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a b s t r a c t

This review describes the state of the art in nanoparticle and nanodevice applications for medical diag-
nosis and disease treatment. Nanodevices, such as cantilevers, have been integrated into high-sensitivity
disease marker diagnostic detectors and devices, are stable over long periods of time, and display reli-
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able performance properties. Nanotechnology strategies have been applied to therapeutic purposes as
well. For example, nanoparticle-based delivery systems have been developed to protect drugs from
degradation, thereby reducing the required dose and dose frequency, improving patient comfort and
convenience during treatment, and reducing treatment expenses. The main objectives for integrating
nanotechnologies into diagnostic and therapeutic applications in the context of intestinal diseases are
reviewed.

Gast
© 2013 Editrice

. Introduction

Nanotechnology is an interdisciplinary research field that inte-
rates chemistry, engineering, biology, and medicine. Several
seful nanotechnological applications have been identified in can-
er biology, including technologies for the early detection of
umours and cancer biomarkers, and the development of treatment
pproaches that are impossible to achieve using conventional tech-
ologies [1]. The field is rapidly evolving and expanding, and it has
ained public and media interest worldwide.

The application of nanotechnology in cancer research has pro-
ided hope within the scientific community for the development
f novel cancer therapeutic strategies. As gastrointestinal cancers
ontribute to more than 55% of deaths associated with cancer [2],
remendous efforts have been made towards the development of
ovel diagnostic and therapeutic methods for improving patient
uality of life and lengthening survival. Advances in image-based
etection, targeted drug delivery, and metastases ablation could
o a long way to improve patient outcome. Classical approaches
enerally do not meet patients’ expectations due to a lack of speci-
city and poor patient stratification. More highly targeted and
ustomized treatments are needed. Towards this goal, nanotech-
ologies and nanodevices have been explored for their potential
tilities in advancing targeted therapeutic approaches.
Nanotechnology strategies are expected to involve the creation
nd/or manipulation of materials on the nanometer scale, either by
caling up from single groups of atoms or by refining or reducing
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bulk materials into nanoparticles (NPs) [3]. NPs are typically sev-
eral hundreds of nanometers in size and can offer unprecedented
interactions with biomolecules on cell surfaces or inside the cell [4].
Extensive types of nanoparticles composed of different materials,
shapes, and sizes, and with various chemical and surface properties,
have already been engineered (Table 1).

These properties rely on an interaction surface between a tar-
get and a NP which is thousands times larger than the interaction
surface between a target and a drug. A variety of NPs are used
for diagnostic and/or therapeutic purposes in different cancer
types. Such NPs assist in visualizing tumours and/or delivering
drugs (theragnostic approach) in a targeted manner with reduced
toxicity and side effects. Examples of nanodevices developed for
use in oncology applications include quantum dots (QDs), carbon
nanotubes (CNTs), paramagnetic NPs, liposomes, gold NPs (GNPs),
magnetic resonance imaging (MRI) contrast agents for intraopera-
tive imaging, and novel NP-based methods for the highly specific
detection of DNA and protein [26–30].

Recent advances have led to the development of bioaffinity NP
probes for molecular and cellular imaging, targeted NP drugs for
cancer therapy, and integrated nanodevices for early screening and
detection of cancer. These developments offer exciting opportu-
nities for the development of personalized therapy, in which the
molecular profiles of an individual’s genetic and protein biomarkers
may be used to diagnose and treat the patient’s cancer. Several bar-
riers to the development of in vivo nanodevices applications have
slowed progress in the preclinical and clinical stages of develop-

ment: biocompatibility, in vivo kinetics, tumour-targeting efficacy,
acute and chronic toxicity, escape from the reticuloendothelial
system, and cost-effectiveness impose high hurdles for nanotech-
nology [1,31].

