
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 7, 4 6 9 - 4 8 0 (1973)

The Efficient Calculation of Powers of Polynomials

ELLIS HOROWlTZ*

Computer Science Department, Cornell University, Ithaca, New York I4850

Received April 3, 1972

Suppose we are given a polynomial P(xl ,..., x~) in r ~> 1 variables, let m bound the
degree of P in all variables x~, 1 < i < r, and we wish to raise P to the nth power,
n > 1. In a recent paper which compared the iterative versus the binary method it was
shown that their respective computing times were O(m2~n r+l) versus O((mn) 2r) when
using single precision arithmetic. In this paper a new algorithm is given whose com-
puting time is shown to be O((mn)~+l). Also if we allow for polynomials with multi-
precision integer coefficients, the new algorithm presented here will be faster by a factor
of mr-in ~ over the binary method and faster by a factor of m T-x over the iterative
method. Extensive empirical studies of all three methods show that this new algorithm
will be superior for polynomials of even relatively small degree, thus guaranteeing
a practical as well as a useful result.

1. INTRODUCTION

Recently several analyses have appeared dealing with the problem of efficient

methods for raising a polynomial to a power. The two major competing methods have

been the iterative versus the binary approach. The iterative scheme would compute
pn as P, p2,..., en-1, pn, whereas the binary method would use the binary expansion

of n to decide when to square the partial result as well as when to multiply by P. In

[KNU69], p. 401, Knuth implies that for the application of raising a polynomial to a

power the iterative method is far inferior to the binary method since the number of

multiplications required in the latter case can be reduced from n - - 1 to log 2 n. However,

in a recent paper by Heindel [HEI72], he shows that in fact it is more efficient to use

the iterative method rather than the binary method whether one is doing either single

precision or multiprecision integer arithmetic on polynomials. Moreover, if r is the

number of variables of P, and we wish to raise P to the nth power, then Heindel

shows that the iterative scheme will be better by at least a factor of n r-1 in both cases.

In this paper a new method for computing powers of a polynomial is given which is

faster than the binary method by a factor of rnr-ln~-I for single precision arithmetic

* To be presented at the 13th Annual Symposium on Switching and Automata Theory, IEEE,
Maryland, Oct. 1972.

469
Copyright �9 1973 by Academic Press, Inc.
All rights of reproduction in any form reserved.

470 ttOROWITZ

and faster than the iterative method by a factor of m *-a. Also, this new algorithm will
have at its core the use of the binary method applied to elements of a finite field, thus
restoring what is perhaps our intuitive notion of the most efficient way of computing
powers.

In one paper related to this problem, M. Gentleman in [GEN71] shows that for
his specific model of polynomials the iterative method produces an optimal multi-
plication chain. In particular his model is for sparse polynomials of a very particular
type; nor does he concern himself with the work needed for multiprecision coefficients.
This paper is concerned with a model which assumes that polynomials are dense so
that we can obtain worst ease computing time bounds. Besides obtaining better
asymptotic bounds on the time needed to compute pn, the algorithm presented in this
paper has been tested within an existing algebraic manipulation system and has been
found to give a significant improvement over the iterative method for even reasonably
sized problems.

In Sec. 21 will state some elementary results on computing times for basic operations.
Then I will summarize the results of the binary and iterative methods. In See. 3 the
new algorithm will be given plus an analysis of its computing time. In See. 4 empirical
results comparing these several methods will be given.

2. KNOWN RESULTS

In this section is summarized some of the basic computing times for operations on
elements of a finite field, integers and multivariate polynomials. All computing times
will be given in terms of the commonly used O-notation.

DEFINITION 2.1. Le t f (x I x,) and g(x I , xn) be real-valued functions defined
on some common domain D. Then f = O(g) if there exists a positive real number c
such that

] f (x , ,x,)[~ c [g (x l , . . . , x n) I forall (X l , . . . , x n) ~ D .

We shall be concerned both with fixed point, single precision as well as arbitrary
multiple precision arithmetic in our later analysis. For the single precision case we
will assume that all numbers are elements of the finite field with p elements, designated
as GF(p). The number p will generally be chosen to be about the size of a machine
word. Then the time for adding, subtracting, multiplying or dividing elements in
GF(p) will be O(1). The computing times for operations on multi-precision integers
will be given in terms of the maximum number of digits of the integers. Thus, given
two integers, say d and e, the time for addition (subtraction) and multiplication
(division) is O(max{ln d, In e}) and O((ln d)(ln e)), respectively, a new method for

POWERS OF POLYNOMIALS 471

integer multiplication due to S. Schonhage and V. Strassen, [KNU69] p. 269 takes
time O(ln d(ln In d)(ln In In d)) if d) e. However, their method seems to be of more
theoretical interest since the associated constant is quite large. Therefore we will
assume the use of a "classical" multiplication algorithm.

