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A new formal model of register machines is described. Registers contain bit v e c t o r s  

which are manipulated using bitwise Boolean operations and shifts. Our main results 
relate the language recognition power of such vector machines to that of Tur ing  
machines. A class of vector machines is exhibited for which time on a vector machine 
supplies, to within a polynomial, just  as much power as space on a Tur ing machine. 
Moreover, this is true regardless of whether the machines are deterministic or non- 
deterministic. 

1. INTRODUCTION 

I n  t he  l i t e ra tu re  o n  regis ter  mach ines ,  i n c l u d i n g  [3, 4, 12], t he  d o m a i n  of  n u m b e r s  

has  he ld  sway. I n  th i s  p a p e r  we d raw  a t t e n t i o n  to a re la t ively  neg lec ted  d o m a i n  t h a t  

none the l e s s  fo rms  t he  basis  for  t o d a y ' s  c o m m e r c i a l  c o m p u t e r s ,  namely ,  t h a t  of  b i t  

vectors .  A l t h o u g h  t h e  or ig ina l  m o t i v a t i o n  for  u s i n g  b i t  vec to r s  was  to r e p r e s e n t  

n u m b e r s ,  t he  d e v e l o p m e n t  of  n o n n u m e r i c  t e c h n i q u e s  in r ecen t  years  has  f o u n d  

m a n y  o the r  uses for  b i t  vectors ,  and  we shal l  der ive  our  resu l t s  for  m a c h i n e s  t h a t  

e m b o d y  no n o t i o n  of  n u m b e r .  T h e  a r i t h m e t i c  ope ra t ions  f o u n d  in  p rev ious  fo rmal iza -  

t ions  of  regis ter  m a c h i n e s  are replaced,  in ou r  case, b y  b i twise  Boolean  ope ra t i ons  

a n d  shif ts .  1 

* An earlier version of this paper appeared in [10]. This  research was supported by the 
National Science Foundation under  research grant GJ-34671. 

1 A paper of Hartmanis and Simon [5], based on our results, shows that introducing the  

notion of number  has, to within a polynomial, no effect on the power of vector machines, and 
moreover, that the multiplication instruction may take over the role of the shift instruction. 
We discuss this further below. 

198 
Copyright ~) 1976 by Academic Press, Inc. 
All rights of reproduction in any form reserved 



THE POWER OF VECTOR MACHINES 199 

We shall show that such bit vector machines (VM's) have an astonishing amount 
of power. Our main result is that, to within a polynomial, time on a vector machine 
supplies at least as much computational power as space on a Turing machine. With 
a minor restriction in the instruction set of the VM's,  "a t  least" may be replaced 
by "just ,"  regardless of any questions of determinacy or nondeterminacy. More 
precisely, any set accepted in space S(n) by a nondeterministic Turing machine 
may be accepted in t ime O((S(n)) 2) by a deterministic vector machine. Conversely, 
any set accepted in t ime T(n) by a nondeterministie vector machine may be accepted 
in space O((T(n)) 2) by a deterministic Tur ing machine. An immediate corollary 
is that P ~ N P  on vector machines; that is, sets accepted in nondeterministic 
polynomial time can be accepted in deterministic polynomial time. 

Section 2 gives the basic definitions concerning vector machines. Section 4 discusses 
several restrictions to the basic model. In Section 6, we state the characterization 
outlined above and examine some corollaries. Sections 7 and 8 present the proofs 
of the two main results which comprise the characterization. In  Section 5, we examine 
the effect of the arithmetic operations, addition and multiplication, on the power 
of vector machines. 

2. DEFINITIONS 

Just as models of numeric register machines generally admit arbitrarily large 
numbers,  the vector machines we study here admit arbitrarily long vectors. Thus  
we define a bit vector to be an ultimately constant sequence of bits (elements of {0, 1}). 
Though  the manufacturers of our machines may eschew numbers, we will want 
to be able to simulate operations on integers (say, in the guise of two's  complement 
binary numerals), and so we adopt the traditional convention of writing the sequence 
of bits from right to left. The  length of a vector v, written [ v l, is the number  of 
significant bits in it, that is, the length of the shortest initial segment of the sequence 
whose removal would make the remaining sequence constant. 

The  vector machines one can buy today invariably include close approximations 
to the following types of instructions, which we take to form the basis for the definitions 
of a variety of closely related machines: 

(i) A +-  constant, an instruction to load a constant bit-vector into register A; 

(ii) A +-- ~ B  and A ~-- B A C, "bitwise parallel" Boolean operations; 

(iii) A ~-- B 1' C (A +-- B $ C), which shifts B left (right) a distance given 
by C; negative distances mean a right (left) shift; when shifting left the vacated 
positions are filled with O's, and when shifting right the bits shifted out are discarded; 

(iv) A = 0 and A if= 0, predicates for testing whether A is 0 everywhere. 

