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a b s t r a c t

We formulate a theory of invariants for the spin symmetric group in some suitablemodules
which involve the polynomial and exterior algebras. We solve the corresponding graded
multiplicity problem in terms of specializations of the Schur Q -functions and a shifted
q-hook formula. In addition, we provide a bijective proof for a formula of the principal
specialization of the Schur Q -functions.
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1. Introduction

1.1

The symmetric group Sn acts on V = Cn and then on the symmetric algebra S∗V naturally. It is well known that the
algebra of Sn-invariants on S∗V is a polynomial algebra in n generators of degree 1, 2, . . . , n. More generally, consider the
graded multiplicity of a given Specht module Sλ for a partition λ = (λ1, λ2, . . .) of n in the graded algebra S∗V , which
has a generating function Pλ(t) :=

∑
j≥0 mλ(S jV )t j. Kirillov [4] has obtained the following elegant formula for Pλ(t) (also

compare [16]):

Pλ(t) =
tn(λ)∏

(i,j)∈λ

(1 − thij)
,

where hij is the hook length associated to a cell (i, j) in the Young diagram of λ, and

n(λ) =

−
i≥1

(i − 1)λi. (1.1)

The generating function for the bi-graded Sn-invariants in S∗V ⊗ ∧
∗V was computed in [15]; see (4.2). More generally,

Kirillov and Pak [5] obtained the bi-graded multiplicity of the Specht module Sλ for any λ in S∗V ⊗ ∧
∗V ; see (4.1).

1.2

According to [12], the symmetric group Sn affords a double coverSn:
1 −→ Z2 −→Sn −→ Sn −→ 1.
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Let us write Z2 = {1, z}. The spin (or projective) representation theory of Sn, or equivalently, the representation theory of
the spin group algebra CS−

n = CSn/⟨z + 1⟩, has been systematically developed by Schur (see [1] for an excellent modern
exposition via a systematic use of superalgebras). Rich algebraic combinatorics of Schur Q -functions and shifted tableaux
have been developed by Sagan [10] and Stembridge [17] (also see [8]) in relation to the irreducible spin representations and
characters of Sn.

1.3

The goal of this paper is to formulate and prove the spin analogue of the graded multiplicity formulas in 1.1.
The results of this paper, though looking classical, have not appeared in the literature to our knowledge; however, it is

expected that such simple results, once formulated, can be also derived by other approaches. It strongly suggests that the
spin invariant theory of Weyl groups, or of finite groups in general, in the sense of this paper is a very interesting research
direction to pursue. It is also natural to ask for the spin double counterpart, a spin analogue of Kostka polynomials, an
interpretation of the graded multiplicity for the spin coinvariant algebra as generic degrees for (quantum) Hecke–Clifford
algebras, etc. We hope to return to these topics at another occasion.

1.4

It is known [2,14,18,19] (see [6, Chap. 13]) that the representation theory of spin symmetric group (super)algebra CS−
n

is super-equivalent to its counterpart for Hecke–Clifford (super)algebra Hn := Cn o CSn; see Section 3.2 for notations and
precise formulations. (All the algebras and modules in this paper are understood to admit a Z2-graded structure; however
we will avoid using the terminology of supermodules.) Let Dλ

−
denote the simple CS−

n -module and Dλ denote the simple
Hn-module, associated to a strict partition λ of n. The Clifford algebra Cn is naturally a simple module over the algebra Hn

(which is identified with D(n)), and it is the counterpart of the basic spin CS−
n -module Bn := D(n)

− .
In Proposition 3.2 we show that, for an arbitrary Sn-moduleM , the multiplicity problem for a simple CS−

n -module Dλ
−
in

Bn ⊗ M is essentially equivalent to the multiplicity problem for a simple Hn-module Dλ in Cn ⊗ M . Therefore, in this paper,
we shall mainly work with the algebra Hn, keeping in mind that the results can be transferred to the setting for CS−

n .

1.5

Our first main result provides the gradedmultiplicity of the simple Hn-module Dλ in Cn ⊗ S∗V for V = Cn. For a partition
λ of n with length ℓ(λ), we set

δ(λ) =


0, if ℓ(λ) is even,
1, if ℓ(λ) is odd.

If λ is moreover a strict partition, we denote by λ∗ the shifted diagram of λ, by cij the content, and by h∗

ij the shifted hook
length of the cell (i, j) ∈ λ∗ (see Section 2 for precise definitions).
Theorem A. Let λ be a strict partition of n. The graded multiplicity of Dλ in the Hn-module Cn ⊗ S∗V is

2−
ℓ(λ)+δ(λ)

2

tn(λ)
∏

(i,j)∈λ∗

(1 + tcij)∏
(i,j)∈λ∗

(1 − th
∗
ij )

. (1.2)

The lowest degree term in (1.2) is 2
ℓ(λ)−δ(λ)

2 tn(λ), thanks to the contribution 2ℓ(λ) from the product over the main diagonal of
λ∗ in the numerator. Theorem A can be reformulated in terms of the graded multiplicity of a coinvariant algebra which is
isomorphic to a graded regularmodule ofHn; see Theorem3.5. In the spirit of a classical theoremof Borelwhich identifies the
coinvariant algebra of aWeyl groupwith the cohomology ring of the corresponding flag variety, the coinvariant algebra ofHn
should be regarded as the cohomology ring (which has yet to be developed) of the flag variety for the queer Lie supergroup.

