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Abstract

We show that the accessibility problem, the common descendant problem, the termination problem
and the uniform termination problem are undecidable for 3-rules semi-Thue systems. As a corollary
we obtain the undecidability of the Post correspondence problem for 7 rules.
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Informally, this problem can be described as follows. We are given a finite alpAabet
and a finite sef" of defining relations

uyp <— Vi,

1)

Up <> Un,

where thex’s andv’s are words fromA*. Two words, f andg, from A* are considered

to be equivalent modul@ if one of these words can be obtained from the other word via
finitely many replacements af; by v; or vice versa. Thue asked for a method to decide,
givenT, f andg, whether the two latter words are equivalent modtlo

In 1947 Andrei Marko\23,24]and Emil Posf32] proved (independently) that no such
method is possible. Moreover, we can fixand f, and still have undecidability. A lot of
efforts was spent by many researchers in attempts to construct a “sifpliéfi undecidable
word problem (for surveys of such results see, for exanipie28).

One of the measures of “simplicity” is, the number of defining relations. In 1970 the
first author [25], for detailed proofs s€l@,28]) constructed a particular system with only 3
defining relations for which the word problem is undecidable. This result remains the best
(in the number of relations) till now. On the other hand, itis rather striking that no algorithm
was found for the case of a single defining relation (for partial progress in this direction see,
for example[1,22]).

In the present paper we shall deal with similar problems but with more flavor of computer
science than that of algebra. Namely, instead of defining relatijngg shall deal with a
systemS of rewriting rules

ug — vi,

(2)

Uy, —> vy.

Such collections of rules are calleemi-Thue systerirscontrast to Thue-systems which are
collections of bi-directional ruledlj. A word g is called adescendandf a word f modulo

S as soon as the worgl can be obtained from the worfl via finitely many replacements
of Ui by V;.

A straightforward counterpart of Thue problem for semi-Thue systems & tressibility
problem givensS, f andg, to decide whetheg is a descendant of moduloS.

Another problem, namedommon descendant probleman be also viewed as a coun-
terpart of Thue problem for semi-Thue systems: giSerf andg, to decide whether there
exists a wordh which is a descendant of bothandg.

If we put more attention to the process of transformation of words rather than to its
result (which is typical to computer science but has no counterpart in, say, algebra), then
we can consider infinitderivationsmodulo a given semi-Thue system. Thus we come to
the classicatermination problemgiven S and f, to decide whether there is an infinite
derivation fromy modulosS. If we do not specify a word', we get thauniform termination
problem
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The accessibility problem for semi-Thue systems is undecidable. This follows from the
above-mentioned result of Markov—Post because the word problem for a Thue §y&em
equivalent to the accessibility problem for the semi-Thue sysftgpm resulting from the
systemT by replacing each defining relation «— v by two rewriting rulesu — v
andv — u; in fact the direct proof of the undecidability of the accessibility problem for
semi-Thue systems is much simpler than the proof of undecidability of the original Thue
problem, the main obstacle which Markov and Post had to overcome was the bi-directional
character of the rules in Thue systems.

For a “symmetric” semi-Thue systeffyym, the common descendant problem is equiva-
lent to the accessibility problem (and to the word problem for Thue sygteand hence
the common descendant problem is also undecidable.

The undecidability of the termination problem can be deduced easily from the undecid-
ability of the “halting-problem” for some fixed Turing machiri8, p. 70, Theorem 2.3jia
a general translation of Turing machines into semi-Thue sysf@nmps 88—93, Section 2]

The undecidability of the uniform termination problem for finite semi-Thue systems is a
somewhat more subtle result; it is closely linked with the problem to determine whether a
given Turing machine is terminating @verystarting configuration; this last problem has
been proved undecidable [ih7] and the corollary that the Uniform Terminating Problem

is undecidable is derived {17, p. 227, point (8)]

The main results of the present paper are constructions of particular semi-Thue systems,
each with 3 rules only, for which the accessibility problem, common descendant problem,
and termination problem are undecidable; for the uniform termination problem we show
that it remains undecidable even if we restrict ourselves to semi-Thue systems with 3 rules
only.

The first of the above-mentioned 3-rules semi-Thue system can be transformed, by the
technique froni6], into an undecidable Post Correspondence Problem (PCP) with only 7
pairs of words.

The construction of undecidable 3-rules semi-Thue systems exploits the main idea from
the first author construction of an undecidable Thue-system with 3 defining relations cited
above. However, this was not enough, and the present paper is not a mere translation of
the technique known for Thue systems to the case of semi-Thue systems. Quite a new idea
of a hierarchy of letters and their transformations is introduced here in order to keep the
number of rules as small as in the case of Thue systems, and this new technique might find
applications in other cases.

The results of this paper were announce@®)] but detailed proofs are published here
for the first time. The new bound on undecidability of PCP was usd@ dy5].