Ltd. All rights reserved.

https://core.ac.uk/display/82631483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.dld.2013.03.019
http://www.sciencedirect.com/science/journal/15908658
http://www.elsevier.com/locate/dld
mailto:hlaroui@gsu.edu
dx.doi.org/10.1016/j.dld.2013.03.019


996 H. Laroui et al. / Digestive and Liver Disease 45 (2013) 995–1002

Table 1
Comparison of different materials of nanodevices displaying the shapes, the sizes, the properties, and the use of different materials for diagnosis and/or therapeutics.

Material Size range Shape Properties Applicability Reference

Fullerene nm Nanotubes Carbon nanomaterials in
molecular electronics

Nanowire and biosensor
for diagnosis

[5,6]

Carbon nanotubes
Polylactic acid 1–1000 nm Spherical Biodegradable Drug/gene delivery [7–13]
Poly(cyano)acrylates Biocompatible
Polyethyleinemine Smart material (external

stimuli degradation pH,
temperature, . . .)

Block copolymers
Polycaprolactone

Gold nanoparticles 3–100 nm Spherical Electronic, optical, and
thermal properties

Diagnostics and detection
of biological molecules at
low concentration

[14–16]

Magnetic nanoparticles 3–100 nm Spherical Magnetic properties Magnetic immunoassays,
drug delivery, cell
separation, purification,
and tissue repair.

[17–19]

Quantum dots 1–10 nm Spherical Cd/Zn-selenides In vitro diagnostic [20–22]
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Dendrimers 10–200 nm Complex, branched polymer

Innovation in the field of nanotechnology is required. The
eld is, therefore, characterized by the continuous growth and
volution in response to these barriers to product development.
s a result of these efforts, nanowires, nanocantilevers, quan-

um dots, nanoshells, dendrimers, liposomes, nanopyramids, and
anogels are used in diagnostic or therapeutic applications in can-
er research.

. Nanotools for diagnostics

.1. Nanowires for use in diagnostics

Devices based on nanowires provide powerful general plat-
orms for the ultrasensitive direct electrical detection of biological

nd chemical species [3]. Nanowires may be laid down across a
icrofluidic channel (Fig. 1), and as particles flow through the
icrofluidic channel, the nanowire sensors pick up the molecular

ignatures of these particles and relay the information to a signal

ig. 1. Schematic of a regular planar nanowire sensor biochip with integrated
icrofluidic sample delivery. The schematic represents a Si nanowire-based device

onfigured as a sensor potentially covered with receptors and where binding of
igands yields a decrease in the conductance.
Imaging

Drug delivery systems [23–25]

analyser. Such systems can detect the presence of altered genes
associated with the disease and can help researchers pinpoint the
position of these genetic changes [32]. Zheng et al. reported the
preparation of a silicon nanowire (SiNW) biosensor array for the
simultaneous detection of multiple cancer biomarkers in a sin-
gle versatile detection platform [33]. The real-time detection of
three cancer markers (prostate-specific antigen, carcinoembryonic
antigen, and mucin-1) using SiNW biosensors functionalized with
three cognate antibodies was demonstrated [34]. The simultane-
ous high-sensitivity analysis of multiple biomarkers could further
facilitate the early detection of cancer [35,36]. This study described
the synthesis of aligned ZnO nanowire arrays using a vapour–solid
process, as shown in the scanning electron microscopy (SEM) image
below. The growth of aligned arrays of nanowires plays an impor-
tant role in nanobiotechnology and can be used for biosensing,
cellular manipulation, and the conversion of mechanical energy
into electricity for powering nanodevices. A silicon (Si) nanowire
field-effect device was developed in which distinct nanowires and
surface receptors were incorporated into arrays [33]. The capacities
of Si-nanowire probes for the multiplexed real-time monitoring of
protein markers in clinically relevant samples with high sensitivity
and selectivity offers the potential for the diagnosis and treatment
of cancers [36]. Single-walled carbon nanotubes (SWCNTs) exhibit
distinctive electrical and spectroscopic properties, including near-
infrared photoluminescence and strong resonant Raman scattering,
that may be useful in biological detection and imaging applications
[37].

