A complete monotonicity property of the gamma function✩

Feng Qi, Chao-Ping Chen *

Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, China

Received 20 July 2003
Available online 2 July 2004
Submitted by H.M. Srivastava

Abstract

A logarithmically completely monotonic function is completely monotonic. The function $1 - \ln x + \frac{1}{x} \ln \Gamma(x + 1)$ is strictly completely monotonic on $(0, \infty)$. The function $\sqrt{\Gamma(x + 1)/x}$ is strictly logarithmically completely monotonic on $(0, \infty)$.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Gamma function; Psi function; Logarithmically completely monotonic function

1. Introduction

The classical gamma function is usually defined for Re $z > 0$ by

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt. \quad (1)$$
The psi or digamma function, the logarithmic derivative of the gamma function, and the polygamma functions can be expressed [6, p. 16] as

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} = -\gamma + \int_{0}^{\infty} \frac{e^{-xt} - e^{-x}}{1 - e^{-x}} dt,$$

$$\psi^{(m)}(x) = (-1)^{m+1} \int_{0}^{\infty} \frac{t^{m}}{1 - e^{-x}} e^{-xt} dt$$

for \(x > 0\) and \(m \in \mathbb{N}\), where \(\gamma = 0.57721566490153286\ldots\) is the Euler–Mascheroni constant.

In 1985, D. Kershaw and A. Laforgia [5] showed that the function \(x[\Gamma(1 + 1/x)]^s\) is strictly increasing on \((0, \infty)\), which is equivalent to the function \([\Gamma(x+1)]^{1/s}/x\) being strictly decreasing on \((0, \infty)\). In addition, it was proved that the function \(x^{1-\gamma}[\Gamma(1 + 1/x)]^s\) decreases for \(0 < x < 1\), which is equivalent to \([\Gamma(1 + x)]^{1/s}/x^{1-\gamma}\) being increasing on \((1, \infty)\).

In [2,10], it is proved that the function \(f(x) = [\Gamma(x+1)]^{1/s}/(x+1)\) is strictly decreasing and strictly logarithmically convex in \((0, \infty)\) and the function \(g(x) = [\Gamma(x+1)]^{1/s}/\sqrt{x+1}\) is strictly increasing and strictly logarithmically concave in \((0, \infty)\). Some new proofs for the monotonicity of the function \(x^r[\Gamma(x+1)]^{1/s}\) on \((0, \infty)\) are given for \(r \notin (0, 1)\). In addition, if \(s\) is a positive real number, then for all real numbers \(x > 0\), \(f(x) = e^{-\gamma}\) and \(\lim_{x \to \infty} f(x) = e^{-1}\).

Using monotonicity and inequalities of the generalized weighted mean values \([1, 7,8,12]\), the first author proved [9] that the functions \([\Gamma(s)/\Gamma(r)]^{1/(r-s)}\), \([\Gamma(s,x)/\Gamma(r,x)]^{1/(r-s)}\), and \([\gamma(s,x)/\gamma(r,x)]^{1/(r-s)}\) are increasing in \(r > 0\), \(s > 0\), and \(x > 0\). For any given \(x > 0\), the function \((s\gamma(s,x))/x^s\) is decreasing in \(s > 0\).

In [3], N. Elezović, C. Giordana, and J. Pečarić, among others, verified the convexity with respect to variable \(x\) of the function \([\Gamma(x+t)/\Gamma(x+s)]^{1/(t-s)}\) for \(|t-s| < 1\).

Recall that a function \(f\) is said to be completely monotonic on an interval \(I\) if \(f\) has derivatives of all orders on \(I\) which alternate successively in sign, that is

$$(-1)^{n} f^{(n)}(x) > 0$$ \(\text{for } x \in I \text{ and } n > 0\) \(\text{if inequality (5) is strict for all } x \in I \text{ and for all } n \geq 0\), then \(f\) is said to be strictly completely monotonic.

Similarly, we give the following definition.

Definition 1. A function \(f\) is said to be logarithmically completely monotonic on an interval \(I\) if its logarithm \(\ln f\) satisfies

$$(-1)^{k} \left[\ln f(x)\right]^{(k)} > 0$$ \(\text{for } k \in \mathbb{N} \text{ on } I\). If inequality (6) is strict for all \(x \in I\) and for all \(k \geq 1\), then \(f\) is said to be strictly logarithmically completely monotonic.
In [13] it was established that the function \(1 + \frac{1}{x} \ln \Gamma(x + 1) - \ln(x + 1)\) is strictly completely monotone in \((-1, \infty)\) and tends to 1 as \(x \to -1\) and to 0 as \(x \to \infty\). This property is derived from the following integral representation:

\[
\ln \Gamma(x + 1) = x \ln(x + 1) - x + \int_0^\infty \left(\frac{1}{t} - \frac{1}{e^t - 1} \right) e^{-t} \frac{1 - e^{-xt}}{t} dt.
\]

In this short note, we are about to prove a complete monotonicity result of a function involving the gamma function as follows.

