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Abstract

This is an outline of the Aomoto–Gelfand theory of multivariable hypergeometric integrals and Varchenko’s formula
for the determinant of the period matrix of the hypergeometric pairing. A signi�cant feature of this work is the use of the
theory of arrangements of hyperplanes to transform a problem in analysis into one in combinatorics. c© 1999 Elsevier
Science B.V. All rights reserved.
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The theory of hypergeometric functions is a venerable subject with three centuries of history. These
functions have been particularly important in applied mathematics and physics. The last 20 years
have seen the emergence of the Aomoto–Gelfand multivariable theory of hypergeometric functions
[1,7]. These generalizations also have deep connections with recent work in theoretical physics, in
particular with the representation theory of quantum groups and with conformal �eld theory [15].
A signi�cant feature of this work is the use of the theory of arrangements of hyperplanes [10] to
transform a problem in analysis into one in combinatorics. We outline this geometric connection
here. A detailed exposition is forthcoming in [11]. I thank Terao for help in learning this beautiful
material.
We start with integral representation of the Gauss hypergeometric function

�(c − a)�(a)
�(c)

F[a; b; c; x] =
∫ 1

0
ua−1(1− u)c−a−1(1− xu)−b du

provided that |x|¡ 1;R(a)¿ 0; and R(c − a)¿ 0.
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All ingredients of the multivariable theory are present in this one-variable example. There are three
points 0; 1; x−1 in the complex line. This is the arrangement of hyperplanes. They are the zeros of
the linear functions u; 1−u, and 1−xu. We have a set of parameters �=(a; b; c) and a multivalued
holomorphic function de�ned in the complement of the points. Under suitable conditions on the
parameters �, there exist certain paths in the complement of the points so that the corresponding
line integrals are de�ned. Let � = (�1; �2; �3) be complex parameters. Let Nx = {0; 1; x−1} and let
Mx = C− Nx. Then

�(u; �; x) = u�1 (1− u)�2 (1− xu)�3

de�nes a multivalued holomorphic function on Mx. In order to write down suitable integrals, we
must introduce twisted versions of homology and cohomology. The twisting comes from the change
in the value of � as we prolong it by analytic continuation while moving around a point of Nx.
Choose a base point p∈Mx and simple loops k around the points of Nx representing standard
generators of �1(Mx; p). A complex rank one local system L over Mx is given by the representation
� :�1(Mx; p)→ Aut(C), where �(k) = exp (−2�i�k), for k = 1; 2; 3. The holomorphic 1-form

!� = d(log�) =
d�
�
= �1

du
u

− �2
du
1− u

− �3
x du
1− xu

is single valued. De�ne 3 :OMx → 
1
Mx
by 3(f) = df + f!�. Note that 3(�−1) = −�−2 d� +

�−1(d�=�) = 0. If 0 = 3(f) = df + f(d�=�), then df=f = −d�=�, so f is locally a constant
multiple �−1. This identi�es ker 3 and L. Let L∨ denote the dual local system. The general theory
also shows that integration is a nondegenerate pairing. In our case this pairing

H1(Mx; L∨)× H 1(Mx; L)→ C
is de�ned by

∫
 �� where ∈H1(Mx; L∨) and �∈H 1(Mx; L). Identifying a basis of twisted cycles

is easy in our example. Moreover, for suitably general �,

H 1(Mx; L) '
(
C du

u
+ C d(1− u)

1− u
+ C d(1− xu)

1− xu

)
=3(1):

Thus we may choose the basis {du=u; x du=(1− xu)} for H 1(Mx; L). These calculations recover the
Gauss hypergeometric functions from the general theory.
Now consider the multivariable case. Let V be a complex a�ne space of dimension l and let

A be an arrangement of a�ne hyperplanes in V . For each hyperplane, H , choose a polynomial
�H of degree 1 with kernel H . Let N =

⋃
H∈A H be the divisor of A and let M = V − N be the

complement of A. Choose a complex weight �H for each H and de�ne a rank one local system L on
M with monodromy exp (−2�i�H) around the hyperplane H . This de�nes twisted cohomology groups
Hp(M;L). Similarly, introduce the dual local system L∨ with monodromy exp(2�i�H) around the
hyperplane H and de�ne twisted homology groups Hp(M;L∨). These groups are algebraic duals,
so they provide a nonsingular bilinear pairing