2.2. Cantilevers for use in diagnostic applications

The innovative nanocantilever enables the quantitative mea-
surement of low levels of certain molecules. Nanoscale cantilever
arrays comprise microscopic flexible beams that resemble a row of
diving boards and provide rapid and sensitive detection. The phys-
ical properties of the cantilevers change as a result of a binding
event and can be read in real-time. A nanocantilever’s deflec-
tion and resonant frequency may be sensitively modulated by the
binding of a surface-immobilized affinity reagent to a biomarker

protein or nucleic acid (via hybridization) [37]. For example, an
antibody-coated cantilever can selectively bind to one or more
specific molecular products secreted by a cancer cell (Fig. 2). This
detection can be coupled with modern communication tools (e.g.
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Fig. 2. Schematic diagram illustrating an example application of nanotechnology to medicine. (1) Home-based tests, (2) lab-on-a-chip technologies, and (3) cantilever
t ent c
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echnologies. An patient with inflammatory bowel disease (IBD) undergoing treatm
or processing (4), thereby reporting the inflammation marker level status to the p
reatment optimization.

mart phones) and provides a customized and real time diagno-
is on a disease blood markers. Thus patients will have the unique
apability to access in real time their own inflammatory level.

Two equations may be used to describe the behaviour of a micro-
lectromechanical system (MEMS) cantilever. The first is Stoney’s
ormula, which relates the cantilever end deflection ı to the applied
tress �:

= 3�(1 − v)
E

(
L

t

)2
,

here � is Poisson’s ratio, E is Young’s modulus, L is the beam length,
nd t is the cantilever thickness. Very sensitive optical and capaci-
ive methods have been developed to measure changes in the static
eflection of a cantilever beam in a DC coupled sensor.

The cantilever spring constant k is related to the cantilever
imensions and material constants according to the following
quation:

= F

ı
= Ewt3

4L3
,

here F is the force and w is the cantilever width. The spring
onstant is related to the cantilever resonance frequency ω0 by
he usual harmonic oscillator formula, ω0 =

√
k/mequivalent. A

hange in the force applied to a cantilever can shift the resonance
requency. The frequency shift can be measured with exquisite
ccuracy using heterodyne techniques. Such shifts form the basis
or AC coupled cantilever sensors.

Cantilevers are used mainly in the context of atomic force
icroscopy (AFM). AFM instruments consist of a cantilever with
sharp tip (probe), which is scanned over a specimen surface. The
antilever is typically silicon or silicon nitride with a tip radius of
urvature on the order of nanometers. As a tip is brought into prox-
mity with a sample surface, the forces between the tip and the
ample produce a deflection of the cantilever according to Hooke’s
ould potentially use a smart phone to send the home-based test results to a server
’s physician (5). Such techniques can potentially be used to adjust dosage towards

law. Depending on the conditions, the forces measured during an
AFM measurement could include the mechanical contact force,
the van der Waals forces, the capillary forces, chemical bonding
strengths, electrostatic forces, solvation forces, and magnetic forces
(see also magnetic force microscopes, MFMs). In addition to these
forces, other quantities may be measured using specialized types
of probe (see also scanning thermal microscopy, scanning joule
expansion microscopy, and photothermal microspectroscopy).
Typically, the cantilever deflection is measured using a laser spot
reflected from the top surface of the cantilever onto an array of
photodiodes. Other detection methods including optical interfer-
ometry and capacitive sensing, and piezoresistive AFM cantilevers
have also been developed.

AFM techniques provide information about the presence or
absence of a compound, as well as the concentrations. The
technological breakthrough made by nanocantilevers is made
by their extraordinary capacity for multiplexing [38]. In one
study, Majumdar used microcantilevers to detect single-nucleotide
polymorphisms (SNPs) in a 10-mer DNA target oligonucleotide
without a need for extrinsic fluorescent or radioactive labels
[39]. This application is being explored for applications involving
cancer-associated molecules that may be present in very low con-
centrations. Cantilevers are, therefore, potentially useful tools for
the early detection of cancer.