2. Preliminaries
2.1. Vocabulary, notation
2.1.1. Words

By ¢ we denote, as usual, teenpty wordIf a word g is asuffixof aword f, i.e. f = hg
for some wordz, then we shall use the notatigiz —? for this word.
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2.1.2. Semi-Thue systems

Formally, asemi-Thueystem over an alphabatis a subset oA* x A*; usually a system
S = {{ug, v1), ..., (uy, vy)} will be exhibited asZ?). By — s we denote the binary relation
among words fromA* such that

f—sg<eu v, pqgcA* (u,v)eS&f =pug&g = pvg). 3)

The relation— g is called theone-stegewriting relation generated b/

A derivationmodulo S is a sequenc® = (w;, p;, u;, vi);c;, Wherel is a non-empty
beginning section oN (i.e. I = [0, k] for somek € N or I = N), w; is a word from
A*, (u;, v;) is a rule fromS, provided that for every positivefrom I there exist a word
gi—1 such thatw; = p;_1v;_1¢;—1 andw;_1 = p;_1u;—1q;—1. In order to abbreviate the
notation we often (incorrectly) drop the daia u;, v; in the definition of a derivatiom.

Thelengthof D isk (if I = [0, k]) or oo (if I = N).

By f S g f i>5 g f —k>5 g (wherek € N) we denote, respectively, the mere
existence of a derivation of the forfhi= wy, ..., wx = g, the existence of such a derivation
of some positive length or of length exactlyse€[18]); by f = ¢ we denote the existence
of an infinite derivation starting fronf.

The set of descendants gfmoduloS, denoted byl (), is defined by:

A5 =1lg e A", f ">s5g).

A derivation D is said to be arrl-derivation (rl stands for right-to-left) iff,vVi €

I — {0}, |pil < |pi-1vi-1l.
We remind the reader that a semi-Thue sysfem A* x A* is saidconfluentff

* * * k
Yu,v,we A*, (u — s v&u —sw) = Qu' € A*¥, v —>5u'&w —gu).

It is easy to see that whehis confluent and there is no infinite derivation modgidhen

every wordw has a uniqueormal form denoted by (w), such thaw g ps(w)andno
rule from S is applicable tg ¢ (w). We shall use this property for defining different maps.

2.1.3. Algorithmic problems

The following algorithmic problems on semi-Thue systems are classical:

The individual accessibility problefiAP) for the alphabet4, the semi-Thue system
S C A* x A* and the wordwg € A*:

instance: one wordw € A*

question: w —> g wo?

The accessibility problenfACP) for the alphabetd and the semi-Thue systeth C
A* x A*:

instance: two wordsw1, wy € A*

question: w1 —> g wo?

The common descendant problé@DP) for the alphabetd and the semi-Thue system
S C A* x A*:

instance: two wordsw1, wp € A*
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question: is there a wordv € A* such thatw, —*>5 w andwa —*>s w?

The termination problen{TP) for the alphabet A and the semi-Thue systémc
A* x A*:

instance: w € A*

guestion: does every derivation modul®starting onw have finite length?
(when the answer is “yes”, we say th&terminateson w).

The uniform termination probleif TP) for a classS of semi-Thue systems:

instance: an alphabetd and a finite semi-Thue systeshC A* x A* which belongs

toS

guestion: does every derivation modulbstarting from a word imA* have finite length?
(when the answer is “yes” we say thé&tis uniformly-terminatingsometimes abbreviated
as u-terminating).

For more information the reader can refef3dl9] (about semi-Thue systems)[a0,11]
(about termination problems).

2.2. Some useful results
The following reduction of the 1AP to the PCP will be useful.

Theorem 2.1(Claus[6]). The individual accessibility problem for a semi-Thue system
with n rules reduces to a Post correspondence problenu fér4 pairs of words

The following lemma will ease the extraction of a “regular” infinite derivation from a
general infinite derivation, in Sectid2.4

Lemma 2.1(Sénizerguef33]). Let S be a finite subset of ™ x A* and letD = (w;, p;,
ui, v;);en be aderivation modul§. Then there exists some injection: N — N and some
sequencéw;, p.);en such thafwy = wo and (w';, p;, us), Vo(i));cpy IS @ rl-derivation
modulos.

3. Constructions

All constructions of 3-rule semi-Thue systems in this paper are done according to the
following scheme. We start with some semi-Thue sysfgrover a finite alphabet and
then construct
e asequence of alphabets and semi-Thue systenss over A; (for 1<i <5),
e mapst; : AT — A* ,, (for 0<i<4),

+
e partial mapsp; : A}, | — A7 (for 0<i<4) and¢s : AL — Ag,
such thatfori =0, ..., 4 the mapp, is a left-inverse ot; in the sense that

Yw € A7, ¢;(ti(w)) = w.

Everyr; is then arencoding(i.e. an injective map) while, will be called adecoding
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Fig. 1. Systems, codings and decodings.

In proofs of Theorems 4.1-4.3 we just start from different semi-Thue sysfgenThe
required relationship betweefy and S5 is established in subsection 3.2. In an ideal world
it should take only the two following general forms:

e for every wordsw, w’ in A},

*
w—s w = (W) —5,, Ti(w)

o for every wordsw, w’ in A}, (and fuffilling some suitable condition)

w5, W = d(w) =5, by (w). @)
For technical reasons we are to introduce auxiliary syst&nasmdsS; (i = 2, 3, 4) which

slightly extend the main systenss, and replace the latter systems by the formedjrnas
summarized in Figl.

3.1. Definitions

In this section we describe the construction of systSsSs.