Concerning the complement instruction A + - - ~ B ,  the entire vector is corn- 



200 PRATT AND STOCKMEYER 

plemented. Hence, if B is ultimately 0, A will be ultimately 1, and vice versa. Con- 
cerning the shift instruction (iii), one must of course specify how the b~t-vector 
contents of register C are to be interpreted as a shift distance. Several alternatives 
are discussed below. One might also include indirect addressing instructions in 
this repertoire. However, Hartmanis and Simon [5] observe that indirect addressing 
has, to within a polynomial, no effect on the power of vector machines. 

We define a vector machine (program) to be a finite directed graph with one start 
vertex and a set of accepting vertices, and with edges each labeled with one assignment 
instruction or predicate. Certain registers are designated as input registers. I f  a program 
mentions m registers, say 31 ..... .d,~, then a configuration consists of (i) a node of 
the graph, and (ii) bit vectors v 1 .... , vm (which specify the "current" contents of 
_/i 1 .... , A,~). A computation of such a program is a path in the graph, together with 
an initial configuration of the machine in which each noninput register contains 
the zero vector, such that each predicate on the path is satisfied by the machine 
configuration at the moment "control reaches" the edge bearing that predicate. 
(This can readily be made more formal.) An accepting computation is a computation 
which is a path from the start vertex to an accepting vertex. The  time of a computation 
is its length. The space of a computation is the maximum, over all configurations 
during that computation, of  the sum of the lengths of the vectors in the configuration. 
A deterministic vector machine is one such that for any vertex and any machine 
configuration, only one edge may be followed. (Hence, in a deterministic program 
the only vertices with out-degree greater than 1 are those with at most one each 
of A = 0 and ~/ =/: 0 leaving it, for some choice of register A.) 

By taking the time of a computation to be its length, we have implicitly assigned 
unit cost to each instruction (including predicates). This measure, combined with 
the lengths to which we allow our vectors to grow, makes our machine an unrealistic 
model of conventional binary computers. In the context of current architecture, 
its main virtue is that we have nice results for it. However, bearing in mind the 
currently plummetting costs of processors, we do not feel it is unrealistic to suggest 
that future machines may benefit f rom some of our results. Although our main 
theorem is unlikely to yield algorithms of practical interest, our algorithms for matrix 
multiplication and transitive closure are well within practical limits, taking about 
80" log  n instructions to multiply n • n Boolean matrices, using a small number 
of vectors each of length exactly n z. Hence, on a machine with megabit vectors, 
100 • 100 Boolean matrices may be multiplied using about 560 instructions, only a 
fortieth of the number  of bits in the inputs! 

In the sequel, we take liberties with this programming language. For example, 
we write programs in an Algol-like notation, often utilizing "while-loops"; other 
bitwise Boolean operations such as v and @ are used. However, it should be obvious 
how to translate such constructs into the austere language described above at a cost 
of a constant factor in time. 
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When the shift distance in instruction type (iii) is interpreted as a two's complement 
binary number, we call the class of machines with just these four types of instructions, 
and with no restrictions on their use, the class ~" of (unrestricted) vector machines. 
Unfortunately we do not know how to characterize this class, so we will shortly 
introduce related (possibly) weaker classes for which we have the characterization 
promised in the Introduction. 

We consider mainly the acceptance problem rather than the transduction problem. 
Since a vector machine receives its input in a register, we only consider languages 
which are sets of binary words. 

DEFINITION-. Let L C 1 '{0, 1)*, and let F(n) be a function from positive integers 
to real numbers. A vector machine V accepts L within time (space) F(n) iff V has 
one input register, and for all ~ ~ 1 �9 {0, 1}*: 

(1) w ~ L iff there is an accepting computation C of V whose initial configuration 
has the bit vector ""000~o in the input register; and 

(2) if o~ eL,  then there is an accepting computation C as in (1) such that the 
time (space) of C does not exceed F([ co ]). 

Remark. I ~ ] denotes the length of the (finite) word co. In  general, if oJ is a finite 
binary word, we say that a register contains oJ if the register contains ...000~. We 
assume L C 1 - {0, 1}* because a vector machine cannot distinguish among inputs 
~o, 0~o, 00co, etc. 

We let T M  denote the class of nondeterministic Turing machines with two tapes, 
one a read-only input tape and the other a read/write work tape. A Turing machine 
is given input ~ by writing r162 on the input tape with the work tape entirely blank. 
The  time of a Turing machine computation is its length; the space of a computation 
is the number of squares visited by the head on the work tape. Our definition of 
time (space) bounded language acceptance for Turing machines is analogous to 
that for vector machines. See [6] for further discussion of Turing machines and their 
computations. 

