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Between two sets of sentences, <P and P, several relations of relative 
strength may hold, for instance, those expressed as follows: 

(1) all members of P are derivable from <P (by the axioms and rules 
of first-order logic with identity); 

(2) the theory axiomatized by P is interpretable in the theory axio­
matized by <P; 

(3) the theory axiomatized by P is relatively interpretable in the 
theory axiomatized by <P. 

The well-known, so-called syntactical, definitions of these relations have 
an accidental character,2) and it seems desirable to find alternative 
characterizations with greater philosophic interest. In particular, we 
might seek interesting relations between the models of <P and P which 
correspond to (1), (2), (3). 

For the relation (1) the problem was solved by Godel's completeness 
theorem. The present paper gives analogous equivalences involving the 
relations (2) and (3), at least for those cases in which the set P is finite. 
Syntactical formulations of the results are also obtained: a finitely axio­
matizable theory is interpretable (or relatively interpretable) in a theory <P 
if and only if it is interpretable (or relatively interpretable) in every 
complete extension of <P. 

§ 1. Preliminaries. 

Concerning the framework within which (first-order) metamathematics 
is to be conducted, the literature is in some details not uniform and in 

1) This paper, which reports a talk given before the Euratom workgroup in 
Amsterdam in the fall of 1962, was prepared partly at the University of Amsterdam 
under Euratom Contract No. 010--60-12 and partly under United States National 
Science Foundation Grant No. NSF-GP 1603 (Montague). I am grateful also to 
Dr. K. L. de Bouvere and Professors Andrzej Ehrenfeucht, Solomon Feferman, 
and Alfred Tarski for helpful discussion; Professor Tarski made suggestions leading 
to the improvement of several formulations. 

2) The relation expressed by (1) is the basic notion of first-order logic. The 
relations expressed by (2) and (3) were first explicitly defined in TARsKI, MosTowsKI, 
and ROBINSON [1]. 
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others not entirely definite. It is therefore perhaps not wholly gratuitous 
to sketch here a suitable framework. 3 ) 

Metamathematics is seen as an extension of set theory. As to what is 
meant by 'set theory' we may maintain a certain degree of indeterminacy. 
All the objects to which the present paper will refer are to be sets; we 
leave open the question whether there also exist individuals and proper 
classes. For set-theoretic axioms we may thus choose either the system 
of Zermelo-Fraenkel or that of Bernays-Morse, and in either case we may 
either allow or not for the existence of individuals.4) 

The extension consists in adding to set theory as primitive symbols 
the O-place operation symbols '---,', '--+', 'A', 'v', 'f--+', '[', 'J', 'A', 'V', '=' 
(respectively read 'the negation symbol', 'the implication symbol', 'the 
conjunction symbol', 'the disjunction symbol', 'the biconditional symbol', 
'the left bracket', 'the right bracket', 'the universal quantifier', 'the 
existential quantifier', and 'the identity symbol'), the I-place operation 
symbol 'v' (read, in the context 'vn', 'the nth variable'), and the 2-placeopera­
tion symbols 'p' and '/' (read, in the contexts 'p""n' and 'j""n', 'the exth n-place 
predicate' and 'the ex th n-place operation symbol (or functor)' respectively), 
and adding the following axiom: if ex, (3 are distinct ordinals and n, k 
are distinct natural numbers, then the set {---" --+, A, v, f--+, [, ], A, V, 
=, vn, Vk, p""n, p{J,n, P""k, j""n, j{J,n, j""d contains exactly 18 members, 
each of which is a I-place sequence. 

Such are the axiomatic foundations of our metatheory. We now in­
troduce by definition a number of metamathematical notions. The logical 
constants are ---', --+, A, v, f--+, [, ], A, V, and =. A variable is a sequence 
Vn where n is a natural number, an n-place predicate is a sequence p""n 
where ex is an ordinal, and an n-place operation symbol is a sequence j""n 
where ex is an ordinal. A predicate or an operation symbol is a sequence 
which, for some natural number n, is an n-place predicate or an n-place 
operation symbol. An atomic expression is either a logical constant, a 
variable, a predicate, or an operation symbol. An expression is a finite 
sequence each of whose I-place subsequences is an atomic expression. 
Concatenation of sequences is indicated by juxtaposition. 

