804 OM
35 A4VHP3 Outer membrane protein OprG + + + MALDI TOF/TOF 23928 OM
36 A4XWL6 Hypothetical protein Pmen 2977 + MALDI TOF/TOF 21670 OM
37 A4XYP9 RND efflux system outer membrane lipoprotein + MALDI TOF/TOF 52181 OM
38 A4VFX8 TRAP-type mannitol/chloroaromatic compound

transport system
+ + MALDI TOF/TOF 43760 OM

39 A4VIG0 Ubiquinol—cytochrome c reductase, cytochrome b + + MALDI TOF/TOF 45767 CM
40 A4XRF5 Porin, LamB type + MALDI TOF/TOF 45963 OM
41 A4XQ31 Hypothetical protein Pmen 0789 + nLC ESI 78483 Unknown
42 A6EXX6 Hypothetical protein MDG893 16757 + nLC ESI 50108 Unknown
43 A4VM31 Probable porin + nLC ESI 46953 OM
44 Q88GR2 Aromatic compound-specific porin, putative + nLC ESI 46672 OM

it

i
N
F
n
(
m
i
c

45 A4Y0D7 Outer membrane porin
46 A4XQH7 Efflux transporter, RND family, MFP subun

(A4XYP7)

n the respiratory chain of various bacteria [29]. The Na+-
QR is composed of six structural genes (nqrA to nqrF).
our subunits were identified, namely nqrA (A4XSP3, 48 kDa),
qrB (A4XSP4, 44 kDa), nqrC (A4VMV2, 27.7 kDa) and nqrF

A4XSP8, 45.4 kDa). Two proteins in the same lane with a

olecular weight in the range of 20 kDa were detected but not

dentified. Based on the size in the BN of about 240 kDa we
onclude that the complex is an intact monomer. It should
+ nLC ESI 46667 OM
+ nLC ESI 41325 CM

be mentioned that only the nqrF subunit (A4XSP8) was found
only in glucose in the membrane subproteme analysis of the
same strain [5].

Recently, the identification of the HflC (A4XPZ0) and HflK
(A4XPY9) has been reported for the Pseudomonas strain grow-

ing in the three carbon source [5]. HflK and HflC are plasma
membrane proteins of Escherichia coli. Both have a large
C-terminal domain exposed to the periplasmic space and

dx.doi.org/10.1016/j.euprot.2014.04.003
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of th

LPS in the outer leaflet of the outer membrane. Although it
Fig. 3 – 2D BN/Tricine-SDS-PAGE pattern of the complexome

an N-terminally located transmembrane segment, which is
thought to act as a signal anchor sequence for their biogene-
sis. They form a complex, HflKC, which acts as a ‘modulator’
of HflB. HflB, known as a ‘quality control’ protease, is an ATP-
dependent metalloprotease and forms a ring-like complex.
Six molecules of HflKC are presumably attached to HflB in a
1:1 molar ratio, forming a complex with an effective molec-
ular weight of around 1000 kDa [30]. Although we have not
detected HflB, based on the size of the HflKC complex in the BN
gel (Fig. 3), we come to the conclusion that the (HflKC)6–HflB6

complex is formed.
The F1–F0 ATP synthase contains eight subunits arranged

in two subcomplexes: the water soluble F1 part (3�, 3�, �, �,
�) and membrane located F0 part (a, b2, c10–14) [31]. Previ-
ous study has reported the identification of the �, �, � and
� subunits from the F1 subcomplex and the b subunit of the
F0 subcomplex [5]. Here, we detected two subunits of the F1

complex, i.e. subunits � (Q9HT18) and � (A4Y187), but not �,
� and �. However, we did not detect any subunits of the F0

complex. Based on the migration in the BN corresponding to
a molecular mass of about 240 kDa, we assume that the F1–F0-
ATP synthase was dissociated at the solubilization conditions
and the complex at 240 kDa represents the F1 complex without
the F0 complex.

In addition, we identified the chaperone GroEL (Q88N55)
complex. This soluble complex is present in all growth con-
ditions at a molecular weight of about 750 kDa, indicating the
presence of the 14 subunit complex [32].

3.2.2. Common proteins
One of the most abundant protein in the outer membrane
is the general diffusion porin, OmpF (A4XU37) [33]. OmpF
(A4XU37) acts as a non-specific ion channel which allows
small, polar molecules into the cell. Furthermore, OmpF acts
as a porin and regulates osmotic pressure between the cell and
its surroundings. We identified the 37-kDa OmpF (A4XU37) in a

predominant complex that corresponds in molecular mass to
a trimer in the BN gel (relative to the soluble markers), and we
conclude that the native OmpF trimer is intact [33]. We found
e bacterium grown in (A) LB, (B) glucose, and (C) phenol.

OmpF (A4XU37) in other bands in the SDS gel, but attribute this
to potential dissociation, degradation or partial denaturation.

Another abundant membrane protein in the outer mem-
brane is OmpA (A4XRS7), which is present at >105 copies
per cell [34]. The main function of OmpA (A4XRS7) is to
maintain the structural integrity of the cell surface. The
OmpA (A4XRS7) protein was identified in the three car-
bon sources as a monomer which correlates to its reported
monomeric form of this outer membrane protein. Addi-
tional to the OmpA protein an OmpA/MotB domain protein
(A4XS71) has been identified in its monomeric state in the
membrane proteome of the strain grown in LB and phenol
(Fig. 3). In contrast in an earlier work the protein was found
only in glucose [5]. This underlines the importance to apply
complementary separation methods to study the same pro-
teome.