3.1.1. Systemiy
We start with an arbitrary semi-Thue systégover some finite alphabety = {ay, . . .,
a;.} and denote the rules of this system as follows:

M_1—>U_1,

Upng —> Ung-

Let Ao (resp.pyg) be the maximum length of the left-hand (resp. right-hand) sides of the
rules of Sp.
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3.1.2. System§p
We extend the alphabdty by a new letterg and define an auxiliary systefhover the
extended alphabety = Ag U {ag} consisting of the rules

aéo — g,
g — Uig (for alg e Béo_”'l') ,
()
— J— Ao—litng|
Ungd —> Ungq (for allg € B, ) .

Note that all rules have the same length of their left-hand sides equgl to
Now letA; = {x, y} andn : Bj — A7 be the monoid homomorphism defined by

Vi € [0, k], n(a;) = xxy' Tlxy<ti-i,
The maprg : Aj — Aj is then defined by
Vw € Af, To(w) = n(wap’).

The systen®; consists of the rules

20— [u1]

n@iq) — n@ig) (forallg e Bz~ ™), ©

o Jo—Iiing|
N(noq) —> N(Vngq) (for allg € BO0 o ,) .

The mapp, : A7 — A is defined by means of the following two semi-Thue systems over
BoU Aq:

To : xxy tlxy =i 5 ¢, (for 0<i <x), (7)
Ty X — g

y — ¢,

ag — &

One can easily check that both semi-Thue systyasd7 are u-terminating and confluent.
For everyw in A7 we set:

Po(w) = PTé(PTO(w))-
Finally, we introduce homogeneous notation—let rugsgé written as

up — vo,

Up > Un

with n>0, |ugl = -+ = |usl = A1 = Aol +5), andvo| < uy, ..., |val<py =
(Yo + pg)(k + 5).
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3.1.3. Systen,
Let A, = {a, b} and leté : A7 — A3 be the monoid homomorphism defined by

5(x) = b2abaa: o(y) = b2aaba.
The mapr; : A7 — A3 is then defined by
Vw € A%, 11(w) = d(w)b?.
The systenf, consists of the rules
T1(u0) — 71(v0),
: (8)
T1(un) —> 12(Vp).
The systens; is the extension af, by the additional rule
b—a )
and the systens; is further extension o, by the rule
&e— a. (20)

We denote bys:? the semi-Thue system consisting of the above two r@pargd (L0).
The map¢, : A5 — A7 is defined by means of the following two semi-Thue systems
Ty andTy:

T1 : b%abaa —> X,
b2aaba — v,

Ty : a— ¢, 11
b — &.

One can easily check that both semi-Thue systErasdT are u-terminating and confluent.
For everyw in A5 we set

Ph1(w) = Py (pp,(w)).

3.1.4. Systern§s

Let A3 = {a,b,c,d}. The mapry : A5 — Aj is then defined byz(w) = w, i.e.,
72 is simply the natural embedding df; into A3.

Lety : (A2 U {c})* — A3 be the monoid homomorphism defined by

Vx € A2 U {c}, y(x) = cx.
The systenss consists of the rules
t1(u0) — 7 (va(vo)c®¥a=ol) ¢,

' (12
T2(up) — 7 (ta(vy)cBHa=lvnD) ¢,
c — &.
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The systenss is the extension of3 by the additional rules:
a—d, b—a (13)
and the systen§z is further extension of3 by the additional rule
c—d. (14)

Let us denote by.,; — M;,i = 0,...,n, the “long” rules of the systen$s. All the
left-hand sides of these rules have the lengths equakdi; + 2, and all the right-hand
sides have the lengths equal/io= 12u, + 5, and we introduce notation for the letters
of the M’s andL’s. Namely, let/; ; denote thegj + 1th letter of L; andm; ; denote the
(k + Dth letter of M;, i.e.fori =0,...,n

Li=lio...l;;, (15)
Mi=mio...mj. (16)

The mapp, : A5 — A} is the homomorphism from3 onto A3 such that
bola) =a, Qb)) =b, ¢yc) =¢, Pa(d) =a.

3.1.5. Syster,

Let A4 = {a,b,c,d,a,b,¢, ¢ Let us callmain letters the elements df, b, ¢} and
nominalletters the elements é#, b, c, ¢}.

Let g : A3 — A} be the unique monoid homomorphism such that

p(a) = ab", @) =bb", () =7cb", o) =db".
The maprs : A3 — A} is then defined by

Yw € A3, t3(w) = @law)c.
The systens, is defined as follows. Let

L=Ipol10..-lno0---lojl1 ;- 1y, a7
M =moom10...Mp0... M0 M- My g (18)

The systens, consists of the rules

L— M,
b — b, a—a, ¢ —c,
b— a, a—d, c—d,

(19)

b — a,
ad"cd"a — ab"a, ad"cd"b — ab"b, ad"cd"c — ab"¢,

bd"cd"a —s bb*a, bd"cd"b —s bbb, bd"cd"c —s bb"¢.

Note that when the numberis fixed, all information about the original systefgis coded

in the two wordsL andM, and the other rules of the systeindo not depend ofiy. This

way of coding a (semi-)Thue system by two words was the main idea of the first author’s
construction of an undecidable Thue-system with 3 rules.
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Fig. 2. LatticeAg4.