A language is a set of predicates and operation symbols. The set of 
terms oj a language r is the smallest set e containing all variables and such 
that FCo . .. Cn-I E e whenever F is an n-place operation symbol in r 
and Co, ... , Cn-I E e. An atomic jormula ot r is an expression having the 
form C = 'fj, where C, 'fj are terms of r, or else the form PCo ... Cn-I, where 
P is an n-place predicate in r and Co, ... , Cn-I are terms of r. The set 
of jormulas ot r is the smallest set W containing all atomic formulas of r 
and such that (1) ---,4> E W whenever 4> E W, (2) [4> --+ 1p], [4> A 1p], [4> v 1p], 

3) A closely related, though not identical, approach is given in Tarski [1]. 
4) For formulations of the various systems of set theory mentioned see MON­

TAGUE, SCOTT, and TARSKI [1]. 
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[cp f-+ "P] E (/J whenever cp, "P E (/J, and (3) Axcp, V xcp E (/J whenever x is a 
variable and cp E (/J. 

A standard atomic formula of T is an expression of the form PVo ... Vn-l, 
where P is an n-place predicate in T, or Fvo . .. Vn-l = vn, where F is 
an n-place operation symbol in T. (It will be recalled that Vo, ... , Vn 
are the first n + 1 variables.) The set of standard formulas of T is the 
smallest set containing all standard atomic formulas of T, together with 
all formulas x = y, where x, yare variables, and satisfying conditions 
(1)-(3) above. 

The notion of a free variable is understood in the usual way, and a 
sentence (or standard sentence) of T is a formula (or standard formula) of 
T without free variables. By a term, atomic formula, formula, sentence, 
standard atomic formula, standard formula, or standard sentence is under­
stood an expression which is respectively a term, atomic formula, formula, 
sentence, standard atomic formula, standard formula, or standard 
sentence of some language. 

By a derivation from a set (/J of sentences is understood a finite sequence 
constructed in the usual way on the basis of members of (/J and the axioms 
and rules of first-order logic with identity. Several exact characterizations 
are possible; for an example see MONTAGUE and HENKIN [1]. A formula 
"P is said to be derivable from a set (/J of sentences, in symbols (/J I- "P, 
if there is a derivation from (/J which contains "P as a constituent, and 
two sentences are logically equivalent if each is derivable from the unit 
set of the other. It is easily seen that every sentence of a language Tis 
logically equivalent to a standard sentence of T. A theory is a set (/J of 
sentences such that, for some language T, all members of (/J are sentences 
of T, and "P E (/J whenever "P is a sentence of T and derivable from (/J. 

The language T is uniquely determined by the theory (/J and is called the 
language of (/J. If (/J is a theory and 'JI a set of sentences, then (/J is said to be 
axiomatized by 'JI if 'JI is a subset of (/J and all members of (/J are derivable 
from 'JI; and a theory is called finitely axiomatizable if it is axiomatized 
by some finite set of sentences. 

We turn now to the syntactical characterization of interpretability and 
relative interpretability. Suppose that / is a function whose domain is 
a set of standard atomic formulas and whose range is a set of formulas. 
For any standard formula cp, we can define the substitution in cp based on f, 
or CPf, by the following recursion: if cp is a standard atomic formula, then 
CPf is f( cp) if cp is in the domain of f, and cp otherwise; if x, yare variables, 
then (x=y)f is X=y; if cp, "P are standard formulas and x is a variable, 
then (----, CP)f is ----'(CPf)' [cp -7>- "P]f is [CPf -7>- "Pf], (AXCP)f is AXCPf; and the 
other logical constants behave analogously. If (/J is a theory, (/Jf is to be 
the smallest theory containing CPf whenever cp is a standard sentence and 
a member of (/J. 

If (/J, 'JI are theories, then (/J is said to be interpretable in 'JI if there 
exists a function f such that (1) the domain of f is a set of standard atomic 
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formulas, (2) the range of 1 consists of formulas of the language of lJI, 
(3) whenever 4> is in the domain of 1,1(4)) is a formula whose free variables 
are among those of 4>, and (4) <Pf C lJI. 