OprG, a member of the OmpW family, is a major outer
membrane protein [35]. Its expression is dependent on the
growth conditions, suggesting a complex regulation. Recently,
OprG expression was found to be increased under anaer-
obic conditions in the presence of iron [36]. On the other
side, an oprg knockout strain showed that this protein is not
involved in iron or antibiotics uptake [36]. Additionally, OprG
from P. putida, was shown to have a high emulsifying activity
and it was suggested that OprG plays a role for the utiliza-
tion and uptake of hydrocarbons [37,38]. In our study we did
not detect differential expression of OprG (A4VHP3) depend-
ing on the growth conditions. Furthermore, OprI (Q883S8), an
outer membrane lipoprotein, has been identified in all carbon
sources. It has been reported that OprI (Q883S8) is involved in
the generation of large surface-exposed fusion proteins with
enhanced immunogenicity, using its lipid tail [39].

The outer membrane protein LptD (A4XZJ1), an organic
solvent tolerant protein, has an integral C-terminal �-barrel
domain with a soluble N terminal domain [40]. LptD (A4XZJ1)
is involved in membrane permeability and the assembly of
has been suggested that LptD forms a high-molecular-weight
complex in the outer membrane we found this protein in a
monomeric form.

dx.doi.org/10.1016/j.euprot.2014.04.003
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In addition, a putative uncharacterized protein (Q4KAU8)
as identified in all carbon sources. Outer membrane proteins

an be predicted using bioinformatics tools which allow the
dentification of a signal peptide sequence for translocation
o the outer membrane, and the presence at the C-terminus
f aromatic anchor residues [41,42]. Based on the presence of
oth in protein Q4KAU8, we suggest that this protein repre-
ents an outer membrane protein.

.3. Proteins found in two carbon sources

.3.1. LB and phenol
ytochrome cbb3 oxidases represent a distinctive class of
roton-pumping respiratory heme-copper oxidases (HCO) and
re found almost exclusively in proteobacteria. The proteins
ack many of the structural features that contribute to the
eaction cycle of the studied mitochondrial cytochrome c oxi-
ase (CcO) [43]. Although the cbb3-type cytochrome c oxidase

s formed of CcoN, CcoO, CcoQ and CcoP subunits, in our study
t was possible to identify only the CcoO (A4XVJ5) subunit (sub-
nit II). This finding indicates the instability of the complex by
he used solubilization conditions [44]. Another protein iden-
ified in both carbon sources is HlyD (A4XP25). The protein
s a member of the Membrane Fusion Protein family and is
roposed to span the periplasm, linking the inner and outer
embranes [45]. Further, the HlyD (A4XP25) is involved in the

xport of a variety of compounds [46]. The obtained molecu-
ar weight of about 140 kDa in the BN is an indication that the
rotein exists not as monomer.

.3.2. Glucose and phenol
wo proteins present in the glucose and phenol conditions
elong to proteins involved in electron transport (A4VIG0) and

n the TRAP-type transport system (A4VFX8).

.4. Proteins found in one carbon source

seudomonas strains encode outer membrane channels
nvolved in the uptake of aromatic substrates [47]. Recently,
roteomic studies on the outer membrane subproteome
llowed the identification of two outer membrane proteins, a
embrane protein involved in aromatic hydrocarbon degrada-

ion (Q479D9) and a probable porin (A4VM31) [5]. In agreement
ith this study, an aromatic compound-specific porin Q88GR2

Fig. 3C) has been identified after growing the strain in phenol.
Maltoporin (LamB), a �-barrel protein, assembles into a

rimeric complex and allows permeation of sugars such as
altodextrins [48]. We identified the LamB protein (A4XRF5)

nly upon addition of glucose as carbon source and these
esults correlate to an earlier proteomics study of the outer

embrane proteome of the same strain where the protein
as identified only if glucose was provided as a carbon source

5]. The other protein present in the glucose only condi-
ions belongs to proteins involved in the RND efflux system
A4XYP9). Furthermore, the proteins, which have been found
nly in phenol, are putative uncharacterized proteins and

utative porins. We plan detailed biochemical analyses to
nderstand the function of these proteins. In contrast, grow-

ng the bacterium in LB medium allowed the identification of
welve proteins involved in different metabolite transport and
s 4 ( 2 0 1 4 ) 1–9 7

metabolic pathways. This finding indicates high metabolic
activity of the strain in LB, which is directly supported by the
high growth rates.

4. Conclusions

In conclusion, the method employed here for the charac-
terization of the membrane complexome of Pseudomonas sp.
strain phDV1 (BN/SDS-PAGE) is particularly suited to resolve
the highly hydrophobic proteins which are notoriously under-
represented in the classical 2D-GE approaches. While full
proteome analyses are possible now using nLC ESI MS or
nLC MALDI MS, the isolation of functional membrane protein
complexes needs to be achieved using biochemical methods.
Although BN-PAGE is not capable of solving all problems when
analyzing membrane proteins, it allows an efficient and repro-
ducible separation of the membrane complexome. Here, we
have detected a number of membrane protein complexes and
described their subunit composition and stoichiometry. Fur-
thermore, we were able to detect proteins which are only
expressed in the presence of phenol or glucose. The presented
2D BN/SDS-PAGE gel pattern should facilitate future studies of
the subunit composition and stoichiometry of Pseudomonas sp.
strain phDV1 membrane protein complexes during growth in
media containing different carbon sources.
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