2.3. Quantum dots in diagnostic applications

Quantum dots (QDs) are semiconductor nanocrystals that are
readily synthesized and provide characteristic properties that are
intermediate between the properties of bulk semiconductors and

discrete molecules. The diameters of QDs range from 2 to 10 nm
[40]. They display quantized energy levels and size-dependent
fluorescent properties [41] (Fig. 3). The fluorescent properties of
QDs are suitable for cancer targeting and imaging applications.
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MRI or NIR contrast agents for cancer therapies. Surface-modified
dendrimer-based nanodrugs have been developed against viruses
and bacteria. One such dendrimer-derived microbicide (Vivagel®)
was developed to treat HIV and genital herpes. This product relies
ig. 3. Illustration of the main optical feature of colloidal quantum dots: their colou
olours. The physical reason is the quantum confinement effect.

emiconductor nanoparticles can accumulate at a target site
ue to their enhanced permeability and retention at a tumour
ite. The targeted accumulation of QDs has been experimentally
emonstrated in vivo in a xenograft model involving a human
rostate cancer cell line in nude mice [42].

Oncogenes may be detected using a carefully designed series
f QDs. QDs with distinct emission spectra may be decorated with
istinct specific DNA tags such that an emission spectrum is asso-
iated with a specific and unique immobilized DNA tag. The DNA
ag-labelled QDs are then incubated with an unknown DNA sample,
nd the DNA tags hybridize to portions of the sample DNA sequence
ssociated with the disease (the oncogene). Photoillumination of
he QDs-tagged DNA results in the emission of a unique bar code,
hereby identifying the sequence [39]. This technology was used to
evelop a method for detecting several molecular markers simulta-
eously (“multiplexed”) in a single tissue specimen. The resulting

mages of colon tissue were tested as a prognostic marker of the
isk of developing colon cancer.

The full spectrum of QDs enables the creation of unique labels
hat can be used to identify several regions of DNA simultaneously.
he versatility of QDs-based methods is important for the detection
f cancer, which tends to result from the accumulation of many
ndependent DNA changes within a cell. QDs may be advantageous
ecause administration of a QDs formulation is non-invasive and
liminates the need for a biopsy. QDs toxicity, however, remains a
ajor concern for clinical applications [43–49].

. Dual nanotools application for diagnostics and
herapeutics

.1. Nanoshells for diagnostic and treatment applications

Nanoshells are miniscule beads coated with gold. The thickness
f each layer in a nanoshell may be manipulated towards designing
eads that absorb specific wavelengths of light. Due to their size,
anoshells can be injected safely in animal models and preferen-
ially concentrate at cancer lesion sites through a cancer-specific
henomenon called enhanced permeation and retention (EPR).
anoshells may be used to carry molecular conjugates that can
ind to an antigen displayed on a cancer cell surface or in a tumour
icroenvironment. The application of energy (mechanical, radio

requency, or optical) to these cells from an external source results
n energy absorption by the nanoshells. The excited nanoshells then
on-radiatively relax to the ground state, producing intense local
eating and selectively killing the tumour cells without harming
he neighbouring healthy cells. Nanoshells improve the efficacy
f a therapeutic treatment and significantly reduce the associated
ide effects. The most useful nanoshells are those that absorb near-

nfrared light, which can easily penetrate several centimetres of
uman tissue.