Let P be a I-place predicate. The relativization 01 a lormula 4> to P, 
or 4>(P), is defined by the following recursion: if 4> is an atomic formula, 
then 4> (P) is 4>; if 4> and "P are formulas, then (-----, 4» (P) is -----, 4> (P), [4> --+ "P] (P) 
is [4>(P) --+ "P(P)], [4> 1\ "P](P) is [4>(P) 1\ "P(P)], [4> v "P](P) is [4>(P) v "P(P)], and 
[4> f-+ "P ](P) is [4>(P) f-+ "P(P)]; if in addition x is the variable vo, then (/\x4»(P) 
is /\ x[Px --+ 4>(P)] and (V x4»(P) is V x[Px 1\ 4>(P)]; and if x is a variable 
other than Vo, then (/\x4»(P) is /\x[Vvo[Pvo 1\ x=vo] --+ 4>(P)] and (Vx4»(P) 
is V xCV vo[Pvo 1\ x=vo] 1\ 4>(P)]' It is obvious that if 4> is a formula and 
x any variable, then (/\ x4»(P) is logically equivalent to /\ x[Px --+ 4>(P)] 
and (V x4»(P) to V x[Px 1\ 4>(P)]. The reason for giving less natural 
conditions in the recursive definition is to insure that if 4> is a standard 
formula, 4>(P) will be one also. 

The relativization 01 a theory <P to P, or <p(P), is the smallest theory 
containing 4>(P) whenever 4> EO <P. A theory <P is said to be relatively inter­
pretable in a theory lJI if <p(P) is interpretable in lJI, for some I-place predicate 
P not in the language of <P. 

The notions of interpretability and relative interpretability are due 
to Tarski and are defined in TARSKI, MOSTOWSKI, and ROBINSON [1]. 
The definition of interpretability given in the first edition of that mono­
graph, though equivalent to the present definition in the case of theories 
with finite languages, turned out to have undesirable consequences in the 
general case. A revised definition, completely equivalent to the one given 
here, is to appear in the forthcoming second edition of TARSKI, MOSTOWSKI, 
and ROBINSON [1]. The present rather simple syntactical characterization 
of interpretability was worked out in collaboration with FEFERMAN. 

Lemma 1. Suppose that <P is a theory, lJI is a set of standard sentences 
of the language of <P, <P is axiomatized by lJI, and 1 is a function satisfying 
conditions (1) and (3) of the definition of interpretability. Let r be the 
set of sentences "Pf for which "P is in lJI; and let .d be the set of sentences 

/\ Vo ..• /\ Vn-l V Vn+1 /\ vn[vn=vn+1f-+ (Avn ... vn-l=Vn)f], 

where n is a natural number and A is an n-place operation symbol in 
the language of <P. Then <Pf is axiomatized by r u.d. 

Lemma 2. If <P, lJI are theories such that <P is interpretable in lJI, 
and P is a I-place predicate not in the language of <P or the language of lJI, 
then <p(P) is interpretable in lJI(P). -

Proof. Let 1 be a function satisfying conditions (1)-(4) of the definition 
of interpretability (of <P in lJI). Let g be a function whose domain is the 
set of standard atomic formulas of the language of <P and which satisfies 
the following conditions. If F is an n-place predicate in the language of <P, 
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then g(Fvo ... Vn-l) is (Fvo ... Vn-l)f(P), If A is a O-place operation 
symbol in the language of ifJ, then g(A = vo) is [(A = VO)f(P) 1\ Pvo]. If 
n> 0 and A is an n-place operation symbol in the language of ifJ, then 
g(Avo ... Vn-l=Vn) is the formula 

[[Pvo 1\ • •• 1\ PVn 1\ (Avo . .. Vn-l=Vn)f(P)] V 

[ -----, [Pvo 1\ ••• 1\ Pvn-rJ 1\ vn=vo]]. 

Now it is clear that ifJ(P) is axiomatized by the set of sentences rp(P) 

for which rp is a standard sentence in ifJ. Therefore, by Lemma 1, 

(1) ifJ(P)g is axiomatized by r u.d, 

where r is the set of sentences rp(P)g for which rp is a standard sentence in 
ifJ, and .d is the set of sentences /\ Vo ••• /\ Vn-l V Vn+l /\ Vn [vn = 
=vn+l+--+(AvO ... Vn-l=Vn)g] such that n is a natural number and A 
is an n-place operation symbol in the language of ifJ. 

We show that 

(2) 

Assume that rp is a standard sentence in ifJ. Then rpf is in P. Therefore 
rpf(P) is in P(P). But rp(P)g is logically equivalent with rpg(P) , and hence 
with rpf(P). Therefore rp(P)g is in P(P), and (2) is established. 

It follows easily from the definition of g that .d C P(P) and that the 
language of ifJ(P)g is included in that of P(P). Therefore, by (1) and (2), 
ifJ(P)g is included in P(P), and ifJ(P) is consequently interpretable in P(P). 

It has been mentioned in TARSKI, MOSTOWSKI, ROBINSON [1] that the 
relation of interpretability is transitive. The following simple lemma 
makes the same assertion concerning relative interpretability. 