We now need to have the times for performing operations on multivariate poly-
nomials.

DEFINITION 2.2. Let P(xl ,..., xr) be a polynomial in r) 1 variables with integer
coefficients. Then, norm(P) is the sum of the absolute values of the numerical coeffi-
cients of P.

D E F I N I T I O N 2.3. Let M,,(d, m) = { P (x I Xr): (deg(P)in x i -i- 1) ~< m, 1 ~ i <~ r
and d -- norm(P)}. M,(d, m) is the set of polynomials in r variables whose norm is d
and whose total number of terms is at most mr.

THEOREM 2.1. Let P (x I Xr), Q(X 1 , . . . , Xr) �9 Mr(d, m). Then an upper bound on
the computing time to form P • 9 and P " Q using multiprecision arithmetic is O(mr(ln d))
and O(m2r(ln d)e), respectively.

Proof. The maximum number of nonzero terms in P and Q is m r. Thus for addition
we must add m r terms, each addition taking O(ln d). For the proof of P ' Q see
[HEI72] p. 3. We note that if instead P and (Q had coefficients in GF(p), then all the
additions and multiplications would take time O(1) and the time for addition and
multiplication for polynomials in r variables with coefficients from GF(p) would be
O(m r) and O(m2r).

There are some other operations for which we will need the computing times. In
particular we need to know the times for applying modular and evaluation homo-
morphisms to polynomials and for applying interpolation and the Chinese remainder
method to integers and elements of GF(p). These methods have already been fully
documented in, for example [COL71], pp. 520-522. Let us review those results here.

TItEOREM 2.2. Let A �9 Mr(d , m) such that A = ~l.<.i<m, aix~" "'" X eir and p a
single precision prime. Then an upper bound on the time to compute

e l l . . . X e i r ,4" ~ (a~ rood p) x,

is O(m r In d).

Pro@ There are at most m" nonzero terms, each term requiring a division by a
single precision primep. This implies O(ln d) for each term. This operation is referred
to as a modular homomorphism since we are mapping the polynomials in I[x 1 ,..., xr] ---,
GF(p)[x I ,..., xr] and this mapping is a homomorphism.

472 HOROWITZ

THEOREM 2.3. Let A*(x 1 x,) E GF(p)[x x x,] and suppose b ~ GF(p). Then
an upper bound on the time to form A*(x x x~_l , b) is O(m*).

Proof. See [COL69], p. 17.
We shall call this an evaluation homomorphism since we are mapping from
GF(p)[x 1 ,..., x~]--+ GF(p)[x I , xr_l] and this mapping also satisfies the homo-
morphism properties.

Now let us investigate the inverse operations of interpolation and the Chinese
remainder algorithm. The analogies between these two operations have already been
mentioned before, e.g. [BRO71]; namely that the Chinese remainder algorithm allows
us to construct an integer from its images modulo several primes while interpolation
allows us to construct a polynomial from its images modulo x -- b 1 x -- b,,. We
now present these two methods as they would be applied to multivariate polynomials.

Iterative Chinese Remainder Algorithm

Input:

Output:

Al(X 1 ,..., xr) with coefficients in GF(p)

A2(x 1 ,..., x~) with coefficients in GF(q)

Aa(x I Xr): A 3 = A 1 modp

A 3 -- A s mod q

(1) A s * * - A smodp;

(2) q* (-- q mod p;

(3) C +- (A 1 -- As*)/q* rood p;

(4) As ~- Cq + As ;

THEOREM 2.4. An upper bound on the computing time for one iteration of the Chinese
remainder algorithm given above is O(m ~ In q).

Proof. The times for steps (1) and (4) are bounded by m'(ln q) whereas step (2)
takes no more than O(ln q) and step (3) takes O(m*). In practice q will be the product of
previous primes while p is the next single precision prime to be processed.

Iterative Interpolation

Input:

Output:

Al(X 1 , . . . , Xr_l) with coefficients in GF(p);
b 6 GF(p);
As(x 1 ,..., x~) with coefficients in GF(p);
Q(x~), degree(Q) ~< k; deg(A2) in x~ < k

Ag(Xl ,..-, xr): As(x1 ,..., "%'r-1, b) = A I ,
Aa(X 1 ,..., Xr-l , hi) = As(x 1 xr-1, bi),
where bi are the roots of Q.