To prove Theorem A, we first obtain an expression of the graded multiplicity in terms of the principal specialization of
the Schur Q -function, Qλ(t•) := Qλ(1, t, t2, . . .), and then apply the following formula.
Theorem B. For a strict partition λ of n, we have

Qλ(t•) =

tn(λ)
∏

(i,j)∈λ∗

(1 + tcij)∏
(i,j)∈λ∗

(1 − th
∗
ij )

. (1.3)

It is well known (cf. [10,17]) that a Schur Q -function can be written as a sum over the so-called marked shifted tableaux
of a given shape. We establish in Theorem 2.2 a bijection between marked shifted tableaux and certain new combinatorial
objects which we call colored shifted tableaux. Theorem B is an easy consequence of such a bijection.
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We show in Proposition 2.5 that the formula (1.3) is equivalent to another formula of [9, Proposition 3.1], who derived it
from a Schur function identity of [3].

1.6

Another result of this paper is a formula for the bi-graded multiplicity of the simple Hn-module Dλ in Cn ⊗ S∗V ⊗ ∧
∗V :

∞−
p=0

n−
q=0

tpsqmλ(Cn ⊗ SpV ⊗ ∧
qV ).

We shall adopt the following short-hand notation for a specialization of Schur Q -function in 2-variables s and t:

Qλ(t•; st•) := Qλ(1, t, t2, . . . ; s, st, st2, . . .).

Theorem C. Let λ be a strict partition of n. The bi-graded multiplicity of Dλ in the Hn-module Cn ⊗ S∗V ⊗ ∧
∗V is

2−
ℓ(λ)+δ(λ)

2 Qλ(t•; st•). (1.4)
Setting s = 0, we recover Theorem A from Theorem C. On the other hand, setting t = 0, we obtain a graded multiplicity
formula ofDλ in Cn⊗∧

∗V ; see Corollary 4.5.Wemay also consider a KoszulZ-gradingwhich counts the standard generators
of S∗V as degree 2 and the standard generators of ∧∗V as degree 1. It follows by Theorem C that, for the Koszul grading, the
graded multiplicity in Cn ⊗ S∗V ⊗ ∧

∗V is given by the same formula (1.2) above. It will be nice to obtain a closed formula
for Qλ(t•; st•).

1.7

The paper is organized as follows. In Section 2, we provide a bijective proof of Theorem B. The graded multiplicities
in Cn ⊗ S∗V are studied and Theorem A is proved in Section 3. In Section 4, we study the bi-graded multiplicities in
Cn ⊗ S∗V ⊗ ∧

∗V , and prove Theorem C.

2. Principal specialization of Schur Q -functions

In this section, we shall provide a bijective proof for Theorem B, after first recalling some basics on strict partitions and
Schur Q -functions [10,17,7].

2.1. Strict partitions and shifted diagrams

Let n ∈ Z+. We denote a composition λ = (λ1, λ2, . . .) of n by λ |= n, and denote a partition λ of n by λ ⊢ n. A partition
λ will be identified with its Young diagram, that is, λ = {(i, j) ∈ Z2

| 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λi}. To each cell (i, j) ∈ λ, we
associate its content cij = j − i and hook length hij = λi + λ′

j − i − j + 1, where λ′
= (λ′

1, λ
′

2, . . .) is the conjugate partition
of λ.

Suppose that the main diagonal of the Young diagram λ contains r cells. Let αi = λi − i be the number of cells in the
ith row of λ strictly to the right of (i, i), and let βi = λ′

i − i be the number of cells in the ith column of λ strictly below
(i, i), for 1 ≤ i ≤ r . We have α1 > α2 > · · · > αr ≥ 0 and β1 > β2 > · · · > βr ≥ 0. Then the Frobenius notation for
a partition is λ = (α1, . . . , αr |β1, . . . , βr). For example, if λ = (5, 4, 3, 1), then α = (4, 2, 0), β = (3, 1, 0) and hence
λ = (4, 2, 0|3, 1, 0) in the Frobenius notation.

Suppose that λ is a strict partition of n, denoted by λ ⊢s n. Let λ∗ be the associated shifted Young diagram, that is,

λ∗
= {(i, j) | 1 ≤ i ≤ ℓ(λ), i ≤ j ≤ λi + i − 1}

which is obtained from the ordinary Young diagram by shifting the kth row to the right by k − 1 squares, for each k. Given
λ ⊢s nwith ℓ(λ) = ℓ, define its double partitionλ to beλ = (λ1, . . . , λℓ|λ1 − 1, λ2 − 1, . . . , λℓ − 1) in Frobenius notation.
Clearly, the shifted Young diagram λ∗ coincides with the part ofλ that lies above the main diagonal. For each cell (i, j) ∈ λ∗,
denote by h∗

ij the associated hook length in the Young diagramλ, and set the content cij = j − i.
For example, let λ = (4, 2, 1). The corresponding shifted diagram and double diagram are

λ∗
= λ =

The hook lengths and contents for each cell in λ are respectively as follows:

6 5 4 1
3 2

1

0 1 2 3
0 1

0
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2.2. Schur Q -functions

Let λ be a strict partition with ℓ(λ) = ℓ. Suppose m ≥ ℓ. The associated Schur Q -function Qλ(z1, z2, . . . , zm) is defined
by