Lemma 3. If ifJ, P, r are theories such that ifJ is relatively inter­
pretable in P and P in r, then ifJ is relatively interpretable in r. 

Proof. From the hypothesis it follows that ifJ(P) is interpretable in 
P and P(Q) is interpretable in r, for some distinct I-place predicates 
P and Q not in the language of ifJ or P. Hence, by Lemma 2, ifJ(P)(Q) 
is interpretable in P(Q). Let R be a new I-place predicate. By considering 
the function f whose domain is {Rvo} and which is such that f(Rvo) is 
[Pvo 1\ Qvo], we see that ifJ(R) is interpretable in ifJ(P)(Q). Thus, by the 
transitivity of interpretability, ifJ(R) is interpretable in r, and ifJ is relatively 
interpretable in r. 

Two theories are said to be mutually interpretable if each is interpretable 
in the other. The following simple lemma will be useful. 

Lemma 4. If ifJ is any finitely axiomatizable theory, then there 
exists a finitely axiomatizable theory which is mutually interpretable 
with ifJ and whose language contains no operation symbols. 



472 

Proof. Assume that at least one operation symbol is in the language 
of <P, for otherwise the lemma is trivial. Let A be such an operation 
symbol, and let A have the further property that no operation symbol 
with a smaller number of places than A is in the language of <P. Since <P 
is finitely axiomatizable, there is a standard sentence 4> in <P such that 
all members of <P are derivable from {4>}; we may choose 4> in such a way 
that A occurs in 4>. Let 1 be a biunique function whose domain is the set 
of standard atomic formulas beginning with an operation symbol and 
occurring in 4>, and which is such that whenever n is a natural number 
and 0 is an n-place operation symbol occurring in 4>, I(Ovo ... Vn-l = vn) 
is PVo ... Vn, for some (n+ I)-place predicate P not in the language of <P. 
Let P be the intersection of all theories whose languages contain the 
predicates in the language of <P, and which contain 4>f as well as all sentences 

/\ Vo . .. /\Vn-l V Vn+l /\ Vn[Vn= Vn+l +--+ I(Ovo . .. Vn-l = Vn)], 

where n is a natural number and 0 is an n-place operation symbol occurring 
in 4>. It is clear that P is a finitely axiomatizable theory. To see that <P 
is interpretable in P, we need only consider the function 1 U g, where g 

is that function whose domain is the set of standard atomic formulas of 
the language of <P beginning with an operation symbol but not occurring 
in 4>, and which is such that whenever Ovo . .. Vn-I=Vn is such a formula, 
g(Ovo . .. Vn-l =vn) is I(Avo . .. Vk-l =vn), where k is the number of places 
of A. On the other hand, P is obviously interpretable in <P, using the 
function r. 

Let us now turn to model-theoretic notions. A model is an ordered 
pair <A, I>, where A is a non-empty set and 1 is a function whose domain 
is a language and which assigns appropriate meanings to the predicates 
and operation symbols in that language; that is, I(P) is a set of ordered 
n-tuples of elements of A whenever P is an n-place predicate in the domain 
of I, and whenever F is an n-place operation symbol in the domain of I, 
I(F) is a set of ordered (n+ I)-tuples of elements of A satisfying the 
condition that there is exactly one x for which <ao, ... , an-I, x> E I(F) 
whenever ao, ... , an-l EA. By the universe and the language of a model 
<A, I> are respectively meant A and the domain of I. We shall say that 
a finite sequence <ao, ... , an-I> satisfies a formula 4> in a model <A, I> 
under the usual conditions. These amount roughly to saying that the free 
variables of 4> are among vo, ... , vn-l, 4> is a formula of the language of 
the model, and 4> holds when each of its free variables Vi is interpreted as 
denoting ai, each of its predicates or operation symbols P as denoting I(P), 
and its bound variables as ranging over A; logical constants, including 
the identity symbol, are to receive their usual meaning.S) A sentence 4> 
is said to be true in a model <A, I> if 4> is satisfied in <A, I> by every 
finite sequence of elements of A. A model Ill: is said to be a model 01 a set <P 
of sentences if every member of <P is true in Ill:. 

5) For an exact definition of satisfaction in a model see TANSKI and VAUGHT [1]. 
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It is now possible to formulate the Completeness Theorem, which gives 
the model-theoretic characterization of the syntactical relation (1) con­
sidered at the beginning of this paper: if lP and lJI are sets of sentences, 
then all members of lJI are derivable from lP if and only if, for each model 
m of lP, if all members of lJI are sentences of the language of m, then m 
IS a model of lJI. 6) 

§ 2. Interpretability. 