POWERS OF POLYNOMIALS 473

(1) A2* ~ - A~(x 1 x r _ t , b);

(2) q* ~ Q(b);

(3) C +- (A~ - - A2*)/q*;

(4) A 3 +-- CQ + A2 ;

THEOREM 2.5. A n upper bound on the computing time for one iteration o f the inter-

polation algorithm above is O((m~-l)k).

Proof. The time for steps (1), (3), and (4) is O((mr-1)k). The time for step (2)
is O(k).

We are now in a position to review the results for the iterative and binary methods
that are given by Heindel in [HEI72]. The iterative algorithm is obvious so let us
examine an algorithm for the binary method.

Binary Expansion

Input: P, either an element of GF(p), an integer or a multivariate
polynomial and n a positive integer.

Output: R = P".

(1) R~-I; z ~ P ;
(2) q ~-- [n/2]; r +- n - - 2q; n ~-- q; i f r = O , goto(4) ;

(3) R,-- R. z;

(4) l f n = 0 then return (R);
else Z +-- Z " Z; go to (2);

We see that the total number of multiplications is log 2 n + v(n), where v(n) is the
number of ones in the binary representation of n. Therefore the total number of
multiplications is O(ln n). If P is an element of GF(p), then the time to compute P~
is O(ln n) whereas the time for the iterative method is O(n). The binary method is
is clearly better. If P is an integer with e precision (e = [log P] + 1), then P~ is an
en-precision number and the time for the binary algorithm can be at most

(2'-ie) ~ _~ O(e~n2).
1Ki<log~n

The time for the iterative method is

(ie)e = O(e'~n=).
1<i<~--1

Thus we see that the iterative scheme already catches up to the binary method when
applied to integers. In [HEI72], Heindel analyzes the computing time for the iterative

474 HOROWITZ

and binary methods when applied to a polynomial P (x I , xr) raised to the nth
power. He considers both the case where the coefficients of P are from a finite field
or from the integral domain of the integers. His results can be summarized as follows:

Polynomial P(x 1 ,..., xr) deg(P) in xi + 1 ~< m

b Integer coefficients h <~ d coeffidents in GF(p)

Method

Binary

Iterative

O(m2rn2r +2(ln d) 2) O(m2rn2~')

O(m2~nr+2(ln d) 2) O(m2rn~+l)

In the next section two new algorithms based on the use of homomorphisms will
be presented whose computing time will be mr+lnr+2(ln d) z for polynomials with
integer coefficients and (mn) r+~ for polynomials with coefficients in GF(p).

3. HOMOMORPHISM ALGORITHM

In this section we develop two algorithms, CPPOWER(P, n) for computing pn
when the coefficients of P are in GF(p) and PPOWER(P, n) for computing pn when
the coefficients of P are integers. PPOWER will use CPPOWER as a subroutine.
Moreover, PPOWER is based on the idea of using modular homomorphisms and the
Chinese remainder method while CPPOWER uses the technique of evaluation
homomorphisms and interpolation. Since PPOWER depends upon CPPOWER we
will present that algorithm first.

Algorithm CPPOWER

Input: P*(xl , xr) a multivariate polynomial in r > /0 variables with
coefficients in some finite field GF(p) and an integer n > 0;

Output: R*(x x , x r) ~ - [P*(Xl, Xr)]n;

(1) [Initial case]

(2) [Initialize]

[Interpolation]

(3) [Choose next]
[point]

If r = 0, compute R* +- (P*)~ using the binary
method; end.

mr_ 1 +- max{deg(P) in xr_l); mr +- deg(P) in xr ;
C (x l , xr) + - 0; D (x 3 + -

b + - - - 1 ;

b = b + l ; i f b : p t h e n s t o p .

POWERS OF POLYNOMIALS 475

(4)

(5)

(6)

[Evaluation]
[Homomorphism]

[Recursion]

[Interpolate]

(7) [Done ?]

(8) [end!]

/D('%'1 , Xr_l) +-- P * (X 1 , . . . , I v _ l , b);

I f deg(P) in xr_ 1 < mr_ 1 then go to (3).

R*(x 1 x,_l) ~-- CPPOWER(/~, n);

R * (x 1 Xr_l) - - C (x 1 , . . . , Xr_l , b)
C (x 1 , x~) ~-- D (b)

�9 D (x r) -}- C (x I , . . . , x r) ;

D(x,) +-- (x, - - b) D(x~);
I f deg(D) ~ mrn then go to (3);

R*(x I ,..., xr) ~ C(x 1 , x~); end.

In order to greatly simplify the analysis and following the procedure used by W. S.
Brown in [BRO71] let us assume that (deg(P*) in xi + 1) ~< m for 1 ~< i ~< r. Thus
P* has at most m r terms all of whose numerical coefficients are elements of GF(p) .