The systens, is the extension of4 by the additional rules:

¢ — ¢,

R A A U N 20
eéded"a —> cb"a, éded b — Cb"b, cded c — b ( )
and the systeni, is further extension of; by the rule

é —> b. (21)

Let us notice that the ordered <ety, —*>S-4) is a lattice (see its Hasse diagram in Rig.

where the 0rdering—>‘<—>s—4 goes from top to bottom). This hierarchy of letters is the second
main idea which finally resulted in 3-rule semi-Thue systems.
Letn : A} — A% be the homomorphism defined by

n(a) = a, n(d) = a, n(b) = b, n(b) = b, n(c) = ¢, (&) = ¢, (&) = ¢, n(d) = d.
We introduce two subse@,, R, € A} by
0, ={we A} |Viell |w]wli]el{abdéy=i=1 (modn+ 1)}
R,=0,N{weA}||w=1 (modn+1)}.
The partial mapp; : A} — A3 is defined by
Dom(¢3) = Ry
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and for everyw = z1z2...zx, Wherez; € Ag,
$P3(w) = M(2p42)T(22043) - - - T(Zj (14 1)+1)

for jsuchthat(n +1) +1<k<(+D(n+1) + 1

3.1.6. Systernss
Let As = {x, ¥, y}. We shall use the abbreviation = xx, u» = x%x?2.
Lety : A; — Ag be the unique monoid homomorphism such that

W(b) = yuguououy, V(D) = yuiuiuouo,

Y(a) = yuououo, Y(a) = yuiuiuo, 22)
W(C) = yupupupusuy, (&) = yupupuiuiuy, Y(c) = yuiuiuiuius,
W(d) =y.

The maprs : A} — A is then defined by
Yw € A}, ta(w) = Y (w)y.
The systenss consists of the rules

Y(L)y — Y(M)y,
uuou2y (d"cd™) yurus — uzuzu(y(b") yuouo, (23)
XX — €.

We denote byD the semi-Thue system consisting of the single rule
XX — ¢

The setofword$w € {x, )E}*|w—*>ps} isdenoted byD7, itis known as th®yck-language

Let us denote by, the set(A4). One can check thatPs, —p) is a lattice too and
thaty : A4 — P4 is alattice-isomorphism. We define a map yD; — A} by

Yw € yDi, Y(w) =yt <{D\(A%(w> n P4)) (24)
4

(where the symbof\ , denotes the g.l.b. i0Ps, —*>D)).

As yDj is a suffix code which is the base 6fD})*, Y admits a unique extension as a
morphism(y D¥)* — A} which is still denoted byj. The partial mapp, : A — A} is
then defined by

Dom(¢4) = (yD)*y,
Yw € (yDD)*y, pa(w) = Y(wy™ ).

3.2. General properties

3.2.1. Encodings
Proposition 3.1. For everyw, w’ € A}, if
w —>s, w' thentg(w) — s, To(W’).
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Proof. Straightforward. O

Proposition 3.2. For everyw, w’ € A%, if w — 5, w’ thenty(w) —s, T1(w’).

Proof. Straightforward. [

Proposition 3.3. For everyw, w’ € A3, if w — g, w’ thentz o 12(w) i>s4 130 T2(W).

Proof. Letw = pug, w’' = pvg and{(u, v) € S.
Then

130 T2(w) = @(ap)pw)p(g)c, T30 T2(W") = Pap)ev)p(g)c.

The rule{u, v) must have the formi = t1(u;) = Li,v=r11(v)) = M, (where 0<i <n).
There should exist € {a, b}, L] € {a,b}*,t € {a, b, c},r',r" € A} such that

@lap) =r'zb", Li = Lb, p(q)c = tr". (25)
Then

130 T2(w) = r'Eb" Q(L)bb" tr" = r'2b" 7 (b o(L))bb" )bl tr” . (26)
One can check that

b p(L)bb" ™ S5, L (27)
because

o [BiQ(LN)bb" | = A+ D(n+1) = |L|,
o the image byr of the letters at positions: i 4+ 1 (modn + 1) in b’ @(L))bb"~ (resp.
inL)isL;,
e every letter at positiofi # i + 1 (modn + 1) in b’ (L})bb"~' (resp. inL) is equal tob
(resp. belongs téua, b}).
Hence
PRV B (L)DD D " s, 12D (L) 1
—>5, FZTH(M)b e
(here we use the rule — a as many times as necessary).
Let M! = M;c 1. Let us define a homomorphisth: A3 — A} (which is analogous to
¢) by

0(a) = ad™, 0(b) =bd", 0(c) =cd", 0d)=dd".
One can naotice that, by arguments similar to those used for deriva&in (
M S5, dO(M))cd™™". (28)
Hence
FELTI MBI g, 126" (dO(M])ed" )b 1r"

% N (29)
—> 5, P'2d"O(M])cd"tr" .
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Owing to the equality; = y (t1(v;)c5*1~1D) ¢ and using the last block of six rules of
(19), we get

2d"O(M)ed"t —> 5, p(zT1 (V). (30)
By all the above derivations we have:

130 T2(w) —>5, r'2b"p(te(v)tr”

p(ap)p(t1(vi))p(q)c (31)
= 130712(W). O

Proposition 3.4. For everyw, w’ € A}, if w — g, w’ thenta(w) i>55 T4(w").
Proof. Not difficult. [

3.2.2. Decodings
Proposition 3.5. Letw € (yD7)"y, w’ € Af be such words that

w—>g w'. (32)

Then
(1) w' e (yDP*y,

) paw) —> g, pa(w),
(3) Ifthe rule used in derivatio32) is y(L)y — y(M)y theng,(w) — s, dpa(w’).