DEFINITION. Let c~ denote a class of machines (e.g., Y/" or TM).  C~-TIME(F(n)) 
(c~-SPACE(F(n))) denotes the class of languages L C 1 �9 {0, 1 }* such that some member 
of cg accepts L within time (space)F(n). 

~D denotes the subclass of deterministic machines in 5 .  

In Sections 6-8, we show how vector machines and Turing machines can simulate 
one another, keeping careful track of how the resources used by the simulating 
machine depend on those used by the simulated machine. However, for the discussion 
of Sections 4 and 5, it is convenient to introduce notation which captures the idea 
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of "simulation to within a polynomial." I f  cC x and c~ denote classes of machines 
and RES 1 and RES 2 each denote either T I M E  or SPACE, we say W1-RES1 
cgz-RES2 iff there is a positive integer k such that cgl-RESI(F(n)) C r ~) 
for all F(n) ~ log n. (For definiteness, all logarithms are taken to the base 2.) 

3. VM's  AS MODELS OF PARALLELISM 

One way to view vector machines is as a model of parallel computation. By mentally 
"transposing" the machine and thinking of each bit position, over all vectors, as 
forming a small processor, we can consider the four types of instructions as providing 
facilities for 

(i) initializing parts of the processors, 

(ii) computing functions within the processors, 

(iii) communicating between processors, and 

(iv) testing the states of  the processors. 

Inasmuch as vector machines have an elegant definition, they form an elegant 
model of parallel computation. In our proofs establishing the power of VM's,  we 
rely primarily on the VM's  ability to set up and run exponentially many parallel 
processes in a polynomial amount of time. 

4. RESTRICTIONS ON V M ' s  

We assumed in the definition of the class ~/r that B I" C meant B shifted a distance 
given by C interpreted as a binary number. Without further qualifying this assumption 
we have not been able to characterize satisfactorily the power of vector machines. 
For example, if A initially contains 1, executing A +-  A t A n times will yield a 
binary number  larger than 

2 

2 
2 

to height n. Yet for programs that merely accept or reject their input in t steps (as 
opposed to those that do transduction) we have no evidence contradicting the pos- 
sibility that an arbitrary vector machine could be simulated with at most a polynomial 
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increase in running t ime by a VM using vectors of length at most 2 *. Leaving this 
as an interesting open problem, we shall confine our attention in this paper to those 
vector machines that, one way or another, keep the length of their vectors to at most 
k t after t steps, for some constant k. 

One way to guarantee that vectors remain short is simply to forbid computations 
in which the vectors grow too large. We shall call the class of vector machines restricted 
in this way ~r �9 The  definition of this class must also take into account the initial 
length of the input vectors. 

DEFINITION. A vector machine R belongs to the class "Y~: iff there is a constant 
k such that during any computation C of R, the length of the contents of any register 
does not exceed k * + n, where t is the length of C, and n = max{] v I ] v is the contents 
of a register in the initial configuration of C}. 

A second way is to forbid the use of data subject to being shifted as data for shift 
distances. This can be implemented by distinguishing two types of data, one of 
which represents the bit vectors, the other shift distances. In [10] this was achieved 
by treating the shift distances as numbers rather than vectors. Only shifts and bit 
operations were permitted for the bit vectors, while only + ,  --,  and integer-divide- 
by-two were allowed for the numbers. As Hartmanis and Simon [5] point out, this 
is a somewhat unusual machine architecture. A cleaner version of the same idea, 
adopted here, is to have only bit vectors, rather than a mixture of bit vectors and 
numbers, but to retain the distinction between data used for long shifts and data 
specifying the shift distance. The  latter may only be shifted by plus or minus 1, 
the former only by data (interpreted as binary numbers) of the latter type. Both 
types of data admit bit-parallel operations, but the two types obviously cannot be 
allowed to communicate, except through shifts as just described. (One is tempted 
here to speculate about hierarchies of such types; each type may only be shifted 
a distance given by a lower type of data. We conjecture that this extension adds 
no power, to within a polynomial.) We shall refer to this class of machines as ~ ,  
the I indicating the presence of index registers, our term for those registers holding 
shift distance data. 