THEOaEM 3.1. Let T~(m) be a bound on the computing time for algorithm
CPP OWER(P*, n) to compute (p.)n. Then Tr(m) = O((mn)r+l).

Proof. I f r = 0, P* is an element of GF(p) and hence all arithmetic operations
are O(1). Thus the time for step (1) is O(log 2 n). Steps (3)-(7) are executed mn times
since (deg(R*) in x, + 1) ~< ran. Each execution of step (4) for which deg(P) in
X,_x < m,_ 1 corresponds to a distinct element b E GF(p) which is a zero of the leading
coefficient of P* considered as a polynomial in x~_ t . Since the degree of this leading
coefficient is at most mr_ t < m, there are at most m additional executions of step (4).
Therefore the total t ime for the remaining steps is

step time

(3) O(mn)

(4) O(mr+ln) by Theorem 2.3

(5) O(mnT~_l(m))

(6) ~,,l(i<~mn (mn) r-1 i = O((mn) r+I)

Thus the total time for CPPOWER is

by Theorem 2.5.

T r = (ran) r+l + mnTr_l = 2(mn)n+ 1 + (mn)2Tr_2

= 3(ran) r+l + (mn)arr_3 -- -- r(mn) r+l + (mn) T o < O((mn) r+t)

T o = log 2 n < n and r is a small constant.

Now we give the algorithm for polynomials with integer coefficients.

since

476 HOROWITZ

Algorithm P P O W E R

Input: P(xa ,..., xr) a multivariate polynomial in r ~ 1 variables with
integer coefficients and n > 1.

Output: P"(Xl ,..., xr).

(1) [Initialize] d +-- norm(P); m +-- deg(P) in x r ; i ~ 0;

f +-- dn;

(2) [Next Prime] i +- i + 1 ; Choose next prime, Pi ; If none left, stop.

(3) [Modular] P*(xx xr) ~-- P(xa ,..., xr) mod Pi ;

[Homomorphism] If deg(P*) in xr < m, go to (2).

(4) [R* = (p,)n] R*(x 1 xr) ~ CPPOWER(P*, n)

(5) [Chinese] If i = 1, R +-- R*; q +-- p~ ; go to (2);

[Remainder] Otherwise find D(x I ,..., xr) using the
iterative Chinese Remainder algorithm

such that

D(xl , xr) =-- R*(xl ,..., xr) mod Pi;
D(xl , xr) ~ R(xl , xr) mod q;

(6) [Done?] R +-- D; q*--p,q; I f / ~ log f , go to (2)

(7) p n <___ R; end.

THEO~M 3.2. Let Pr(d, m) be the maximum computing time for
PPOWER(P, n) when P ~ M M , m). Then Pr(d, m) = O(mr+lnr+2(ln nd)2).

Algorithm

Proof. Since P contains at most m r terms the time needed to compute d in step (1)
is O(m r In d). Steps (2)-(6) are executed at most n(ln nd) times s incef = (n d) '~ bounds
the size of the norm o f P n. Therefore we get the following table for the computing times

step

(1)

(2)

(3)

(4)

(5)

(6)

time

O(m r In d)

O(n In nd)

O(m r In d" n In n d) < O(mrn(ln nd) ~)

O((mn)r+ln In n d) = O(mr+lnr+2(ln nd))

O((mn)r(n In nd) 2) = O(mrnr+~(ln nd) 2)

O(n2(ln nd) 2

POWERS OF POLYNOMIALS 477

Examining the table, steps (4) and (5) bound the computing time for the entire
algorithm. Also

O(m~+ln ~+2 In nd + m~n~+2(ln nd) ~) < O(mr+ln~+Z(ln nd)Z).

Looking at the proof of Theorem 3.2 we see that algorithm CPPOWER plus the time
for the Chinese remainder algorithm is what bounds the total time for this method.
This is what we would normally expect.

Now let us summarize the asymptotic computing times which have been arrived at
for the binary, iterative and homomorphism algorithms. If e ~-In nd we get the
following table:

Single Precision
Coefficients

Binary Iterative Homomorphism

O((mn) 2~) O(m2rn ~+') O((mn) ~+1)

Multiple Precision O(m2rn2r+Ze 9") O(m2rn~+2e 2) O(mr+lnr+2#)
Coefficients

4. EMPIRICAL RESULTS

In this section we examine several tests which were made on all three methods to
see if we can determine just how practical the new homomorphism algorithm really is.
All testingwas done on an IBM 360/65 at Cornell University. The basic routines for
the manipulation of multivariate polynomials were provided through the use of the
SAC-1 system for symbolic and algebraic calculation, [COL69]. This is a collection of
Fortran subroutines which allows in part for infinite precision integer and multivariate
polynomial arithmetic.