Fortina et al. [50] proposed a method for the targeted deliv-
ry of a therapeutic and the subsequent ablation of colorectal
ntum dots of the same material, but with different sizes, can emit light of different

cancer (CRC). In this approach, nanoshells with surface-bound
ligands (diarrheagenic bacterial heat-stable peptide enterotoxin,
ST) were combined with near-infrared or radiofrequency ther-
mal ablation techniques. The ST targeted surface-bound guanylyl
cyclase C (GCC), which is expressed on all normal colonic epithe-
lial cells as well as primary CRC and metastatic tumours [50]. The
incorporation of iron or iron oxide into the nanoshell structures
provided functionality as a magnetic resonance imaging (MRI) con-
trast agent.

3.2. Dendrimers for use in diagnostics and therapeutics

Dendrimers are large complex branched polymers with a well-
defined structure surrounding an inner core (Fig. 4). The size, shape,
branching length, and surface functionalities of a dendrimer may
be controlled towards the design of functional nanoparticles [51].
Polyamidoamines (PAMAM) are a set of dendrimers commonly
used for the targeted delivery of drugs and other therapeutic agents.
Drug molecules may be loaded in the inner core or covalently
attached to the periphery of a dendrimer. The most developmen-
tally advanced dendrimer applications have been in the area of
Fig. 4. Schematic of a divergent synthesis of dendrimers. Dendritic molecules are
characterized by structural perfection. Dendrimers are monodisperse and usually
highly symmetric, spherical compounds and based on successive generation of the
same molecule.
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n the multivalent properties of dendrimers. The conjugation of
ntibodies (for example, against CD14 or prostate-specific mem-
rane antigen) to PAMAM dendrimers can provide contrast agents.
uch agents have been evaluated using flow cytometry and confocal
icroscopy methods [52].
Early gene delivery techniques were developed towards the

reatment of hereditary diseases; however, the focus has shifted,
nd current gene delivery approaches are target towards can-
ers [53]. Certain limitations of gene therapy may be overcome
sing nanotechnologies. For example, a method was developed to
se nonviral delivery vectors, such as liposomes or dendrimers,
hich are less immunogenic than conventional viral vectors [54].
onviral vectors are generally cationic in nature and encapsu-

ate negatively charged DNA through electrostatic interactions.
anoparticles make good nonviral vector systems because they
re safe, simple to use, and easy to produce. Their transfection
fficiency is lower than the efficiency of viral vectors, although
hese deficiencies may be improved using certain structural adjust-

ents, such as the attachment of ligands [55,56]. The dendrimer
ost commonly used in gene delivery applications is PAMAM,
hich shows a high transfection efficiency. The transfection effi-

iency can be further enhanced by heat treatment in water
r butanol. Heat treatment increases the dendrimer flexibility,
hich compacts the dendrimer upon compounding with DNA

57].

.3. Liposomes in diagnostic and therapeutic applications

Liposomes are widely used in diagnostic and therapeutic appli-
ation and display outstanding efficiencies in these applications.
iposomes are spherical vesicles comprising an aqueous core sur-
ounded by a phospholipid bilayer in combination with cholesterol.
iposomes can be prepared to have a uniform particle size within
he range of 50–700 nm and special surface characteristics [58].
hey can be classified by size and by the number of layers present,
ielding the following types: small unilamellar, large unilamellar,
mall multilamellar, and large multilamellar. Vesicle size and shape
an change over time, because vesicle preparations are metastable
that is, their structures are not the most thermodynamically sta-
le configuration under the conditions [59]. The circulation time
ay be increased by attaching polyethylene glycol (PEG) molecules

o their surface. PEG molecules protect the liposomes and prevent
heir clearance.