Hp(M;L∨)× Hp(M;L)→ C: (1)

The �rst step is to use de Rham theory to interpret this pairing as an integral. Smooth triangulation
of M represents twisted homology classes by locally smooth classes. To interpret cohomology, de�ne
the multivalued holomorphic function on M

�(u; �) =
∏
H∈A

��H
H :
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Let O = OM denote the sheaf of germs of holomorphic functions on M and let 
: = 
:
M be the de

Rham complex of germs of holomorphic di�erentials on M , where 
 0 =O. De�ne !H =d�H =�H and

!� = d(log�) = d�=�=
∑
H∈A

�H!H ; 3 = d+ !�∧ :

Extend 3 to a derivation of degree 1 in 
:
Mx
. The connection is at:33=0 since d!�=0=!�∧!�.

The kernel of 3 is the set of at sections identi�ed with L as before. The sequence

0→ L → 
0 3→
1 3→· · · 3→
l → 0

is exact. Since M is a Stein manifold, Cartan’s Theorem B implies that Hn(M;
p) = 0 for n¿ 0
and all p. Thus, the exact sequence above is an acyclic resolution of L. We obtain the holomorphic
de Rham theorem

Hp(M;L) ' Hp(�(M;
:);3)
where � denotes global sections. A twisted version of Stokes theorem shows that the bilinear pairing
(1) is given by

(; �) 7→
∫

��:

The classical hypergeometric integrals of Appell, Lauricella, Dirichlet, and Selberg are naturally
interpreted in this fashion.
The next accomplishment of the theory is to compute the cohomology groups Hp(M;L). If all

�H ∈Z, then the local system is trivial and the cohomology groups were computed by Brieskorn
[2]: the graded algebra B: generated by 1 and the holomorphic 1-forms !H ;H ∈A is isomorphic to
H ∗(M;C). When the local system is nontrivial, the groups Hp(M;L) are not known in general. Let

p(∗A) denote the group of globally de�ned rational p-forms on V with poles on N . These forms
are holomorphic on M so 
:(∗A)→ �(M;
:) is an inclusion. Note that (
:(∗A);3) is a complex
because !� ∈
1(∗A). It follows from the algebraic de Rham theorem of Deligne and Grothendieck
that the inclusion is a quasiisomorphism of complexes and hence

Hp(M;L) ' Hp(
:(∗A);3):
This reduces the original analytic problem to the algebraic problem of computing cohomology of
rational forms on V with poles on N , but it is still very di�cult. Deligne’s work [3] may be used
to reduce the problem from poles of arbitrary order on N to computing in a complex of forms
with poles of order one. In order to apply the results of [3] we must compactify M with a normal
crossing divisor. We embed V ⊂CPl by adding the in�nite hyperlane, H∞. De�ne the projective
closure of A as A∞ =A ∪ H∞. The divisor N (A∞) = N ∪ H∞ may have nonnormal crossings.
To get a normal crossing divisor we need to determine where these nonnormal crossings occur and
blow up their singularities.
A nonempty intersection of hyperplanes is an edge. Let L=L(A) be the set of edges. An edge is

called dense if the subarrangement of hyperplanes containing it is irreducible: the hyperplanes cannot
be partitioned into nonempty sets so that after a change of coordinates hyperplanes in di�erent sets
are in di�erent coordinates. This de�nition is di�cult to use directly in higher dimensions. The theory
of arrangements provides a combinatorial condition for when an edge is dense. The arrangement A
is called essential if it contains l linearly independent hyperplanes and we may assume this without
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loss of generality. De�ne a partial order on L(A) by reverse inclusion X6Y ⇔ Y ⊆X . Thus V is
the unique minimal element of L. Let � :L → Z be the M�obius function of L de�ned by �(V ) = 1,
and for X 6= V by the recursion

∑
Z6X �(Z) = 0. The characteristic polynomial and �-invariant of

A are de�ned as

�(A; t) =
∑
X ∈ L

�(X )tdim X ; �(A) = (−1)l�(A; 1):