DEFINITION. A vector machine is in the class ~f i iff its registers can be partitioned 
into two disjoint sets, one set called index registers and the other called vector registers, 
such that (i) each Boolean operation in the program involves either only index 
registers or only vector registers; and (ii) each shift instruction is of the form 
A ~-- B ]'~ 1 or I +-- J ~ l, where A and B denote vector registers, and I and J denote 
index registers. For language recognition, we require the input register to be a vector 
register. (Note that restrictions (i) and (ii) guarantee that the contents of a vector 
register are never assigned to an index register.) 
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LEMMA 4.1. l f  R ~ r (3r and each input register of R is a vector register, then 
R E 3r (ZC~n). In particular, 

"F~(D)-TIME(F(n)) C r 

Proof. Given R, there is a constant c such that vector length in index (vector) 
registers is bounded above by c -~- t (resp., 2 ~+t + n) after t steps, where n is the 
length of the longest input. This statement is easily verified by induction on t, and 
the result follows. II 

The classes $~ and $-~r arc the principal objects of study in this paper. Our main 
results arc summarized (using the notation ~ )  as follows. 

(*) TM-SPACE ~ ~qD-T1ME 

~/k-TIME 

TMD-SPACE 

TM-SPACE 

(Theorem 6.1) 

(Lemma 4.1 ) 

(Theorem 6.2) 

(trivial). 

Yet a third way to impose an upper bound of k e on vector length is to interpret 
the shift distances as unary numbers, say by using the length of the shift distance 
data as the distance to be shifted, and its sign as the direction. An interesting variation 
on this idea forms the basis for the results of Hartmanis and Simon [5]. Their idea 
is to replace shifts by multiplication (of binary numbers). This allows them to shift 
vectors left, treating the shift distance data just as though they were unary numbers. 
Thev accomplish right shifts by shifting left everything but the item to be shifted 
right, which in a machine with indirect addressing will introduce no more than a 
factor proportional to the running time and otherwise will introduce only a constant 
factor. We shall call this class of machines "WM (for multiplication). Combining our 
result that TM-SPACE ~ 3e~D-TIME (Theorem 6.1) with the remarks above, 
it is straightforward to prove that TM-SPACE ~ ~r The main result 
of Hartmanis and Simon is that the converse also holds; namely, that 3r 
TMD-SPACE. Thus, ) ~ - T I M E  and ~/fMD-TIME also fit into the cycle (*) above. 
(By employing the multiplication algorithm of Proposition 5.3, this result that 
'r ~ TMD-SPACE is an immediate corollary of our Theorem 6.2.) 

One drawback of the multiplication model is that it misleadingly focuses attention 
on the arithmetic operations provided, making it appear that the power of the machine 
is in some sense a comment on the power of multiplication. As we remarked earlier, 
the power really comes from cooperation between the logical and the shift operations; 
the arithmetic is just an obscure way of supplying one half of the source of parallelism. 
The convolution one normally thinks of as the source of real power in multiplication 
turns out not to play any role in the proof that TM-SPACE ~ ~MD-TIME. I f  
numeric register machines with multiplication, but without bitwise Boolean operations, 



THE POWER OF VECTOR MACHINES 205 

were as powerful as vector machines, then it would say something about the power 
of arithmetic. 

In  fact, there is evidence to support  the conjecture that the Boolean operations 
play an essential role. Let  E = 1 �9 ((3, 1}* �9 0 be the set of binary representations 
of even positive integers. Let  ~/PA be the class of (nondeterministic) register machine 
programs containing only instructions to load constants, test for zero, add, subtract, 
and multiply. Then  we have the following; details will appear in a forthcoming 
paper. 

THEOREM. I f  R E 3r and R accepts E within time T(n), then there is a constant 

c ~ 0 such that T(n) ~ cn for  all n. 

However, it is clear that instructions to load constant 1, bitwise and, and test 
for zero are sufficient to accept E within constant time. Also, E can be accepted by a 
Tur ing machine within constant space. In  particular, Theorem 6.1 (cf. (*)) is not 
true with ~t/'A in place of ~/~ID �9 

Hartmanis  and Simon also suggest using concatenation of the significant digits 
of two vectors, e.g., ""00101 concat ' "00110 is ""00101110. I t  is not difficult to 
see how this could be used similarly to implement  shifts. We find this machine more 
attractive than the multiplication machine, as it is less misleading. 

5. ARITHMETIC 

On commercial computers the above repertoire of instructions is by no means 
exhaustive. For our purposes, however, we do not need the other instructions (e.g., 
addition and multiplication of binary numbers)  as we are concerned with charac- 
terizing the power of vector machines only to within polynomial t ime loss, and such 
instructions can be simulated with polynomial overhead using the above set. Let  
cs denote the class cs augmented by an instruction for binary addition. The  results 
of this section, together with L e m m a  4.1, establish the following. 

THEOREM 5.1 

~ + - T I M E  ~ Z - T I M E ;  

3r ~ 3r 

3r ~ YFK-TIME; 

each inequality holding also in the deterministic case. 