For the analogous characterization of the relation of interpretability 
we must introduce another familiar model-theoretic notion, definability. 
If m is a model and R an n-place relation over m (that is, a set of ordered 
n-tuples of elements of the universe of m), then R is said to be definable 
in m if there is a formula 1> of the language of m such that the free variables 
of 1> are among Vo, ... , Vn-I and, for all ao, ... , an-I in the universe of 
m, <ao, ... , an-I> E R if and only if <ao, ... , an-I> satisfies 1> in m. A model 
<B, g> is said to be definable in a model <A, I> if B=A and every relation 
in the range of g is definable in <A, I>. For <B, g> to be relatively definable 
in <A, I> we require again that every relation in the range of g be definable 
in <A, I>, but replace the requirement that B=A by the weaker condition 
that B (or, more exactly, the I-place relation corresponding to the set B) 
be definable in <A, I>. 

The model-theoretic characterization of interpretability can now be 
given. 

Theorem 1. If lP is a theory and lJI is a finitely axiomatizable theory, 
then lJI is interpretable in lP if and only if, for each model m of lP, there 
is a model of lJI which is definable in m. 

Proof. Assume the hypothesis. The implication from left to right 
in the conclusion is obvious. In proving the converse implication, we 
shall first consider the case in which the language of lJI contains no operation 
symbols. Let us make this assumption, and assume in addition that 

(1) for every model m of lP, there is a model of lJI which is definable in m. 
Let F be the set of functions 1 such that the domain of 1 is the set of 
standard atomic formulas of the language of lJI and, for each such formula 
1>, 1(1)) is a formula of the language of lP whose free variables are among 
those of 1>; and let VJ be a member of lJI which is a standard sentence and 
such that all members of lJI are derivable from {VJ}. 

I shall show that 

(2) there is a finite subset D of F such that, for every model m of lP, 
there exists 1 in D such that VJf is true in m. 

6) See GODEL [1], where only those sets of sentences are considered which are 
at most denumerable. It was Henkin's observation, in HENKIN [1], that the Com­
pleteness Theorem could be extended so as to apply to arbitrary sets of sentences. 



474 

Assume that (2) does not hold. It follows that for every finite subset D 
of F, there is a model of cP u {---, "PI: lED}. Hence, by the Compactness 
Theorem,7) there is a model Sll of cP u {---, ?Pf: I E F}. But it follows from 
(1) that there exists I in F such that ?Pf is true in Sll. We have thus arrived 
at contradiction, and (2) is proved. 

Now let {la, ... , In} be a finite subset of F satisfying (2). (Since F is 
not empty, we may clearly assume, as is implicit in this representation, 
that the subset contains at least one member.) Then if Sll is any model 
of CP, the disjunction ["PIo v ... V?Pfn] is true in Sll. Hence, by the Com­
pleteness Theorem, 

(3) cP ~ [?Pfo v ... v "PIn]. 

Let I be that function whose domain is the set of standard atomic formulas 
of the language of 'P and which is such that, for every such formula r/>, 
I(r/» is the formula 

[[?Pfo II la(r/»] v [---, ?Pfo lI?Pfl II h(r/>)] v ... v 

[---, "PIo II ... II ---, "PIn-I lI?pfn II In(r/»]]. 

For every r/> in the domain of I, we have: 

{"PIoH- U(r/» ~ la(r/»], 
{---, ?Pfo, "PII} ~ U(r/» ~ h(r/»], 

Hence 
{?Pfo} ~ [?pf~ ?Pfo], 

{---, ?Pfo, ?pfl} ~ ["PI ~ ?Pfl], 

{-----, ?Pfo, ... , -----, "PIn-I, "PIn} ~ ["PI~ ?pfn]. 

Therefore, by (3) and sententical logic, 

cP ~ "PI; 

and under our special assumption that the language of 'P contains no 
operation symbols, this is sufficient to show that 'P is interpretable in CPo 

Let us now turn to the general situation, in which the language of 'P 
may contain operation symbols, and again make the assumption (1). 
By Lemma 4 there exists a finitely axiomatizable theory 'P' which is 
mutually interpretable with 'P and whose language contains no operation 
symbols. From the fact that 'P' is interpretable in 'P, together with our 
assumption (1) concerning 'P, it is seen that (1) holds for 'P'. Hence, by 
the case considered above, 'P' is interpretable in CP; and therefore so is 'P, 
by the fact 'P is interpretable in 'P'. 