Dense edges are determined by the �-invariant. The product Q(A)=
∏

H ∈A �H is a de�ning polyno-
mial for A. It is unique up to a constant. An arrangement is called central if the intersection of all its
hyperplanes is nonempty. This intersection is the center. Given a central (l+1)-arrangement C, we
obtain a projective l-arrangement PC by viewing the de�ning homogeneous polynomial Q(C) as a
polynomial in projective coordinates. Given a central (l+1)-arrangement C and a hyperplane H ∈C,
we de�ne an a�ne l-arrangement dHC, called the decone of C with respect to H . We construct the
projective quotient PC and choose coordinates so that PH =ker u0 is the hyperplane at in�nity. By
removing it, we obtain the a�ne arrangement dHC = PC − PH . It can be shown that �(dHC) is
independent of H , so we may omit H in the notation. Given X ∈A, de�ne AX ={H ∈A |X ⊂H}.
It is a central arrangement with center X .

Theorem 1. The edge X ∈L(A∞) is dense if and only if �(d(A∞)X )¿ 0.

There is a “minimal” resolution � : �X → CPl so that the proper transform Y = �−1(N (A∞)) has
normal crossings. This resolution is obtained by blowing up successively with centers the proper
transforms of dense edges of dimensions 0; 1; : : : ; l−2. Let �∞=−∑

H ∈A �H be the weight of H∞.
For X ∈L(A∞), de�ne �X ∈C by

�X =
∑
X ⊂H

�H ; H ∈A∞:

Esnault–Schechtman–Viehweg [5] used this resolution to calculate Hp(M;L) under certain condi-
tions on �. Note that (B:(A); !�∧) is a subcomplex of (
:(∗A);3).

Theorem 2. Assume that �X 6∈ Z¿0 for every dense edge X ∈L(A∞). Then

Hp(M;L) ' Hp(B:; !�∧):

The conditions on �, called nonresonance conditions, appear when Deligne’s theorem is applied
to the normal crossing divisor Y = �−1(N (A∞)).
The transformation of the original analytic problem into a problem in combinatorics is completed

by the Orlik–Solomon algebra, A:. It is a �nite dimensional C-algebra de�ned combinatorially using
the intersection poset L(A). There is a graded algebra isomorphism [10, 5.90]: A: ' B:. Identify the
two algebras by this isomorphism and use a hybrid notation: call the algebra A:(A) to emphasize
its combinatorial nature, but write its elements as products of the !H . This provides a combinatorial
complex (A:; !�∧) such that Hp(M;L) ' Hp(A:; !�∧). Yuzvinsky [16] used sheaf theory on posets
to prove that under some genercity conditions on �

Hp(A:; !�∧) = 0 forp¡ l and dimH l(A:; !�∧) = �(A):
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A �ner tool of arrangement theory leads to an explicit basis for H l(A:; !�∧). Write A = {H1; H2;
: : : ; Hn} and introduce a linear order in A by Hp ≺ Hq if p¡q. Although this linear order is
arbitrary, many results are expressed using it and hence depend on it. Let S = (Hi1 ; : : : ; Hiq) be an
ordered set of hyperplanes and write

⋂
S =Hi1 ∩ · · · ∩Hiq and |S|= q. We say that S is independent

if
⋂

S 6= ∅ and codim(⋂ S) = |S|. A maximal independent set is called a frame. Every frame has
cardinality l. We say that S is dependent if

⋂
S = ∅ and codim(⋂ S)¡ |S|. An inclusion-minimal

dependent set is called a circuit. A broken circuit is a set S for which there exists H ≺ min(S)
such that {H} ∪ S is a circuit. The collection of subsets of A which have nonempty intersection
and contain no broken circuits is called the nbc set of A. A maximal element of nbc is called an
nbc frame. It follows from the general theory [10, 3.55] that the elements of nbc provide a C-basis
for the algebra A:.
A frame B is called a �nbc frame if B is an nbc frame and for every H ∈B there exists H ′ ≺ H in

A such that (B \ {H})∪{H ′} is a frame. Let �nbc be the set of all �nbc frames. Direct calculation
shows that |�nbc|=�(A). Falk and Terao [6] constructed a basis for H l(A:; !�∧) which is in natural
bijection with the set �nbc. For X ∈L(A) de�ne !�(V ) = 1 and !�(X ) =