The  results of this section are not necessary to the sequel. 
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PROPOSITION 5.1. There is a machine in the class ~r which recognizes negative 
vectors within time O(log n), where n is the length of the vector. (A negative bit vector 
is ultimately 1, nonnegative ultimately 0.) 

Proof. The  following procedure leaves X nonzero if and only if X was initially 
negative. 

I +-- 1; while X =# 0 and ~-~X @ 0 do (X +-  X J,I; I +-  I j' 1). | 

PROPOSITION 5.2. The sum of two nonnegative binary numbers can be computed 
on a vector machine in ~/]lD within a number of steps proportional to the logarithm of 
the maximum of the lengths of the inputs. 

Proof. The  following algorithm implements addition using only the operations 
^,  v, @, ~', and test for zero. We leave to the reader the straightforward task of 
verifying its correctness. 

G + - A A B ; P + - A  v B; 

I + - 1 ;  

while P @ 0 do 

(G +-  G v ((G ~'I) A P);  

P + - - P A P ~ I ;  

I +--2 ~' 1); 

A @ B @ ( G ~ I ) .  | 

r Generate and propagate info r 

r I takes on values 1, 2, 4, 8 .... r 

r Propagate carries through G r 

r Spread G left r 

r Clear used P to avoid crosstalk r 

r Double propagation distance r 

It  is interesting to note that only monotonic operations were required to compute 
the vector G of carries. 

COROLLARY 5.1. Negation may be performed in O(log n) steps. 

Proof. Combine the fast sign-test algorithm with the identity - -x  = ( ~ x )  + 1 
for two's complement negation. (We assume two's complement notation for no 
especial reason. One's complement  notation admits a constant t ime negation algorithm, 
since - -x  = ,-~x.) 

COROLLARY 5.2. Addition of either positive or negative numbers may be performed 
in time O(log n) by a machine in ~IID. 

PROPOSITION 5.3. Multiplication of nonnegative binary numbers may be performed 
by a machine in ~ n  within time O(log n), where n is the length of the result. 

Proof. Without loss of generality, assume that [ A [ = [B [ ---- m = some power 
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of 2, where A and B are the operands to be multiplied. Concatenate m copies of 
the 2m low-order digits of .4, calling the result A B. Concatenate 2m copies of the 
m low-order digits of B, calling the result B A. Using the method of Section 7.2, 
this takes time O(log m). Thinking of B A as a 2m by m matrix stored by rows, transpose 
B A (See Section 7.1) and bitwise and the result with A B, calling the result U. Tha t  
is, U +-  transpose(B A) ^ A B. Imagine that U is structured into m fields, each of 
length 2m. The  product of A and B is just the sum of the m binary numbers  in these m 
fields with appropriate displacements; i.e., the number  in the ith field (0 ~< i <~ m) 
is shifted left i before it is added into the sum. 

]t is easy to compute this sum within O(log m) steps on a machine in ~/~ID§ �9 First 
construct the mask M = lm*0 "~2. Using M, we mask out the leftmost rn/2 fields 
of U and shift these fields right m 2 -- m/2, calling the result V. (The shift m 2 places 
them below the rightmost m/2 fields, and the shift --m/2 supplies the displacement 
mentioned above.) Execute 

u ~ ( ~  + v)  ^ ~ M  

so that U now contains m/2 fields. (Since the field width is 2m, there is no interaction 
between fields when this addition is performed.) Now shift M right mZ/2, use M to 
mask out the leftmost m/4 fields of U, shift these fields right m2/2 -- m/4, perform 
the addition, and so on. After log 2 m iterations of this process, the rightmost fieId 
of U contains the desired product. This  method takes t ime O(log m) on a machine 
in ~'~D§ and, therefore, t ime O(log 2 m) on a machine in ~/~D. 

To  reduce the time to O(log m) for ~//ID, we use the well-known technique of 
carry-save addition. Given three binary numbers X, Y, Z, the binary numbers 
S ~ X @ Y O Z  and C = ( ( X ^  Y) v (Y A Z) v (Z A X))  I" I, satisfy Sq-C-- - - -  
X ~- 7t ~ -~- Z. (On a bi t-by-bit  basis, think of S as the sum and C as the carry when 
adding three bits together. This  instance of unary to binary conversion is called a 
full adder.) Given four binary numbers  W, X, Y, Z, applying this method twice 
allows us to compute S and C such that S + C = W + X + Y + Z. In  the multi- 
plication procedure just described, replace U and V by Us,  Uc,  g s ,  and V c .  
The  addition U + V at each iteration is replaced by the carry-save operations to 
compute a "new"  U s and U c from the "o ld"  Us,  Uc,  Vs ,  and V c .  After log S m 
iterations, at fixed time per iteration, add Us and Uc by the procedure of Proposi- 
tion 5.2 to yield the desired product. | 

6. THE CHARACTERIZATION AND CONSEQUENCES 

Our main results, which were summarized in (*) in Section 4, are stated as two 
theorems. 