7) The Compactness Theorem, which is an immediate consequence of the Com­
pleteness Theorem as stated above, asserts that if every finite subset of a given set 
of sentences has a model, then the set itself has a model. 
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By a result in DE BOUVERE [1], based on work in KEISLER [1], the 
assertion that a relation R is definable in a model m is equivalent to 
a purely mathematical condition on Rand m, that is, a mathematically 
natural condition which does not involve, as does the notion of definability, 
any reference to metamathematical objects. (The notion of a purely 
mathematical condition can of course not be defined in mathematical 
terms, but has instead an esthetic character.) It follows by Theorem 1 
that under the hypothesis of that theorem the assertion that 'P is inter­
pretable in rp is equivalent to a purely mathematical condition on the 
class of models of rp and the class of models of 'P. 

Ehrenfeucht has shown by means of an unpublished example that 
Theorem 1 becomes false if the hypothesis that 'P be finitely axiomatizable 
is omitted. On the other hand, Orey and Feferman have shown that if 
rp, 'P are recursively enumerable theories with finite languages and rp is 
reflexive, then 'P is interpretable in rp if and only if every finitely axio­
matizable theory included in 'P is interpretable in rp.8) Feferman has 
pointed out that consequently, on the basis of Theorem 1, the hypothesis 
in Theorem 1 that 'P be finitely axiomatizable can be replaced by the 
condition that rp and 'P both have finite languages, that they both be 
recursively enumerable, and that rp be reflexive. 

Two open problems suggest themselves. One might try to find a simple 
model-theoretic condition equivalent to interpretability for arbitrary 
theories. On the other hand, one might consider the model-theoretic 
relation in Theorem 1, that is, the condition that for each model m of rp, 
there is a model of 'P which is definable in m, and try to find a simple 
syntactical condition equivalent to that condition for arbitrary theories 
rp and 'P. 

We easily derive from Theorem 1 a corresponding model-theoretic 
characterization of relative interpretability, again under an assumption 
of finite axiomatizability. 

Theorem 2. If rp is a theory and 'P is a finitely axiomatizable theory, 
then 'P is relatively interpretable in rp if and only if, for each model m 
of rp, there is a model of 'P which is relatively definable in m. 

Proof. Assume the hypothesis. As with Theorem 1, the implication 
in the conclusion from left to right is obvious. Assume, then, that 

(1) for every model m of rp, there is a model of 'P which is relatively 
definable in m. 

8) See FEFERMAN [1], Theorem 8. 10. A theory @ is reflexive if, loosely speaking, 
one can prove in @ the consistency of each finitely axiomatizable theory included 
in @. For the exact notion of a reflexive theory see MONTAGUE [1], where it was 
shown that a number of familiar theories, for instance, all extensions of (first·order) 
Peano's arithmetic or of Zermelo-Fraenkel set theory are reflexive. The characteri­
zation of recursive enumerability as applied to theories with finite languages presents 
no problem. 
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By Lemma 4, there is a finitely axiomatizable theory 'P' which is mutually 
interpretable with 'P and whose language contains no operation symbols. 
From the fact that 'P' is interpretable in 'P we conclude that (1) holds 
for 'P' as well as for;,'P. Let P be a new I-place predicate. It follows that 
for every model m of (/J, there is a model of 'P'(P) which is definable in m; 
also, because 'P' is finitely axiomatizable and has a language containing 
no operation symbols, 'P'(P) is finitely axiomatizable. Thus we may apply 
Theorem 1 and conclude that 'P'(P) is interpretable in (/J; therefore 'P' 
is relatively interpretable in (/J. But 'P is relatively interpretable, because 
interpretable, in 'P'. Hence, by Lemma 3, 'P is relatively interpretable in (/J. 

As immediate corollaries of Theorems 1 and 2 we have the following 
results concerning the syntactical notions of interpretability and relative 
interpretability. A theory 'P is called an extension of a theory (/J if 'P 
includes (/J and has the same language as (/J; and a complete theory is a 
theory (/J such that for every sentence cp of the language of (/J, either 
cp or ----, cp is in (/J. 

Theorem 3. If (/J is a theory and 'P a finitely axiomatizable theory, 
then 'P is interpretable in (/J if and only if 'P is interpretable in every 
complete extension of (/J. 

Theorem 4. If (/J is a theory and 'P a finitely axiomatizable theory, 
then 'P is relatively interpretable in (/J if and only if 'P is relatively inter­
pretable in every complete extension of (/J. 
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