∑
H ∈AX

�H!H ∈A1(A).
Given an element B = (Hi1 ; : : : ; Hil) of �nbc with i1¡ · · ·¡il, associate to it the ag �(B) =
(X0¿ · · ·¿Xl), where Xl = V; Xp =

⋂l
k=p+1Hik for 06p6l − 1, and the element of Al(A)

�(B) =
l∧

p=0

!�(Xp); Xp ∈ �(B):

Theorem 3. Let A be an a�ne arrangement with projective closure A∞. Assume that �X 6∈Z¿0
for every dense edge X ∈L(A∞). Then the set

{�(B)∈H l(M;L) |B∈ �nbc}
is a basis for the only nonzero local system cohomology group; H l(M;L).

We may also ask for a basis of the twisted homology group H‘(M;L∨). A basis for this homology
group is constructed for all arrangements in forthcoming joint work with Silvotti [9]. The key
ingredient is Morse theory. There is a natural bijection of this twisted homology basis with the set
�nbc.
We say that A is a complexi�ed real arrangement if the polynomials �H have real coe�cients.

In this case let VR = R‘ be the real part of V and let MR =M ∩ VR be the real complement. It is
a disjoint union of open convex subsets called chambers. Let ch(A) denote the set of chambers
bounded in MR. Since A is essential, some chambers may be bounded. Let bch(A) denote the set
of chambers in MR. Zaslavsky [17] proved that |ch(A)| = (−1)‘�(A;−1) and |bch(A)| = �(A).
Let � = (X0¿X1¿ · · ·¿X‘) be a ag, Xi ∈L(A) with dim Xi = i (i = 0; : : : ; ‘). Let �∈bch(A)
and �� be its closure in R‘. We say that � is adjacent to � if dim(Xi ∩ ��) = i for i=0; : : : ; ‘. There
exists a unique bijection � :bch(A)→ �nbc(A) with the property that �(�(�)) is adjacent to �.
Let C lf

p (M;L∨) denote the pth locally �nite chain group with coe�cients inL∨ and let H lf
p (M;L∨)

denote the corresponding locally �nite homology group. There is a natural inclusion i :Cp(M;L∨)→
C lf

p (M;L∨) which induces a map in homology. If � is a bounded chamber in MR, then �∈C lf
‘ (M;L∨)

is a cycle. Let [�] denote its locally �nite homology class. The following holds for nonresonant
weights �:
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(i) Hp(M (A);L∨) = H lf
p (M (A);L

∨) = 0 for p 6= ‘.
(ii) The natural map i∗ :H‘(M (A);L∨)→ H lf

‘ (M (A); ‘
∨) is an isomorphism.

(iii) {[�] |�∈bch(A)} forms a basis for H lf
‘ (M (A);L

∨).

Theorem 4. Let A be an essential complexi�ed real arrangement with projective closure A∞.
Assume that �X 6∈Z¿0 for every dense edge X ∈L(A∞). Then the set

{�−1(B)∈H lf
‘ (M;L∨) |B∈ �nbc(A)}

is a basis for the only nonzero local coe�cient homology group; H lf
‘ (M;L∨).

Introduce a linear order in �nbc(A) using the lexicographic order on the hyperplanes read from
right to left. Write the ordered set �nbc(A)={Bj}�

j=1. Write  j=�(Bj) to get the associated linearly
ordered basis of global holomorphic forms for H‘(M;L); 	(A) = { j}�

j=1. Write �j = �−1(Bj) to
get the associated linearly ordered basis of bounded chambers for H lf

‘ (M;L∨); bch(A) = {�j}�
j=1.