Proof. Letus notice first that, for eveny € Pa, equality @4) implies that) (w) = x//‘l(w).
Hence

Let w andw’ be such words fromf thatw € (yD})*y andw — g5 w'.
Casel: The rule used ig/(L)y — y(M)y.
The occurrence af(L)y in w must be of the form

w = pY(L)yq with p € (yD})" and ¢ € (D1y)".
Hence
w' = py(M)yq
which shows that” € (yD7)*y (point (1) of the proposition), and
Pa(w) = V(P L)Ds(va). Paw’) = PP (M) ha(yq)-
By identity (33)
$aw) = Y(P)LP4(ya), a(w) = Y(PIMbs(yq).
Henceg,(w) — s, ¢4(w’) (proving points (2) and (3) of the proposition).
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Case2: The rule used i8ouzu(y(d" cd™) yurus —> uguuy(b") yuous.
Then

w = pywiuguzuy(d"cd™)yuiuiwoqy,
w' = pywiuguzuzy(b") yuzuzwaqy

with p, g € (yD})*, w1, wz € Dj.
Asy(a) € Ap(ywiuououy)

7 * A
Y (ywiuguuz) —p a.

Hencexl(ywluzuzuz) € {a, b, clh. B B
Let us examine all the possible values of the péityuiuiw2), Y (yususw?)).
One can check that for everye y D7, only the following cases are possible:

Ap W) N {Y (@), Y(b), Y(e)} =0, Y() =d, (ChH
Ap W) N {Y (@), Y (), Y(o)} = (@)}, Y(v) € {a, a}, (€2
Ap ) N {Y (@), Y (), Y ()} = ((a). y(B)}, Y(v) € {b, b}, (C3)
Ap @) N {Y (@), Y (), Y ()} 2 (Y (o)}, Y () €{c. ¢ ch (C4)

But the fact that every word ifyy(a), ¥(b), Y(c)} begins withyu1u, implies that

Ap (yuzugwr) N (@), Y (b), Y(c)} = Ap (yuzuzwz) N {Y(a), Y(b), y(c))}.

Hence both wordsuiuiwz, yusuowy fulfill the same case Cil<i <4).
It follows that

W (yuruiwy), Y (yuzuzwy)) )
€ {(x,x)|x € As}U{(a,a), (b,b), (c, ), (c, ¢), (¢, 0)}. (34)

Let us prove that the two last valugs ¢), (¢, ¢) are impossible.
If Y (yuzuzwy)) = ¢ then eitheryy(a), Y (c)}  Ap (yuzuzwy) or
{W(©)} € Ap(yuzuzwy).

In the former cas€y/(a), Y (c)} € A (yuruiwy) too, so that

Y(yuiuiwr) = ¢. (35)

In the latter caseyuyuiuousuy € Ap(yuiuiwy), hence{y(a), Y(c)} S Ap(yuiuiwa)
and again35) holds.
Thus we refined34) to

(U (yurugw2), Y (yuguowz)) € {(x, x)|x € Aa) U {(a, a), (b, b), (¢, O)}.

Hencegp,(w) —*>S—4 ¢4(w") using either no rule at all or one of the six last rulesis)(or
the three last rules 02().
Case3: The rule used isx — e.
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Let wy, wy € AZ be such words that = w1y, w' = wjy. We havew; =5 wj hence
Ap(w1) 2 A (w)), so that

AL (w1) N Pg) =>p A(A(wh) N Pa).
Py Py

As  is a lattice isomorphism from4 to P4 we have
y (/\(A%(wl) N P4)) St (/\(A%(w’p N P4>) . O
Py Py

Proposition 3.6. Letw, w’ € R, be such words that — ¢ w’.
Thengs(w) —*>5-3 Pz(w’).
Proof. Easy. O

Proposition 3.7. Letw, w’ be words fromAZ%.
@) Ifw —g, w thendy(w) —>g, Po(w).
2) Ifw —3 w’ theng,(w) —*>S~2 do(w').

Proof. Easy. [J

Proposition 3.8. Let w,w’ € A and w € Imt; be such words thaiv —
w —>s, w'. Thendw’ € Im 71 such thatw —s, W' —

sib

/
Sg.b w .

Proof. Suppose thaw, w’ € A5 andw € Im 71 are fulfilling

w —>

b W5, w'. (36)

Let us distinguish two cases, according to the rule used in the first st&g)of (
Casel: The rule used is — a.
There existp, q, p’, ¢’ € A%, i € [0, n] such that

W =pq, w=pag=ptiu)g’, w=prti(v)g.