Qλ(z1, z2, . . . , zm) = 2ℓ
−

w∈Sm/Sm−ℓ

w


zλ1
1 · · · zλℓ

ℓ

∏
1≤i≤ℓ

∏
i<j≤m

zi + zj
zi − zj


, (2.1)

where the symmetric group Sm acts by permuting the variables z1, . . . , zm and Sm−ℓ is the subgroup acting on zℓ+1, . . . , zm.
The definition of Qλ(z1, z2, . . . , zm) stabilizes as m goes to infinity, and we write Qλ(z) = Qλ(z1, z2, . . .), the symmetric
functions in infinitely many variables z = (z1, z2, . . .). For y = (y1, y2, . . .), the following identity holds (see
[7, III, Section 8]):∏

i,j

1 + yizj
1 − yizj

=

−
λ: strict

2−ℓ(λ)Qλ(y)Qλ(z). (2.2)

It will be convenient to introduce another family of symmetric functions qν(z) for any composition ν = (ν1, ν2, . . .) as
follows:

q0(z) = 1,
qr(z) = Q(r)(z), for r ≥ 1,
qν(z) = qν1(z)qν2(z) · · · .

The generating function for qr(z) is−
r≥0

qr(z)ur
=

∏
i

1 + ziu
1 − ziu

. (2.3)

We will write qr = qr(z), etc., whenever there is no need to specify the variables. Let ΓC be the C-algebra generated by
qr , r ≥ 1, that is,

ΓC = C[q1, q2, . . .]. (2.4)

Then Qλ for strict partitions λ form a basis of ΓC.

2.3. Marked shifted tableaux and Schur Q -functions

Denote by P′ the ordered alphabet {1′ < 1 < 2′ < 2 < 3′ < 3 · · · }. The symbols 1′, 2′, 3′, . . . are said to be marked, and
we shall denote by |a| the unmarked version of any a ∈ P′; that is, |k′

| = |k| = k for each k ∈ N. For a strict partition λ, a
marked shifted tableau T of shape λ, or amarked shifted λ-tableau T , is an assignment T : λ∗

→ P′ satisfying:

(M1) The letters are weakly increasing along each row and column.
(M2) The letters {1, 2, 3, . . .} are strictly increasing along each column.
(M3) The letters {1′, 2′, 3′, . . .} are strictly increasing along each row.

For a marked shifted tableau T of shape λ, let αk be the number of cells (i, j) ∈ λ∗ such that |T (i, j)| = k for k ≥ 1.
The sequence (α1, α2, α3, . . .) is called the weight of T . The Schur Q -function associated to λ can be interpreted as (see
[10,17,7])

Qλ(x) =

−
T

xT , (2.5)

where the summation is over all marked shifted λ-tableaux, and xT = xα1
1 xα2

2 xα3
3 · · · if T has weight (α1, α2, α3, . . .). Denote

by |T | =
∑

k≥1 kαk if the weight of T is (α1, α2, . . .).

Example 2.1. Suppose λ = (5, 4, 2). The following is an example of a marked shifted tableau of shape λ and its weight is
(2, 5, 4):

T =

1′ 1 2′ 2 2
2′ 2 3′ 3

3′ 3
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A shifted reverse plane tableau S of shape λ is a labeling of cells in the shifted diagram λ∗ with nonnegative integers
so that the rows and columns are weakly increasing. Denote by |S| the summation of the entries in S. It is known (cf.
[11, Theorem 6.2.1]) that−

S

t |S| =

∏
(i,j)∈λ

1

1 − th
∗
ij
, (2.6)

summed over all shifted reverse plane tableaux of shape λ.

2.4. A bijection theorem

Let λ be a strict partition. A colored shifted tableau C is an assignment C : λ∗
→ P′ such that the associated assignment

C : λ∗
→ Z+ defined by

C(i, j) =


|C(i, j)| − j, if C(i, j) is marked,
|C(i, j)| − i, if C(i, j) is unmarked

is a shifted reverse plane tableau of shape λ. Theweight of a colored shifted tableau is defined in the sameway as formarked
shifted tableaux. Denote by |C | =

∑
k≥1 kαk if the weight of C is (α1, α2, . . .).

Theorem 2.2. Suppose that λ is a strict partition of n and α = (α1, α2, . . .) is a composition of n. Then there exists a bijection
between the set of marked shifted λ-tableaux of weight α and the set of colored shifted λ-tableaux of weight α.

Proof. Suppose that T is a marked shifted tableau of shape λ and weight α = (α1, α2, . . .). Set m = max{|T (i, j)| | (i, j) ∈

λ∗
}. For each 1 ≤ k ≤ m, λk,∗

= {(i, j) ∈ λ∗
| |T (i, j)| ≤ k} is a shifted diagram of a strict partition λk, and

λ1
⊆ λ2

⊆ · · · ⊆ λm.
We shall construct by induction on k a chain of colored shifted tableaux T k of shape λk and weight αk

= (α1, . . . , αk), for
1 ≤ k ≤ m. Set T 1

: λ1,∗
→ P′ to be the restriction of T to λ1,∗. Since T is a marked shifted tableau, λ1 is a one-row partition

and hence T 1 is already a colored shifted tableau of weight α1
= (α1).

Suppose that T k−1 is a colored shifted tableau of shape λk−1 and weight αk−1
= (α1, . . . , αk−1). In order to construct T k

from T k−1, we start with an intermediate tableau Tk defined by

Tk : λk,∗
−→ P′

(i, j) →


T k−1(i, j), if (i, j) ∈ λ(k−1),∗

T (i, j), if (i, j) ∈ λk,∗/λ(k−1),∗.