Theorem 1. A (strictly) logarithmically completely monotonic function is also (strictly) completely monotonic.

Theorem 2. The function \(1 - \ln x + \frac{1}{x} \ln \Gamma(x + 1)\) is strictly completely monotonic on \((0, \infty)\) and tends to \(\infty\) as \(x \to 0\) and to 0 as \(x \to \infty\). Moreover, the function \(\sqrt{x} \frac{\Gamma(x + 1)}{x}\) is strictly logarithmically completely monotonic on \((0, \infty)\).

2. Proofs of theorems

Proof of Theorem 1. It is clear that \(\exp \phi(x) \geq 0\). Further, it is easy to see that \([\exp \phi(x)]' = \phi'(x) \exp \phi(x) \leq 0\) and \([\exp \phi(x)]'' = [\phi''(x) + [\phi'(x)]^2] \exp \phi(x) \geq 0\).

Suppose \((-1)^k[\exp \phi(x)]^{(k)} \geq 0\) for all nonnegative integers \(k \leq n\), where \(n \in \mathbb{N}\) is a given positive integer. By Leibnitz’s formula, we have

\[
(-1)^{n+1}[\exp \phi(x)]^{(n+1)} = (-1)^{n+1} \left[\left[\exp \phi(x)\right]^{(n)}\right] = (-1)^{n+1} \phi'(x) [\exp \phi(x)]^{(n)}
\]

\[
= (-1)^{n+1} \sum_{i=0}^{n} \binom{n}{i} [\phi^{(i+1)}(x)] [\exp \phi(x)]^{(n-i)}
\]

\[
= \sum_{i=0}^{n} \binom{n}{i} \left[(-1)^{i+1} \phi^{(i+1)}(x)\right] \left[(-1)^{n-i} [\exp \phi(x)]^{(n-i)}\right] \geq 0.
\]

By induction, it is proved that the function \(\exp \phi(x)\) is completely monotonic. \(\Box\)

Proof of Theorem 2. It has been shown in [5] that the function \([\Gamma(x + 1)]^{1/x}/x\) is strictly decreasing on \((0, \infty)\), then \(f(x) = 1 - \ln x + \frac{1}{x} \ln \Gamma(x + 1)\) is strictly decreasing on \((0, \infty)\). From the asymptotic expansion in [4]:

\[
\ln \Gamma(x) = \left(x - \frac{1}{2}\right) \ln x - x + \ln \sqrt{2\pi} + \frac{1}{12x} + O(x^{-3})\quad \text{as} \quad x \to \infty,
\]

we conclude that \(\lim_{x \to \infty} f(x) = 0\) and \(\lim_{x \to 0} f(x) = \infty\). This implies \(f(x) > 0\) for \(x > 0\).
Using Leibnitz’ rule
\[
(u(x)v(x))^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)}(x)v^{(n-k)}(x),
\]
we obtain
\[
f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{x} \right)^{(n-k)} \left[\ln \Gamma(x+1) \right]^{(k)} - \frac{(-1)^{n-1}(n-1)!}{x^n}
\]
\[
= \left(\frac{1}{x} \right)^{(n)} \ln \Gamma(x+1) + \sum_{k=1}^{n} \binom{n}{k} \left(\frac{1}{x} \right)^{(n-k)} \psi^{(k-1)}(x+1) + \frac{(-1)^{n}n!}{nx^n}
\]
\[
\triangleq (-1)^{n} \frac{n!}{x^{n+1}} g(x),
\]
and
\[
g'(x) = \frac{(-1)^{n}}{n!} x^n \psi^{(n)}(x+1) + \frac{1}{n}
\]
Using (3) and \((n-1)!/x^n = \int_{0}^{\infty} t^{n-1} e^{-xt} dt\) for \(x > 0\) and \(n \in \mathbb{N}\), we conclude
\[
\frac{1}{x^n} g'(x) = \frac{1}{n!} \int_{0}^{\infty} \left(1 - \frac{t}{e^t - 1} \right) t^{n-1} e^{-xt} dt > 0,
\]
since \(0 < t/(e^t - 1) < 1\) for \(t > 0\). Thus, the function \(g\) is strictly increasing and \(g(x) > g(0) = 0\) on \((0, \infty)\), which implies \((-1)^{n} f^{(n)}(x) > 0\) for \(x > 0\) and \(n = 0, 1, 2, \ldots\)

The rest follows from Theorem 1. The proof is complete. □

Remark. It is worthwhile to point out that the integral form and completely monotonic property of the function \((bt - at)/t\) for \(t \in (-\infty, \infty)\) have been researched in [11]. The function \((bt - at)/t\) is important to the extended mean values [7,8].

Acknowledgment

The authors thank the anonymous referee for his/her many valuable suggestions to improve this manuscript.

References