If the word p (resp.g) had no factobb, then no rule ofS, can use this position of letter
Hence the given occurrenceqf(u;) must take place insidg or ¢. Therefore, there exists
w’ € Im 71 such that
W—>g5, W —> b w' (37)

Otherwise, letp = pobbp1,q = q1bbgo be the decompositions corresponding to the
rightmost (resp. leftmost) occurrenceldi in p (resp.q). As |p1g1| = 4, we must have
|p1aqi| = 5, hence no rule of, can use the given occurrenceafWe can thus again
conclude that derivatior8{) holds.
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Case2: The rule used is — a.
There existp, g, p’, ¢’ € A%, i € [0, n] such that

w = pbg, w=paq=p'ti(u)q, w = ptivig.

If p (resp.q) has no factobb, thenp € {e, b} (resp.q € {, b}). It follows that the given
position ofa in w cannot be used in a rule §6. We thus reach conclusio37) again.

Otherwise, letp = pobbp1, g = q1bbgo be the decompositions corresponding to the
rightmost (resp. leftmost) occurrencefdf in p (resp.q). We must have eithepiaqr =
aaaa Or |p1aq1| = 10 (if the L.h.s. ofb — « was taken in a factdsb). In both situations,
no rule ofS> can use this occurrence @f so that 87) follows again. [J

Proposition 3.9. Letw, w’ € A} be such words that — g, w'.
Theng,(w) — s, P1(w).

Proof. Not difficult. [

Proposition 3.10. Letw, w’ € A be such words thab — 5, w’. Then
(1) if the rule used i (ag@) — &, thendo(w) = Po(w),

(2) otherwise ¢pg(w) —> 55 Po(w’).

Proof. Not difficult. O

3.2.3. Stability
Proposition 3.11. Letw, w" € A{ be such words thab € A5 (Im 1) andw — g5 w'.
Thenw' € A% (Im 14).

Proof. Straightforward. [

Proposition 3.12. Letw, w’ € A} be such words that € R, andw — g, w’. Then
w' € R,.

Proof. Easy. [J

3.2.4. Extractions
Proposition 3.13. Letw € AZ be such a word thatv &55. Then 3w’ € (yD})*y,

o0
w' —> ;.
Proof. We define amags : (y{x, x}*)* — (yD})* in the following way. Letw be some
word in y{x, x}*. It has a uniqgue decomposition as
W = ywoZiWi...ZjW; ...k Wk,
wherew; € D}, z; € {x,x}andz1...zi ...zt = pp(w). Then we define
¢s(w) = ywows ... w; ... wy.

Asy{x, x}* is a suffix code which is the base of the mon@igix, x}*)*, 5 admits a unique
extension as a homomorphisiy{x, x}*)* — (yD;)* which is still denoted byps.
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Now we define a maps : Af — (yD})*y by
Yw € AL, ¢s(w) = ds(ywy).
One can check that for alb, w’ € A,
w— 5 W = Pg(w) —> 55 Ps5(W).
It follows that

o o
W — 5= ¢5(w) —> 5. O

Proposition 3.14. Letw € A} be such aword thab —>,. Then 3w’ € R, w' —> .

Proof. Let D = (w;);<n be an infinite derivation modulsy starting fromw = wp.
For everyv e A} we callalternation any factorf of v of the form

f=z1822

such thatz, z are main lettersg € A} contains only nominal letters, arg; |# n
(modn + 1). We denote byjv|| the number of alternationsf v. We observe first that the
rules from— g, do not increase the number of alternations. Without loss of generality we
can then suppose that all have the same number of alternations, $ay left-product

by a fixed main letter, we can also suppose thawakre beginning with the main lettér

Let us consider the decompositions

Wi = Zj,0W;,0Z;,1Wi,1 ... % jWij...Z2iJWiJ,

wherez; ; is nominal,z; ;w; ; has no alternation but ;w; ;z; ;11 has one alternation.
The wordz; jw;, ; will be called the(j + 1)th block of w;. By Lemma2.1, we can

suppose thab is an rl-derivation. We show now that if > O then there exists another

infinite derivation with at mos# — 1 alternations.

e If some step of derivation applies one of the rules— b,4 — a,é —> & on
zi.7, then no rule applied later can involve any position of ¢tie+ 1)th block. Hence,
(Wi1+k (zi+1le-+1J)‘1)keN is an infinite derivation witiJ — 1) alternations.

e If some step of derivation applies one rule in sojtie block ( 1< j < J), then no rule
applied later can involve any position of tii¢ + 1)th block. Hence we obtain again
some infinite derivation withl — 1 alternations.

¢ if none of the two above cases occurs, then every rule applies ofy thel)th block,
and the prefix; ow; 0zi,1wi.1 . . . zi,.y—1w; -1 isfixed. Hencez; yw; 1),y iS aninfinite
derivation with O alternation.

We have proved by induction that, under the hypothesis of the proposition, there exists some

infinite derivationD’ = (wf)ieN with 0 alternation and, in fact, i®,. Letv € [1, n + 1] be

such aninteger thaw!| = v (modn+1). Then(ab" wfb"H_VE)ieN is an infinite derivation

starting inR,,. O
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Proposition 3.15. Letw € A3 be such a word thaw 333. Then w 353.
Sketch of proof. Suppose thab = (w;); > is an infinite derivation modul§s, such that
w = wg.