There is at most one cell labeled by k′ in each row of Tk since T satisfies (M3). Suppose that the cells labeled by k′ in Tk are
(i1, j1), (i2, j2), . . . , (ip, jp)with i1 < i2 < · · · < ip. Startwith the topmost cell (i1, j1) and label its left and upper neighboring
cells (i1, j1 − 1) and (i1 − 1, j1), if they exist, as

c
b k′

(In case when either the left or the upper neighboring cell is missing, the exchange procedure below is simplified in an
obvious manner). Set

b̄ =


|b| − (j1 − 1), if b is marked,
|b| − i1, otherwise;

c̄ =


|c| − j1, if c is marked,
|c| − (i1 − 1), otherwise.

If k − j1 < b̄ or k − j1 < c̄ , exchange k′ and b or c in Tk as follows:

Case I (b̄ ≥ c̄) :
c

b k′ −→
c

k′ b

Case II (c̄ > b̄) :
c

b k′ −→
k′

b c

Note that b is unmarked in Case I and c is unmarked in Case II. Hence the resulting diagram

I: c
k′ b or II: k′

b c

satisfies the requirement for colored shifted tableaux. Keep repeating the above procedure for the new cells occupied with
this k′, until it stops. Thenmove on to apply the same procedure above to the cells (i2, j2), . . . , (ip, jp) one by one, and denote
by T k the resulting tableau in the end.
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We claim that T k is a colored shifted tableau. By induction hypothesis, T k−1 is a colored shifted tableau. Clearly, the
exchange procedure above by definition ensures that the requirement being a colored shifted tableau is already fulfilled for
the cells in T k other than those occupied by k. So it remains to check the conditions on each cell (i, j) ∈ λk,∗ with T k(i, j) = k.
Assume that the cell (i, j − 1) in T k, if it exists, is labeled by d ∈ P′. Note that j − 1 ≥ i and |d| ≤ k. If d is unmarked, then
|d| − i ≤ k− i. If d is marked, then |d| − (j− 1) ≤ |d| − i ≤ k− i. Similarly, assume that the cell (i− 1, j) in T k, if it exists, is
labeled by e ∈ P′. For unmarked e, we have |e| < k or equivalently |e|− (i− 1) ≤ k− i, since there is at most one unmarked
k in each column of T k. For marked e, we have |e| ≤ k and hence |e| − j ≤ k − i, since j ≥ i. This proves the claim.

Hence, we have constructed a colored shifted tableau Tm of the same shape and weight as for T which we started with.
We claim the exchange procedure above from T to Tm is reversible. It suffices to show that the above procedure from T k−1

to T k is invertible for each k. Denote by T k,0 the resulting tableau after removing cells labeled by unmarked k from T k. There
exists at most one cell labeled by marked k′ in each row of T k,0, and suppose that these cells are (i1, j1), (i2, j2), . . . , (ip, jp)
in T k,0 with i1 > i2 > · · · > ip. Start with the lowest cell (i1, j1) and suppose that its right and lower neighboring cells
(i1, j1 + 1) and (i1 + 1, j1), if they exist, in T k,0 are labeled by b, c ∈ P′ as follows:

k′ b
c

Set

b̃ =


|b| − (j1 + 1), if b is marked,
|b| − i1, otherwise,

c̃ =


|c| − j1, if c is marked,
|c| − (i1 + 1), otherwise.

If k′ > b or k′ > c , exchange k′ and b or c in T k,0 as follows:

Case I (b̃ ≤ c̃) :
k′ b
c −→

b k′

c

Case II (b̃ > c̃) :
k′ b
c −→

c b
k′

Keep repeating the above procedure to the new cell occupied by this k′, until it stops. Then move on to the cells
(i2, j2), . . . , (ip, jp) one by one and apply the same procedure. Denote by T k,1 the resulting tableau in the end. Removing
the cells labeled by k′ from T k,1, we recover the tableau T k−1. �

Example 2.3. Suppose λ = (5, 4, 2) and T is the marked shifted tableau given by Example 2.1. Then the colored shifted
tableau corresponding to T is T 3, where

T 1
= 1′ 1 T 2

=
1′ 2′ 1 2 2

2′ 2

T 3
=

1′ 2′ 3′ 1 2
2′ 2 2 3

3′ 3

2.5. Proof of Theorem B

Proof. It follows by Theorem 2.2 that−
T

t |T |
=

−
C

t |C |, (2.7)

where the first summation is over all marked shifted λ-tableaux T and the second summation is over all colored shifted
λ-tableaux C . The left-hand side of (2.7) is equal to Qλ(t, t2, t3, . . .) by (2.5).

It follows from the definition of colored shifted tableaux and then (2.6) that−
C

t |C |
=

 ∏
(i,j)∈λ∗

(t i + t j)
−

S

t |S|

=

∏
(i,j)∈λ∗

(t i + t j)∏
(i,j)∈λ∗

(1 − th
∗
ij )

,

where the summation on S is taken over all shifted reverse plane tableaux of shape λ.
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Putting everything together, we obtain that

Qλ(t•) =
1
tn

Qλ(t, t2, t3, . . .) =
1
tn
−
T

t |T |

=
1
tn

∏
(i,j)∈λ∗

(t i + t j)∏
(i,j)∈λ∗

(1 − th
∗
ij )

=

tn(λ)
∏

(i,j)∈λ∗

(1 + tcij)∏
(i,j)∈λ∗

(1 − th
∗
ij )

. (2.8)

This completes the proof of Theorem B. �

Remark 2.4. It follows from the proof above that Theorem B can be restated as

Qλ(t•) =

∏
(i,j)∈λ∗

(t i−1
+ t j−1)∏

(i,j)∈λ∗

(1 − th
∗
ij )

.