In particular the binary, iterative and modular algorithms were tested on univariate,
bivariate and trivariate polynomials whose coefficients were randomly generated in
the range [--21~ 21~ Tables I - I I I give the resulting computing times.

Table I gives the results obtained for polynomials in one variable. The vertical
column represents the degree of the polynomials while the horizontal row represents
the successive powers to which the polynomials were raised. For every polynomial
there are three rows of times which stand for the binary (BIN), iterative (ITR), and
modular (MOD) methods. Recalling the computing times obtained in the previous
section for one variable (r - 1), in this case the time for all three methods is the same,
O((mn)2). This is reflected in Table I as we see there is no substantial difference in any
of these methods for the degree and powers which were tested.

Table II gives the results for polynomials in two variables. Now the vertical column

57x/7/5-2

478 HOROWITZ

represents the total degree of the polynomial P(x, y). This means that if m is the total
degree of P(x, y) the highest power of both x and y appearing in P is m. In particular
P(x,y) can have no more than (m + 1) 3 terms and will often have that many since
zero is a not-so-random random number. Examining Table I I we see that in all cases
the modular method outstripped the other two rather quickly. In fact, for total
degree =3 , 4, and 5 the modular method was initially faster and became more so for
successively higher powers. Computation limits were set at 4 min = 240,000 msec of
computing so we see that often the modular method permitted the calculation of one
or two more powers. This advantage will become even better as greater powers are
tried.

Table I I I is set up exactly as Table II, but now we have the results for polynomials
in three variables. Again the modular method is better than the other two. However,
because of the large growth in the number of terms, practical limits in terms of core
size as well as computing time are soon reached. In any case Tables I I and I I I do show
that the modular method becomes superior for relatively small powers and the theo-
retical analysis indicates that this advantage will grow larger as bigger probIems are
attempted.

TABLE I

Univariate Polynomials (times in milliseconds)

Degree Methods Powers: 2 3 4 5 6

I BIN
2 1 ITER

~MOD

t BIN
3 1 ITER

~MOD

t BIN
4 l ITER

I MOD

[MOD

tMOD

33 66 116 150 285
17 66 83 200 266
66 83 166 283 383

50 100 216 283 382
50 117 183 300 416

100 114 309 432 583

83 167 249 433 749
67 150 299 549 832

116 200 365 518 1098

83 266 432 666 1131
117 283 483 849 1198
167 250 815 1365 1496

150 449 649 982 1548
149 400 816 1148 1664
183 416 882 1064 1495

<

e-

8

i
0

o

"~.

f , l

0

POWERS OF POLYNOMIALS

A

A

A A A

A A A

A A

r t',l

A A

~ t ~ I " ~ e q ~ ~ ' q O O I "~

479

480 HOROWITZ

TABLE III

Trivariate Polynomials (times in milliseconds)

Total
degree Methods Powers: 2 3 4 5 6 7

BIN
2 1 ITER

[MOD > 200000

BIN
ITER
MOD

BIN 40568 >200000
4 {ITER 39520 >200000

I

(MOD 12882 163840 >200000

2562 11998 46875 >240000
2030 10649 35976 90006 >180000
2263 6537 28837 56816 112073

12280 68872 >240000
11481 65801 129832 >240000
6739 42365 89322 192621 > 240000

REFERENCES

[HEI72] L. E. HEINDEL, "Computation of Powers of Multivariate Polynomials over the
Integers," J. Comput. System Sci. 1 (1972), pp. 1-8.

[COL69] G. E. COLLINS, L. E. HEINDEL, E. HOROWITZ, M. T. MCCLELLAN, AND D. R. MUSSES,
The SAC-1 Modular Arithmetic System., University of Wisconsin Technical Report No. 10,
Madison, June 1969.

[BRO71] W. S. BROWN, "On Euclid's Algorithm and the Computation of Polynomial Greatest
Common Divisors," J. Assoc. Comput. Mach. 18 (1971), 478-504.

[COL71] G. E. COLLINS, "The Calculation of Multivariate Polynomial Resultants," J. Assoc.
Comput. Mach. 18 (1971), 515-532.

[KNU69] D. E. KNUTH, "The Art of Computer Programming," Vol. 2: Seminumerical Al-
gorithms., 2nd edition, Addison-Wesley, Reading, Mass. 1969.

[GEN71] W. M. GENTLEMAN, "Optimal Multiplication Chains for Computing a Power of
a Symbolic Polynomial," Math. Comp. 26 (1972), 935-940.