Let us remark that no left-hand side of rule £ uses letter/. Hence, after replacing
every application of rule — d by an application of the trivial rule — ¢ in D, we
obtain another sequené® = (w;); > o such that

ki
w=uwy & Vi eN, 3k {0, 1}, w; —>3 wi.

As the system{c — d} is u-terminating, it is not possible that almost all the steps of
derivationD use this rulee — d. Hence

k; = 1 for infinitely manyi € N.

Hencew —>; . O

3"

Proposition 3.16. Letw e A5 be such a word thai 352. Then
(1) Fw’ € A5, w’ gsz,

(2) if w € Im 1y, thenw >,

Proof. Letus suppose that € A% is such a word thab ﬁs~2. Let us prove point (1). We
observe that the number of factdrécan only decrease in a derivation modGto. Hence
there existsv; € A3 such thatw; ﬁg and the number of factois® is fixed (throughout

the derivation). Now, in such a derivation, the number of consecutive blgcasdistance
< 4 (i.e. factors of the fornb2ub? with no occurrence o2 in bub and|u| < 4) can only

decrease. Hence there exists € A3 such thatw; 352, and the number of factoris®

is fixed, and the number of consecutive bloéksat distance< 4 is fixed too. In such a
derivation the rulé — a can be applied only
e between two consecutivé at distance> 5,
e or before the first block? or after the last block?,
e orinside a block?,
e or can transform a block?abaab? or b2aabab? into b2aaaab?.
In either case the position of the new letteintroduced by the rule will never be usable
later on in the derivation. Hence we can discard all the applications of thé re a in
the derivation, and obtain another infinite derivation modizlstarting onw,. Point (1) is
proved.

If w € Im 71, thenw has neither factab® nor consecutivé? at distance< 4. Hence, by

the above arguments;, —,. Point (2) is proved. [J



Y. Matiyasevich, G. Sénizergues / Theoretical Computer Science 330 (2005) 145—-169 163
4. Reductions and bounds

Let us use the notation

T=1T40T307T20T]10TQ, ¢:¢0°¢1°¢2°¢30¢4'

An easy verification from the definitions shows thatfet 0, ..., 4

¢i oT; = |dA?_ﬂ, (38)
which also implies that
¢OT=IdA6- (39)

4.1. Finitary problems

4.1.1. Accessibility and common descendant problems

Theorem 4.1. There exists some semi-Thue sysfewith 3 rules which has undecidable
individual accessibility probler{for some wordvg) and also undecidable common descen-
dant problem

Proof. Let S be some finite semi-Thue system over a finite alphahethich has unde-
cidable IAP on a given wordg € A*. Let us define a new semi-Thue system by

Ag=AUl{a}, So=SU{awoa — &},

wherea is a letter not from the alphabet It is undecidable, for words € Af, whether

u —*>So ¢ or not. Let us choose this systefgas a starting-point for our constructions: we
consider the sequence of systefigo < ; < 5 defined in SectioB.1and starting by the above
So. We shall show that, for every e A, the three following statements are equivalent:

(1) u _*>So &,

(2) t(u) —> 5, y3rtDF2,

(3) (u), y3**tD+2 have some common descendant modiglo

Part (1) = (2):

Let us suppose —*>SO ¢. Using Propositior8.1and the first rule of; we obtain

To(u) —> 5, 1 (aéo) — g &

By Propositions3.2-3.4
(1) —> 55 Ta(13(12(12(2)))). (40)

where
14(13(12(11(8)))) = 14(ab"bb"bb" ) = Y (ab"bb"bb"¢)y.

As for everyz € As, Y(z) —>p y we get

14(13(12(11(8)))) —> 55 yS"HVH2, (41)
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By derivations 40), (41), t(u) —> g, y3"tD+2,
Part (2) = (3) is obvious.
Part (3) = (1):
Let us suppose thaix) and y3*+tD+2 have some common descendant modigoAs
y3+D+2 5 jrreducible moduldss, we can conclude that

T(l/l) —*>55 y3(n+1)+2_
By Proposition3.5we obtain
¢4(T(l/{)) _*)5:4 d3(}’l+1)+l
As ¢,(t(u)) € Im 13, p4(t(1)) € R, and has no occurrence @fHence by Propositio8.6
h3(ha(t(w))) —>g, dd
which, by Propositior8.7 leads to
b2(d3(Pa(t()))) —>3, aa.
Applying Propositior8.8inductively, we obtain
A0’ € IM 11, Py(hg(dy(t(u)))) —>5, W’ —*>S;4h aa.
The only possible value ab’ is bb, hence
$o(P3(Pa(1(w)))) —>s, bb
and Proposition8.9, 3.10then show that
¢(t(u)) —*>50 e, i.e. u —*>So e.
The equivalence between points (1), (2) and (3) is then established.

The factthat{l) <= (2) proves thafSs has undecidable individual accessibility problem
for wp = y3(n+l)+2.