2.6. Another formula for Qλ(t•)

For k ∈ N, we set

(a; t)k = (1 − a)(1 − at) · · · (1 − atk−1).

Rosengren [9, Proposition 3.1] has obtained the following formula for Qλ(t•), starting from a Schur function identity of
Kawanaka:

Qλ(t•) =

∏
1≤i≤ℓ(λ)

(−1; t)λi
(t; t)λi

∏
1≤i<j≤ℓ(λ)

tλj − tλi

1 − tλi+λj
. (2.9)

Proposition 2.5. The formula (1.3) is equivalent to Rosengren’s formula (2.9).

Proof. Set ℓ = ℓ(λ). It is known (cf. [7, III, Section 8, Ex. 12]) that in the ith row of λ∗, the hook lengths h∗

ij for i ≤ j ≤ λi+i−1
are 1, 2, . . . , λi, λi + λi+1, λi + λi+2, . . . , λi + λℓ with exception λi − λi+1, λi − λi+2, . . . , λi − λℓ. Hence we have∏

(i,j)∈λ∗

1

1 − th
∗
ij

=
1∏

1≤i≤ℓ

(t; t)λi

∏
1≤i<j≤ℓ

1 − tλi−λj

1 − tλi+λj
. (2.10)

The equivalence between (1.3) and (2.9) can now be deduced by applying (2.10) and noting that the contents cij for
i ≤ j ≤ λi + i − 1 are 0, 1, . . . , λi − 1. �

Remark 2.6. By (2.5),Qλ(1m) is equal to the number ofmarked shifted Young tableaux of shape λwith filling by letters≤ m.
On the other hand, it follows from [13, Theorem4] that 2

δ(λ)−ℓ(λ)
2 Qλ(1m) gives the dimension of the irreducible representation

of the queer Lie superalgebra q(m) of highest weight λ.

3. The graded multiplicity in Cn ⊗ S∗V

The goal of this section is to establish Theorem A. In addition, a tensor identity in Lemma 3.1 allows us to translate a
multiplicity problem for Hn to CS−

n , and vice versa (see Proposition 3.2).

3.1. Some basics about superalgebras

We shall recall some basic notions of superalgebras, referring the reader to [6, Chapter 12]. Let us denote by v̄ ∈ Z2 the
parity of a homogeneous vector v of a vector superspace. A superalgebra A is a Z2-graded associative algebra. An A-module
always means a Z2-graded left A-module in this paper. A homomorphism f : V → W of A-modules V and W means a
linear map such that f (av) = (−1)f̄ āaf (v). Note that this and other such expressions only make sense for homogeneous
a, f and the meaning for arbitrary elements is attained by extending linearly from the homogeneous case. Let V be a finite
dimensional A-module. Let ΠV be the same underlying vector space but with the opposite Z2-grading. The new action of
a ∈ A on v ∈ ΠV is defined in terms of the old action by a · v := (−1)āav. Denote by A-smod the category of finite
dimensional A-modules.
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Given two superalgebras A and B, the tensor product A ⊗ B is naturally a superalgebra. Suppose that V is an A-module
andW is a B-module. Then the tensor space V ⊗ W affords an A ⊗ B-module, denoted by V � W , via

(a ⊗ b)(v ⊗ w) = (−1)b̄v̄av ⊗ bw, a ∈ A, b ∈ B, v ∈ V , w ∈ W .

3.2. Spin symmetric group algebras CS−
n and Hecke–Clifford algebras Hn

Recall that the spin symmetric group algebra CS−
n is the algebra generated by t1, t2, . . . , tn−1 subject to the relations:

t2i = 1, 1 ≤ i ≤ n − 1
titi+1ti = ti+1titi+1, 1 ≤ i ≤ n − 2
titj = −tjti, 1 ≤ i, j ≤ n − 1, |i − j| ≥ 1.

CS−
n is a superalgebra with each ti being odd, for 1 ≤ i ≤ n − 1.
Denote by Cn the Clifford superalgebra generated by the odd elements c1, . . . , cn, subject to the relations c2i = 1, cicj =

−cjci for 1 ≤ i ≠ j ≤ n. Observe that Cn is a simple superalgebra and there is a unique (up to isomorphism) irreducible
Cn-module Un.

Define the Hecke–Clifford algebra Hn = Cn o CSn to be the superalgebra generated by odd elements c1, . . . , cn and even
elements s1, . . . , sn−1, subject to the relations:

s2i = 1, sisj = sjsi, 1 ≤ i, j ≤ n − 1, |i − j| > 1,
sisi+1si = si+1sisi+1, 1 ≤ i ≤ n − 2,
c2i = 1, cicj = −cjci, 1 ≤ i ≠ j ≤ n,
sici = ci+1si, sicj = cjsi, 1 ≤ i, j ≤ n − 1, j ≠ i, i + 1.

There is a superalgebra isomorphism (cf. [13,19]):

CS−
n ⊗ Cn −→ Hn

ci → ci, 1 ≤ i ≤ n,
tj →

1
√

−2
sj(cj − cj+1), 1 ≤ j ≤ n − 1.