THEOREM 6.1. TM-SPACE(S(n))  _C (3 ~}D-TIME(c "(S(n) + log n)2). 
e>0 
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THEOREM 6.2. 3~K-TIME(T(n)) _C TMD-SPACE(T(n) �9 (T(n) 4- log n)). 

Theorems 6.1 and 6.2 are proved in Sections 7 and 8, respectively. First, we examine 
some immediate corollaries of these results. 

The first corollary shows that, for vector machines in the classes ~ and ~r 
nondeterministic time is polynomially related to deterministic time. In particular, 
P = N P  (cf. [1, 7]) for ~ and ~ .  

COROLLARY 6.1. Let T(n) ~ logn. 

3~ll-TIME(T(n)) C 0 3r �9 
e>o 

Proof. Immediate from Theorems 6.1 and 6.2 and Lemma 4.1. | 

Remark. By Lemma 4.1, Corollary 6.1 is true with K in place of I. The exponent 
4 can possibly be reduced by a direct simulation. If it can be reduced to 2, then, 
together with Savitch's [11] result that TM-SPACE(S(n))C TMD-SPACE((S(n))2), 
we could say that a deterministic X can accept any set accepted by a nondeterministic 
Y, for X, Y6 {space bounded T M ) u  {time bounded 3r with the bound being 
at most squared. 

Another corollary follows immediately from Theorem 6.1, since all context-free 
languages are in TMB-SPACE(Iog ~ n) [9], and all context-sensitive languages are 
in TM-SPACE(n) [8]. 

COROLLARY 6.2. I f  L C 1 �9 {0, 1}* is context-free, then L ~ r �9 log 4 n) 
for  some c. I f  L _C 1 �9 {0, 1}* is context-sensitive, then L e ~IID-TIME(c �9 n 2) for some c. 

An interesting question is the relationship between the time required to perform 
a computation in a deterministic serial fashion and the time required by an un- 
bounded parallel method. Can one always obtain a "polynomial in log" time 
improvement by going from serial to parallel computation ? If we equate vector 
machines with parallel computation, then this question is equivalent to an open 
question concerning the "time-storage trade-off" relation [2] for Turing machines. 

COROLLARY 6.3. The following statements are equivalent. 

(1) There is a k such that for all T(n) >~ n, 

TMD-TIME(T(n)) C 1,) $~D-TIME(c -(log T(n))~). 
c>O 

(2) There is a k such that for all T(n) ~ n, 

TMD-TIME(T(n)) C_ TMD- SPACE((log T(n))~). 

Cook [2] has conjectured that (2) is false, even if T(n) is restricted to be a polynomial. 
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7. PROOF OF THEOREM 6.1 

The proof of Theorem 6.1 proceeds by four main steps. First, we show that a 
vector machine in the class ~]m can transpose a Boolean matrix within time propor- 
tional to the logarithm of its size. Given this transposition procedure, it is easy to 
compute the product of m • m Boolean matrices within time O(log m). This matrix 
multiplication procedure is then used to compute the transitive closure of an m • m 
Boolean matrix within time O(log 2 m). Finally, a vector machine in ~ D  simulates 
a space S(n) bounded Tur ing machine M by first constructing the one-step transition 
matrix for instantaneous descriptions (i.d.'s) of M, and then computing the transitive 
closure of this matrix. A space S(n) bounded computation of M on an input of length n 
can involve at most m = n " c s~n) different i.d.'s for some constant c. Since the transi- 
tion matrix is m • m, the transitive closure computation takes time O((S(n) + log n)2). 

In the vector machine programs described in this section, we let U, V,..., Z 
(possibly subscripted) denote vector registers, and L Jr, K, .... P, Q denote index 
registers. 

Since index registers are used primarily to hold shift distances, comprehension 
of the programs is enhanced by thinking of index registers as containing integers 
(rather than binary representations). Recall that the operations 1 i' 1 and I $1 perform 
on integers the operations 2 I  and [I/2J, respectively. Vector registers should be 
viewed as containing binary words. I f  ~o is a word and m is a positive integer, oJ ~ 
denotes the word ~ococo'.-w (m times). We consistently denote integers (words) by 
lowercase Roman (Greek) letters. 