Important applications of liposomes have been developed in
he fields of imaging and drug delivery. Superparamagnetic lipo-
omes are good MRI contrast agents. For example, maghemite
articles were introduced into a liposomal vesicle synthe-
ized from egg phosphatidylcholine and distearoyl-SN-glycero-3-
hosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000].
hese liposomes were further pegylated. The liposomes were found
o be highly efficient contrast agents in the context of magnetic
esonance angiography. Here, the liposomes were intravenously
njected, and images were collected 24 h after administration [60].
iposomes have been explored as gene transfer delivery systems.
he advantages of liposomes as gene delivery carriers include
he facile control over size and the facile modification with a
argeting agent. One obstacle to the use of liposomes as gene
elivery systems is their low efficiency in the context of DNA
ncapsulation. The low encapsulation efficiency may be over-
ome by using cationic liposomes consisting of positively charged
ipid bilayers that combine spontaneously with negatively charged

NA via electrostatic and hydrophobic interactions. The trans-

ection efficiency has been improved by mixing the liposomes
ith cholesterol and further modifying with functional ligands

61].
Disease 45 (2013) 995–1002 999

3.4. Nanopyramids

Electrochemical deposition offers a useful method for gen-
erating different nanodevices shapes [62]. Several particle
morphologies, including rod-like or dendritic gold nanostructures,
have been obtained in a one-step process without a template and
typically in the presence of an additive, such as Pb4+ or cysteine.
However, those nanostructures were not necessarily well defined.
The non-templated electrochemical fabrication of pyramidal, rod-
like, and spherical gold nanostructures on a sputtered gold film
usually proceeds in a single step and is inexpensive. Researchers at
Northwestern University have fabricated gold nanopyramids that
can be positioned on silicon pedestals [63,64]. When illuminated
with light, the anisotropic nanopyramids generate heat. Nanopy-
ramids may be taken up by cancer cells, which tend to have “leaky”
cell walls, and localized heating (using near-infrared illumination)
results in cell death.

3.5. Nanogels

Nanogels (NGs) are nanoscale hydrogels composed of polymer
chains that are cross-linked via noncovalent interactions or cova-
lent bonds [65,66]. NGs have attracted much attention because
they are sensitive to external stimuli by changing their volume
and shape much more rapidly than macroscopic gels [67,68]. NGs
can accommodate a variety of molecules in their inner free spaces
[69–71]. The elasticity of a NG significantly affects its biodistribu-
tion [72]. An example of nanogels application was described by
Cheng et al. [73], who used nanogels to target human umbilical
vein endothelial cells (HUVECs) in a model cell system. The target-
ing capacities of zwitterionic poly(carboxybetaine methacrylate)
(pCBMA) nanogels conjugated to cyclo[Arg-Gly-Asp-D-Tyr-Lys]
(cRGD) were tested, and pCBMA was found to selectively bind to
HUVECs expressing Rv�3 or Rv�5 integrins.

4. Imaging and detection in colorectal cancer

Beyond imaging and detection applications, targeted nanostruc-
tures may be used to develop novel approaches for the treatment of
colorectal and other tumours [74]. Currently, the nodal status of a
colorectal cancer can only be reliably determined by histopatho-
logical examinations of a resected specimen. New methods for
intra-operative staging would guide surgical resection according
to the disease stage.

Nanostructure-based MRI contrast agents exhibit great poten-
tial for use in the in vivo imaging and diagnosis of colon cancer.
Nanostructures may be used to modify conventional contrast
agents, such as gadolinium, or imaging agents, such as iron oxide,
in an effort to enhance the diagnostic power of clinical imaging
[75–79]. Not only do these nanostructures improve the features
observed in conventional MRI imaging, they present an opportunity
to alter the methods used to detect and manage colorectal cancer.

4.1. Endoscopy NIRF using QDs

Near-infrared fluorescence imaging (NIRF) shows promise as
a new modality in CRC imaging. NIRF can be used to image gas-
trointestinal diseases, such as CRC, because the current clinical
evaluation of CRC involves fibre optic examinations of the luminal
surfaces [74]. Intra-operative fluorescence using naturally fluores-
cent biomarkers or fluorescent tumour probes may offer a practical

means for intra-operative lymph node staging. Nanotechnology
may potentially enhance the use of such fluorescent probes. The
standard of care may be improved by better endoscopic visualiza-
tion techniques using near-infrared fluorescence imaging agents,
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ig. 5. Illustration representing the nanoparticles (NPs) in targeted strategy. With
pecifically in the colon. In targeting strategy, NPs are covered with an antibody w
eleased in the specific area.

uch as tunable quantum dots. Indeed, a murine model of colon
ancer has been studied using a NIRF agent [80].