(3.1)

The two exact functors

Fn := − � Un : CS−

n -smod → Hn-smod,

Gn := HomCn(Un, −) : Hn-smod → CS−

n -smod

define Morita super-equivalence between the superalgebras Hn and CS−
n (cf. Kleshchev [6, Proposition 13.2.2] for precise

details).
It is known [2,13,18] (cf. [6]) that for each strict partitionλ of n, there exists an irreducibleHn-moduleDλ and {Dλ

|λ ⊢s n}
forms a complete set of non-isomorphic irreducible Hn-modules. We have a complete set of non-isomorphic irreducible
CS−

n -modules {Dλ
−

| λ ⊢s n}, and by [6, Proposition 13.2.2],

Gn(Dλ) =


Dλ

−
, if n or ℓ(λ) is even,

Dλ
−


ΠDλ

−
, otherwise. (3.2)

Denote the trivial representation by 1 and the sign representation of Sn by sgn. Note that Cn ∼= indHn
CSn1 is the irreducible

Hn-module D(n) [6, Lemma 22.2.4]. It follows from (3.2) that the irreducible CS−
n -module Bn := D(n)

− satisfies that

HomCn(Un, Cn) ∼=


Bn, if n is even,
Bn


ΠBn, if n is odd. (3.3)

It can be shown that the CS−
n -module Bn coincides with the basic spin representation Ln defined in [1, 2C].

3.3. The multiplicity problem of Hn vs CS−
n

Given a CSn-moduleM and a CS−
n -module E, the tensor product E ⊗ M affords a CS−

n -module as follows:

tj(u ⊗ x) = (tju) ⊗ (sjx), 1 ≤ j ≤ n − 1, u ∈ E, x ∈ M. (3.4)

Meanwhile, the tensor product F ⊗ M of a Hn-module F and a CSn-moduleM naturally affords a Hn-module with

ci(u ⊗ x) = (ciu) ⊗ x, sj(u ⊗ x) = (sju) ⊗ (sjx), (3.5)

for 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1, u ∈ F , x ∈ M.
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Lemma 3.1 (A Tensor Identity). Suppose thatM is aCSn-module. Thenwe have an isomorphism ofCS−
n -modules:Gn(Cn)⊗M ∼=

Gn(Cn ⊗ M); that is,

HomCn(Un, Cn) ⊗ M ∼= HomCn(Un, Cn ⊗ M).

Proof. Observe that by (3.1) the action of CS−
n on HomCn(Un, Cn ⊗ M) is given by

(tj ∗ f )(u) =


1

√
−2

sj(cj − cj+1)


(f (u)), f ∈ HomCn(Un, Cn ⊗ M), u ∈ Un (3.6)

while by (3.4) the CS−
n -module structure of HomCn(Un, Cn) ⊗ M is given by

tj ∗ (f ⊗ x) = (tj ∗ f ) ⊗ (sjx), f ∈ HomCn(Un, Cn), x ∈ M. (3.7)

Define a map

φ : HomCn(Un, Cn) ⊗ M −→ HomCn(Un, Cn ⊗ M),

f ⊗ x → (u → f (u) ⊗ x).

Clearly φ is injective and thus an isomorphism of vector spaces by a dimension counting argument. It remains to show that
φ is a CS−

n -module homomorphism. Indeed, for u ∈ Un, f ∈ HomCn(Un, Cn) and x ∈ M , we have

φ(tj ∗ (f ⊗ x))(u) = φ(tj ∗ f ⊗ sjx)(u) by (3.7)
= (tj ∗ f )(u) ⊗ sjx

=


1

√
−2

sj(cj − cj+1)


f (u)


⊗ sjx

=


1

√
−2

sj(cj − cj+1)


(f (u) ⊗ x) by (3.5)

= (tj ∗ φ(f ⊗ x))(u) by (3.6). �

Proposition 3.2. Suppose that M is a CSn-module. Let mλ and m−

λ be the multiplicities of Dλ and Dλ
−
in the Hn-module Cn ⊗ M

and CS−
n -module Bn ⊗ M, respectively. Then,

m−

λ =

mλ, if n is even,
mλ, if n is odd and ℓ(λ) is odd,
1
2mλ, if n is odd and ℓ(λ) is even.

Proof. It follows by definition that

Cn ⊗ M ∼=


λ⊢sn

mλDλ, Bn ⊗ M ∼=


λ⊢sn

m−

λ D
λ
−
. (3.8)

By (3.3) and Lemma 3.1, we have

Gn(Cn ⊗ M) ∼=


Bn ⊗ M, if n is even,
2Bn ⊗ M, if n is odd.

This together with (3.8) implies that
λ⊢sn

mλGn(Dλ) ∼=


λ⊢sn m

−

λ D
λ
−
, if n is even,

λ⊢sn 2m
−

λ D
λ
−
, if n is odd.

The proposition now follows by comparing the multiplicities of Dλ
−
on both sides and using (3.2). �

3.4. Proof of Theorem A

The symmetric group Sn acts naturally on the (Z+-graded) symmetric algebra on V = Cn:

S∗V =


j≥0

S jV .

As Sn-modules, we will identify S∗V with the algebra of polynomials in n variables over C. Note that Cn ⊗ S∗V = indHn
CSnS

∗V
is naturally a Z+-graded Hn-module, with the grading inherited from the one on S∗V .
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Lemma 3.3. We have the following isomorphism of Hn-modules for j ≥ 0:

Cn ⊗ S jV ∼=


ν|=n,n(ν)=j

indHn
CSν1.