7.1. 3/Iatrix Transposition 

Throughout  this paper the Boolean matrices we deal with each reside in a single 
vector. As such, they appear as one-dimensional matrices A (vectors) with elements a i .  
However,  we shall interpret them as n-dimensional tin-1 • dn-2 • "'" • dl X do 
matrices by decomposing i as ('..(i~_id~_2 + i~_~) dn-a + "") do + io, where 0 
i~- < dj for each j. This  is exactly how n-dimensional arrays are mapped by compilers 
into linear storage. Furthermore,  we shall insist that the dimensions dj always be 
a power of 2; then if i is written in binary notation, its decomposition amounts to 
no more than the identification of n "fields" (contiguous substrings) of i whose 
concatenation yields i. We write 

a i ~ a i n _ l i n _ 2 . . . i l i o .  

The  transpose of  A about coordinates p and q, written T~q(A), is a dn-1 • dn-2 • 
�9 ". • dq+l • dv x dq_ 1 • "'" • d~+ 1 x dq x d~_a x "'" • d o matrix A'  satisfying 

a~ n . ] . . . i q~ l i p iq_ l . , . i p+ l iq lp_ l . , . i  0 ~ -  a i n  1 . . . iq~ l iq iq_ l . .* ip+l ip ip_ l . . . io  �9 
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That  is, coordinates p and q ( p  < q) have been interchanged. I f  n --  2, this yields 
the usual definition of the transpose A r, namely, ajri = alj �9 Thus, given 

A =  f g , 

where a-h denote O's and l's, we have 

A T  ~ 

As bit vectors, these quantities are abcdefgh and aebfcgdh, respectively, which are 
moderately complicated permutations of each other. Our objective is to perform 
these permutations in time O ( ~  5 log dj). 

We implement, in constant time, the primitive operation of transposition about 
r coordinates each of size 2. That  is, we show how to compute a i, = a i ,  where i '  

in binary is i with two bits interchanged. Once we can transpose individual bits 
of i, it is easy to see how whole blocks of bits can be transposed, in time proportional 
to the number of affected bits. We remind the reader of the algorithm for exchanging 
arbitrary-sized blocks fl~ and fl~ of data (in our case blocks of bits) using the identity 

" "  ]~o--l~q]~o+l " ' "  ~ q - - l ~ o ~ q + l  . . . .  . . .  ] ~ _ 1 ( ] ~  R ( ~ + I  . . .  ~ q _ l ) R  ~qR)R ~q+l"" ", 

and point out that reversing a block of n items takes [n/2] transpositions of pairs 
of items. Hence, transposing a matrix can be clone in time proportional to the number 
of bits between and including the transposed bits in the binary representation of 
the index. In the applications to follow, the matrices are cubes (all dimensions of 
equal size), which simplifies transposition of blocks; it suffices to move two pointers 
through the two blocks in parallel, transposing a pair of bits at each step. The  bits 
lying between the blocks need not be touched. 

Having shown how to apply the index-bit-transposer, we turn now to its imple- 
mentation. Consider the transposition about coordinates 0 and 2 of the 2 • 2 • 2 
cube Z whose linear representation is abcdefgh, with a = z m , b = Zll 0 . . . . .  g = z001 , 
h = z000, where the indices of z are in binary. The  transposition is aecgbfdh. If  
we look in Fig. 1 at what moved where, we observe three types of motion: (i) no 
motion; (ii) motion right three positions; (iii) motion left three positions. 

In  case (i), the stationary bits were, not surprisingly, those with bits 2 and 0 (the 
two bits at either end) the same, namely, 111, 101, 010, and 000, corresponding 
to a, c, f, and h, respectively. In  case (ii), with b = .~11o and d = Zloo, the bits were 
1 and O, respectively, while in case (iii) they were 0 and 1, respectively. Interchanging 
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these bits gave rise to a left translation of 2 0 - -  2 2 bits for (ii) and 2 z - -  2 0 bits for 
(iii). I t  should be clear that these three cases are all we need to consider in general. 
Hence the implementat ion separates the matrix into three components,  shifts two 
components,  then reassembles them. I f  bits p and q are to be transposed, the shift 
distances are ~:(2 v - -  2q). 

0 

Fm. 1. 

b c d e f g h 

X ' ,J  

e c g b f d h 

The transpose T02 of the 2 • 2 • 2 cube. 

This  leaves only the problem of separating the components.  We introduce masks 
/*z.j for l ~ 1 and 0 ~< j < l;/,~,~ is that binary word of length 2 ~ whose ith bi t  is 1 
just  when t h e j t h  bit of i is 1. Hence, 

/~t,o = "'10101010, 

/ ~ z a  = "'" 1 1 0 0 1 1 0 0 ,  

b~z,2 = ""11110000, etc. 

(I t  is no coincidence that the columns are consecutive binary numbers.)  I f  A is a vector 
of length 2 ~, then A ^ (/*z,~ ~ / % 0 )  is the stationary component,  A A (/&9 ^ ~/h ,q)  
moves left 2 q - -  2" positions, and A n (~ /h .~  A tZZ,q) moves left 2 p - -  2 q positions. 