The fact that(l) <= (3) proves thatSs has undecidable common descendant
problem. [

Corollary 1. The Post correspondence problem is undecidablé foairs of words

Proof. Follows from Theoremd.1and2.1. [
4.2. Infinitary problems
4.2.1. Termination problem

Theorem 4.2. There exists some semi-Thue sysfemith 3 rules and with undecidable
termination problem
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Proof. Let Sp be some finite semi-Thue system over some finite alph&pétving unde-
cidable termination problem. Let us consider the sequence of sy$®Jps ; < 5 defined
in Section3.1and starting by the abo&. We reduce now the termination problem fr
to the termination problem fa$s by showing that, for every € Aj

u =g, if and only if t(u) =>g. (42)

This implies that the syste$i= S5 has the required property.
Part “only if " Let us suppose that —> g,. By Propositions3.1-3.4, we obtain

T(u) ﬁ)ss.
Part “if ™ Let us suppose that
T(u) —>s. (43)

By Proposition3.5and owing to the fact thais — {{/(L)y — ¥(M)y} is u-terminating,
we have

ba(t()) >,

By Proposition3.11the whole derivation43) lies inside4’, (Im 74), hence
Pa(t(w)) —>,.

By Proposition3.6and owing to the fact thaf; — {L — M} is u-terminating,

h3(Pa(t))) —>g,.
By Proposition3.15 it is also true that

$3(Pa(t(w)) —> s,
By Propositior3.7, point (2), and owing to the fact théd — ¢, a — d} is u-terminating
P2 (h3(Pa(r())) —>g,.
Using identities 88) we observe that
$2(P3(Pa(t()))) = t1(u) € IMm13.
Hence by PropositioB.16 point (2)
Po(P3(Pa(z))) >,
and by Proposition8.9, 3.10
Po(P1(D2(d3(Pa(x)))) —>5
i.e., by identity 89)

o
U —>s,. U
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4.2.2. Uniform termination problem
Theorem 4.3. The uniform termination problem is undecidable for 3 rules semi-Thue
systems

Proof. We reduce below the uniform termination problem for finite semi-Thue systemsto the
uniform termination problem for 3-rules semi-Thue systems. As the former is undecidable
(as recalled in Section 1), the second problem is undecidable too.

Let So be some finite semi-Thue system over some finite alphabetere again we
consider the sequence of syste@s)p<; <5 defined in Sectior8.1 and starting by the
aboveSp. We show now that the uniform termination property Hpris equivalent to the
uniform termination property fofs

Ju € Al u >, if and only if Jw € AL, w >, (44)

Part “only if’: Let us supposer —> .
By the same arguments as in part “only if” of the proof of Proposido?) we have

T(u) 355-

Part “if": Let us suppose that there exists somes Az such that
w S,

By Proposition3.13
' € (yDH*y, w >,

By Propositiorn3.5, and owing to the fact thais — {¥'(L)y — ¥(M)y} is u-terminating,
d)4(w’) i>5‘4-

By Proposition3.14
" € Ry, w' S,

Owing to the fact that— ¢, does not increase the numbercof
Jwrr e Ay, w” —*>S—4 w/ &54

and by Propositio3.12, the whole derivationw// ﬁ>s~4is insideR,,. Using now Proposi-
tion 3.6and the fact thaf; — {L —> M} is u-terminating, we obtain

o0
P3(wrr) — ..

Thus, by propositior3.15

oo
P3(wrrr) — 4
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Using Propositior8.7, point (2), and the fact thdt:t — d, ¢ —> &} is u-terminating, we
obtain

Qo (ps(wrrr)) ﬁ>§2.

By point (1) of Propositior8.16
Jwrr € A%, wry &52

which, by Proposition8.9, 3.10implies
bo(pr (W) —> s

We have then exhibited somes Af such that ﬁso as was required. Equivalenc#j
is thus proved. O

5. Related work and perspectives
5.1. Other types of rewriting systems

Beside semi-Thue systems, other kinds of “rewriting systems” among combinatorial
objects have been investigated in the literature.

The notion ofTermRewriting Systems (TRS) is nowadays considered, on its own, as a
domain of theoretical computer science (ge). These systems are in some sense brothers
of Thue-systems since they were also considered by Thue (as ass¢8&ld @commenting
on[37]). Concerning the termination problem for TRS, it was provd@]jihat this problem
is undecidable even when restricted to the one rule case. A systematic classification of
termination problems for TRS, from the decidability point of view, is exposdd4h

A very general notion dfVord Rewriting Systems was introduced by Postifi]. These
systems consist of rules which are no more linear (as itis the case for TRS) but still apply on
words (as it is the case for semi-Thue systems). Concerning these systems, the first author
has showrj26] that the accessibility is undecidable, even when restricted to the one rule
case.

5.2. Positive side of the same decision problems

As explained in Section 1, much work has been devoted to the search for a solution of the
word-problem for one rule Thue systems, which can be seen as the accessibility problem
for symmetric two-rules semi-Thue systems (Ee22)).

The Post Correspondence Problem has been shown decidable for 2 pairs ofMbrds
A generalization of this positive result is given[ik6], but it remains unknown whether the
PCP is solvable for 3 pairs of words.

More recently, a good deal of work has been devoted to the termination and the u-
termination problem for one rule semi-Thue systefi§,15,20,21,30,34,38]t seems
generally hoped that this problem will turn out to be decidable, though no general solution
has been found yet.
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