Proof. Identify S∗V ≡ C[x1, . . . , xn]. The definition (1.1) of n(ν) makes sense for any composition ν. The representatives of
the Sn-orbits on the set of all monomials of degree j in C[x1, . . . , xn] can be chosen to be

(x1 . . . xν1)
0(xν1+1 . . . xν1+ν2)

1(xν1+ν2+1 . . . xν1+ν2+ν3)
2 . . .

where ν = (ν1, ν2, . . .) runs over all compositions of n such that n(ν) = j. Then, as CSn-modules,

S jV ∼=


ν|=n,n(ν)=j

indCSn
CSν1.

Hence, as Hn-modules, we have

Cn ⊗ S jV ∼=


ν|=n,n(ν)=j

indHn
CSn ind

CSn
CSν1

∼=


ν|=n,n(ν)=j

indHn
CSν1. �

Below, we shall denote by [un
]f (u) the coefficient of un of a formal power series f (u) in a variable u. We are ready to

prove Theorem A in the Introduction.
Proof of Theorem A. Denote by K(Hn-smod) the complexified Grothendieck group of the category Hn-smod. Recall the
definition of the algebra ΓC from (2.4). There exists an isomorphism called the characteristic map [13,18,2]

ch :


n≥0

K(Hn-smod) −→ ΓC,

which sends Dλ to 2−
ℓ(λ)−δ(λ)

2 Qλ for all strict partitions λ. It is known that

ch

indHn

CSν1


= qν, ∀ν |= n. (3.9)

By Lemma 3.3, (3.9) and (2.3), we have−
j

t jch(Cn ⊗ S jV ) =

−
j

t j
−

ν|=n,n(ν)=j

qν(z)

=

−
ν|=n

∏
r≥0

qνr+1(z)(t
r)νr+1

= [un
]

∏
r≥0

−
s≥0

qs(z)(t ru)s

= [un
]

∏
i≥1,r≥0

1 + zit ru
1 − zit ru

.

Recall the notation Qλ(t•) from the Introduction. It follows from (2.2) that∏
i≥1,j≥0

1 + zit ju
1 − zit ju

=

−
λ: strict

2−ℓ(λ)u|λ|Qλ(t•)Qλ(z).

Hence−
j

t jch(Cn ⊗ S jV ) =

−
λ⊢sn

2−ℓ(λ)Qλ(t•)Qλ(z).

Since the characteristic map ch is an isomorphism, we have an isomorphism of Hn-modules:

Cn ⊗ S∗V ∼=


λ⊢sn

2−
δ(λ)+ℓ(λ)

2 Qλ(t•)Dλ.

This together with Theorem B implies Theorem A. �

The following corollary follows directly from Theorem A and Proposition 3.2.
Corollary 3.4. The graded multiplicity of Dλ

−
in the CS−

n -module Cn ⊗ S∗V is given by (1.2) unless n is odd and ℓ(λ) is even; in
this case, the graded multiplicity is

2−
ℓ(λ)
2 −1

tn(λ)
∏

(i,j)∈λ∗

(1 + tcij)∏
(i,j)∈λ∗

(1 − th
∗
ij )

.
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3.5. A graded regular Hn-module

It is well known that the algebra (S∗V )Sn of Sn-invariants in S∗V is a free polynomial algebra whose Hilbert series P(t) is
given by

P(t) =
1

(1 − t)(1 − t2) · · · (1 − tn)
. (3.10)

Define the ring of coinvariants (S∗V )Sn to be the quotient of S∗V by the ideal generated by the homogeneous invariant
polynomials of positive degrees. It is well known that S∗V is a free module over the algebra (S∗V )Sn , and so we have an
isomorphism of graded CSn-modules

S∗V ∼= (S∗V )Sn ⊗C (S∗V )Sn . (3.11)

Theorem 3.5. The graded multiplicity of Dλ in Cn ⊗ (S∗V )Sn is

2−
ℓ(λ)+δ(λ)

2

tn(λ)(1 − t)(1 − t2) · · · (1 − tn)
∏

(i,j)∈λ∗

(1 + tcij)∏
(i,j)∈λ∗

(1 − th
∗
ij )

.

Proof. Follows directly from Theorem A, (3.10), and (3.11). �

Remark 3.6. Recall the isomorphism of Hn-modules D(n) ∼= Cn (cf. [6]). It follows that the graded multiplicity of Cn in
Cn ⊗ (S∗V )Sn is (1 + t)(1 + t2) · · · (1 + tn−1), and the graded multiplicity of Cn in Cn ⊗ S∗V is

(1 + t)(1 + t2) · · · (1 + tn−1)

(1 − t)(1 − t2) · · · (1 − tn)
. (3.12)

Remark 3.7. The number gλ of standard shifted Young tableaux of shape λ is known to be (cf. [11,7])

gλ
=

n!∏
(i,j)∈λ∗

h∗

ij

.

By the isomorphism ofCSn-modules (S∗V )Sn
∼= CSn, theHn-module Cn⊗(S∗V )Sn is isomorphic to the regular representation

ofHn. It is known (cf. [6]) that themultiplicity ofDλ in the regular representation ofHn is given by 1
2δ(λ) dimDλ. By specializing

t = 1 in Theorem 3.5, we recover the dimension formula dimDλ
= 2n− ℓ(λ)−δ(λ)

2 gλ.

4. The graded multiplicity in Cn ⊗ S∗V ⊗ ∧∗V

4.1. The Sn-module S∗V ⊗ ∧
∗V

The Sn-action on V = Cn induces a natural Sn-action on the exterior algebra

∧
∗V =

n
q=0

∧
qV .