.2. Gastrointestinal delivery of anti-inflammatory nanoparticles
o treat inflammatory bowel disease

The advantages of using nanostructured vectors in drug deliv-
ry systems are numerous. Nanostructured vectors reduce the
everity and incidence of side effects by lowering the required
rug dose, and they increase the interaction specificity between
drug and its target. Specific targeting is more efficient and less

ostly than systemic therapies [81]. The colon is the targeted organ
n inflammatory bowel disease mainly, including ulcerative colitis
nd Crohn’s disease. A large number of drugs may potentially
e loaded into nanoparticles (NPs). Small molecules, such as
ripeptides [7] and siRNA [9], or larger molecules, such as proteins
10] (hormones or antibodies), may be encapsulated alone or in

complex form inside a NP (Fig. 5). NP synthesis and loading
ith anti-inflammatory compounds was immediately followed by
elivery to the colon. An efficient technique was developed for spe-
ific targeting of the NPs to regions of the digestive tract, including
olon, using a hydrogel held together by electrostatic interactions
etween positive ions and negative polysaccharides. The in situ
ouble cross-linking of chitosan and alginate, mediated by Ca2+ and
O4

2–upon administration to a mouse gastrointestinal (GI) tract by

ouble gavage, provided gel formation. A drug was encapsulated
ithin NPs, the NPs were targeted to the colon, and its degra-
ation was avoided under the harsh environmental conditions
f the GI tract. The combination of biomaterials (hydrogels) and
intake of NPs encapsulated in a hydrogel, the bioactive component is distributed
ligands are overexpressed in inflamed areas. The NPs accumulate and the drug is

nanostructures enabled dose reduction and the efficient loading
and delivery to the colon, where the release of drug reduced colon
inflammation [7,9,10,81,82].

5. Conclusions

Nanostructures and nanotechnology-based devices are under
active development towards the design of diagnostic and thera-
peutic tools and devices. Nanoparticles have a size of the order
of 1–100 nm and can be functionalized to display specific proper-
ties at the cellular, atomic, and molecular levels. Rapid innovations
and improvements have led the field through continual changes.
The use of nanotechnology in biomedical research and clinical
practice has defined the field of nanomedicine, which has the
potential to have a major impact on human health. Nanomateri-
als are increasingly used in diagnostic, imaging, and targeted drug
delivery applications. Nanotechnology promises to facilitate the
development of personalized medicine, in which patient therapy
is tailored by the patient’s individual genetic and disease profile.
This review provides an overview of nanotechnology applications
in molecular diagnostics and drug delivery. The coupling of nano-
technology strategies and telecommunication will improve the
precision of diagnostics and therapeutics (Fig. 2) and promise to
impact the care and management of diseases such as intestinal
diseases and cancer.
In the near future, medical approach and diagnostics will cer-
tainly dramatically change. Nanoscale sensors and devices may
provide a personal and cost-effective continuous medical mon-
itoring of patient’s health. Nanoscale sensors and devices may
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lso support an enhanced prediction in early stage of diseases
uch as cancer or inflammations. Future sensor systems will be
ble to use multiple physical phenomena to sense many analytes
biomarkers) simultaneously. Further future perspectives include
echnology miniaturization which will allow association of nan-
tools (NPs, liposomes, quantum dots, etc.) with nanodevices
nanowire, biochips, etc.); this will allow novel measurements such
s an optical transducer for light; an electro/chemical transducer
or electrical properties; a magnetic transducer for changes to local

agnetic fields; and a mechanical transducer, to detect changes in
otion.
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