Each �∈bch(A) has an intrinsic orientation. If �(�(�))=(X0¿X1¿ · · ·¿X‘) is the adjacent ag,
then we choose an orthonormal frame {e1; : : : ; e‘} so that each ei is a unit vector originating from
the point X0 in the direction of Xi ∩ ��. De�ne the hypergeometric period matrix PM(A; �) by

PM(A; �)i; j =
∫
�j

�� i:

In many cases, the individual entries of this matrix are impossible to express in closed form. How-
ever, Varchenko [14] proved that for certain arrangements the determinant of this matrix has a
beautiful expression and he conjectured a formula for this determinant for all arrangements. The
conjecture was proved by Douai and Terao [4]. For X ∈L(A∞), de�ne

�(X ) = |�(M ((A∞)X ))�(M (P(A∞)X ))|:
Here �(M) is Euler characteristic, (A∞)X = {H ∩X |H ∈A∞ \ (A∞)X ; H ∩X 6= ∅}, and P(A∞)X
is the projective quotient of the central arrangement (A∞)X . There is a disjoint union L(A∞) =
L+(A∞)∪ L−(A∞) where L+(A∞) = L(A) consists of edges not in H∞ and L−(A∞) = L(AH∞∞ )
consists of edges in H∞. The Beta function of A is the following product of gamma functions:

B(A; �) =
∏

X ∈ L+(A∞)

�(�X + 1)�(X )
∏

X ∈ L−(A∞)

�(−�X + 1)−�(X ):

Fix a branch of ��p
p on each �j. Choose xp; j ∈ ��j so that |��p

p (xp; j)|¿|��p
p (y)| for all y∈ ��j. De�ne

the complex number

R(A; �) =
n∏

p=1

�∏
j=1

��p
p (xp; j):

Theorem 5. Suppose R �p ¿ 0 for all p and �X 6∈Z for very dense edge X ∈L(A∞). Then

det PM(A; �) = R(A; �)B(A; �):
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Fig. 1. Selberg arrangement.

Example 6. Selberg’s integral in two variables involves the arrangement A de�ned by

Q(A) = (u1 + 1)(u1 − 1)(u2 + 1)(u2 − 1)(u1 − u2):

We label the hyperplanes in the order given by the factors in Q and write j in plane of Hj in
Fig. 1, where we also display L(A). Here

Q(A∞) = u0(u1 + u0)(u1 − u0)(u2 + u0)(u2 − u0)(u1 − u2);

and L(A∞) contains the additional edges {∞; 12∞; 34∞; 5∞}.

The six lines and four triple points of L(A∞) are dense. The broken circuits are (3,5) and (4,5).
We write !j in place of !Hj and let !i;j =!i ∧!j. The nbc set provides the following basis for A:

{1; !1; !2; !3; !4; !5; !1;3; !1;4; !1;5; !2;3; !2;4; !2;5}:
We get �nbc={(2; 4); (2; 5)} and �(2; 4)=(245¿ 4¿V ); �(2; 5)=(245¿ 5¿V ). Assume that no
dense edge has integer weight. Then

�(2; 4)= (�2!2 + �4!4 + �5!5) ∧ �4!4 = �2�4!2;4 − �4�5!4;5;

�(2; 5)= (�2!2 + �4!4 + �5!5)�5!5 = �2�5!2;5 + �4�5!4;5;

provide a basis for H 2(M;L�). The bounded chambers �1 and �2 in Fig. 1 form a basis for
H lf
2 (M;L∨). Here �(�1) = (2; 4) so �1 is oriented clockwise and �(�2) = (2; 5) so �2 is oriented
counterclockwise. The Beta function of this arrangement is

B(A; �) =
(
∏5

i=1 �(�i + 1))�(�1 + �3 + �5 + 1)�(�2 + �4 + �5 + 1)

�(
∑5

i=1 �i + 1)�(�1 + �2 + �5 + 1)�(�3 + �4 + �5 + 1)
:

Until this point the arrangement A was �xed. It is natural to consider families of arrangements
whose combinatorial structure is constant. There is no adequate description of the parameter space
of these arrangements for arbitrary A, but the special cases that are well understood lead to very
important results. Kohno [8] showed that the case of n points in C is related to the braid group and
its representations. Aomoto and Kita [1] analyzed the case when A is a general position arrangement.
Discriminantal arrangements were treated by Schechtman and Varchenko [13]. In all these examples
the action of the fundamental group of the parameter space on the local system cohomology is
related to the Knizhnik–Zamolodchikov di�erential equations of conformal �eld theory.
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1. For further reading

[12]
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