This gives rise to a Z+ × Z+ bi-graded CSn-module structure on

S∗V ⊗ ∧
∗V =


p≥0,0≤q≤n

SpV ⊗ ∧
qV .

According to Kirillov and Pak [5], the bi-graded multiplicity of the Specht module Sλ for λ ⊢ n in S∗V ⊗ ∧
∗V is given by

∞−
p=0

n−
q=0

tpsqmλ(SpV ⊗ ∧
qV ) =

∏
(i,j)∈λ

(t i−1
+ st j−1)∏

(i,j)∈λ

(1 − thij)
, (4.1)

which can be rewritten as

tn(λ)
∏

(i,j)∈λ

(1 + stcij)∏
(i,j)∈λ

(1 − thij)
.
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In particular, this recovers Solomon’s formula [15] for the generating function for the bi-graded Sn-invariants in S∗V ⊗∧
∗V :

(1 + s)(1 + st) · · · (1 + stn−1)

(1 − t)(1 − t2) · · · (1 − tn)
. (4.2)

The formal similarity between the graded multiplicities (1.2) and (4.1) in very different settings is rather striking. Also
compare the similarity between (3.12) and (4.2).

4.2. Proof of Theorem C

Lemma 4.1. The following holds as Hn-modules:

indHn
CSnsgn

∼= indHn
CSn1.

Proof. Define a C-linear map

f : indHn
CSnsgn = Cn ⊗ sgn → indHn

CSn1
c ⊗ 1 → c · (c1c2 · · · cn ⊗ 1)

It is straightforward to show that f is actually a Hn-module isomorphism. �

Lemma 4.2. For p ≥ 0, 0 ≤ q ≤ n, as Hn-modules, we have

Cn ⊗ SpV ⊗ ∧
qV ∼=


α,β

indHn
C(Sα×Sβ )1,

summed over all α |= n − q, β |= q with n(α) + n(β) = p.

Proof. Arguing similarly as in the proof of Theorem A, we have an isomorphism of CSn-modules:

SpV ⊗ ∧
qV ∼=


α,β

indCSn
C(Sα×Sβ )(1 ⊗ sgn),

summed over all α |= n − q, β |= q with n(α) + n(β) = p. Now the lemma follows by applying indHn
CSn to the above

isomorphism and using Lemma 4.1. �

We are ready to prove Theorem C from the Introduction.

Proof of Theorem C. It follows by (3.9) and Lemma 4.2 that

ch(Cn ⊗ SpV ⊗ ∧
qV ) =

−
α,β

qα(z)qβ(z),

summed over all α = (α1, α2, . . .) |= n − q, β = (β1, β2, . . .) |= q with n(α) + n(β) = p. Hence,−
p≥0,0≤q≤n

tpsqch(Cn ⊗ SpV ⊗ ∧
qV ) =

−
p≥0,0≤q≤n

tpsq
−

α|=n−q,β|=q,n(α)+n(β)=p

qα(z)qβ(z)

= [un
]

−
α1,α2,...,β1,β2,...

∏
r≥0

qαr+1(z)(t
ru)αr+1

∏
k≥0

qβk+1(z)(t
ksu)βk+1

= [un
]

∏
i≥1,r≥0

1 + zit ru
1 − zit ru

1 + zit r su
1 − zit r su

=

−
λ⊢sn

2−ℓ(λ)Qλ(t•; st•)Qλ(z)

where we have used the short-hand notation Qλ(t•; st•) from the Introduction and (2.2) in the last equation. Theorem C
follows. �

Remark 4.3. It is an interesting open problem to find an explicit formula for Qλ(t•; st•). Consider a Koszul Z+-grading
which counts the standard generators of S∗V as degree 2 and the standard generators of ∧∗V as degree 1. This corresponds
precise to setting t = s2, and hence, Qλ(t•; st•) = Qλ(s•). Therefore, for the Koszul grading, the graded multiplicity of Dλ in
Cn ⊗ S∗V ⊗ ∧

∗V is given by the same formula (1.4).
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4.3. Some consequences of Theorem C

Recall the notation of Qλ(t•; st•) from the Introduction. By Proposition 3.2, we have the following corollary as a
counterpart of Theorem C for CS−

n .

Corollary 4.4. The bi-graded multiplicity of Dλ
−
in the CS−

n -module Bn ⊗ S∗V ⊗ ∧
∗V is given by (1.4) unless n is odd and ℓ(λ)

is even; in this case, the bi-graded multiplicity is

2−
ℓ(λ)
2 −1Qλ(t•; st•).

Corollary 4.5. The graded multiplicity of Dλ in the Hn-module indHn
CSn(∧

∗V ) is given by 2−
ℓ(λ)+δ(λ)

2 Qλ(1, s). Moreover,

Qλ(1, s) =


2ℓ(λ)(1+s)(sl−sk)

1−s , if λ = (k, l) with k > l ≥ 0,
0, otherwise.

Proof. The first statement is obtained by setting t = 0 in Theorem C. By (2.1), we see that

Qλ(z1, z2) =


2ℓ(λ)(z1+z2)(zk1z

l
2−zl1z

k
2)

z1−z2
, if λ = (k, l) with k > l ≥ 0,

0, otherwise.

The corollary follows by setting z1 = 1 and z2 = s. �

Setting s = 0 in Theorem C, we recover Theorem A.
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