Note that/z~,~_ 1 can be constructed in l - -  l iterations of 

X +-- ( (X ~ I )  v X )  ~ I ;  I + -  1 I' 1, (1) 

where X is initially 10 and I is initially 1. Any other tzt.j (0 <~ j < l) may then be 
produced using the identity 

m,J-a = m,J @ (m,j 4 2J-1). (2) 

We can combine all of the above into the following procedure for transposing 
coordinates p and q, where d~ = dq = m = some power of 2. The  parameters 
P and Q to the procedure are powers of 2 that identify the leftmost bits  of the respective 
blocks; that is, if block p ' s  leftmost bit  is x, then P contains 2 ~, and similarly for Q. 
The  parameter  M initially contains m, and L contains the length of the vector A 
being transposed ( - -mn if A is an n-dimensional cube). 

57I/I2/2-6 
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Transpose (P, Q, L,  M ) :  

Y ~-- fflog L.log p ; Z +--/Zlog L.log 0 ; r Construct masks using (1) and (2) r 

do log 2 M times r Count by halving M each time r 

( A ~ - - A A ( Y ~ Z )  v ( ( A ^  Y A ~ Z ) ~ Q ) ~ P v ( ( A A ~ Y A Z ) ~ P ) ~ Q ;  

P ~-- P ~ 1 ; Q +-  Q ~ 1 ; r Move pointers right r 

Y +-  Y @ (Y $ P) ;  r Next mask, cf. (2) r 

Z ~-- Z ~) (Z $ Q)). 

Note that we keep only two masks in storage at a time. The  procedure Transpose 
(P, Q, L, M)  runs within time O(n"  log m). (In subsequent applications of this proce- 
dure, we always have n ~ 3.) 

7.2. Mult iplying Boolean Matrices 

Given m • m Boolean matrices A and B, the objective is to compute C satisfying 

ci~ - -  V (ai~ A bt~j). 
k 

We assume that A and B are stored initially in two vector registers, and that m 
( = a  power of 2) is available in an index register. We shall accomplish the "A,"  for 
all triples i, j ,  k, in one operation, and the " v "  in O(log2 m) operations. Clearly, 
at least m a bits must participate if the m 3 and's  are all to be done at once. This is 
done by expanding each of A and B to m • m • m matrices (i.e., vectors of length m 3) 
A '  and B '  satisfying 

a'~,:~ : aik , b~i ~ = bk~. 

Then C'  : A '  ^ B '  contains all the products necessary to form C. 
We now show how to carry out this expansion. Let A"  denote an m X m • m 

matrix satisfying 

a~, k : a i ~ .  

Since (from the vector viewpoint) A" is just m copies of .4 concatenated together, 
,4" can be formed in log2m iterations of ( A + - - A  v ( A ~ I ) ; I + - - I ~ l ) ,  with I 
initially m 2. We may now form A '  from A"  by transposing about 0 and 2, so that 

a~ij = a'fik : a ik ,  

as desired. Similarly, form B" satisfying 

bi% --  bkj 
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and transpose about 1 and 2, so that, as desired, 

b~ij : -  b~'k~ = bkj. 

Hence, we can form C'  as To2(A" ) ^ T12(B"), in O(log m) operations. 
T h e  desired product C = AB can now be computed by oring together the m 

blocks of length m 2 that comprise C', thereby implementing "Vff ' .  The  following 
suffices, and it, too, takes O(log m) steps. 

f 4--- /n  3, 

do log 2 m times ( f  ~-- I ~ 1; C '  + -  C '  v (C'  ~I));  C +-  C '  ^ 1 m2. 

Therefore, the product C can be computed in O(log m) steps. (The  computation 
of m 2 and m 3 causes no problem here, because powers of 2 can trivially be multiplied 
within t ime proportional to the logarithms of their magnitudes; to wit, successively 
halve one multiplicand while doubling the other, until the former becomes 1. In  
the sequel, we implicitly use this ability to multiply powers of 2 in logarithmic time.) 

7.3. Transitive Closure 

I f  A is an m • m Boolean matrix, the transitive closure of A is defined by 

A* : E v A v A  2 v A  3 v . ' ' ,  

where E denotes the m • m identity matrix. I t  is easy to see that also A* = (A v E) m. 
A vector machine in the class ~/]ID can compute A* within t ime O(log ~ m) by suc- 
cessively squaring the matrix (A v E ) log  2 m times, using the matrix multiplication 
procedure just described in Section 7.2. (Since the vector representation of E is 
(0ml)% it should be clear that E can be constructed in O(log m) steps.) 

7.4. Completion of the Proof 

Let  M be a nondeterministic Tur ing  machine which accepts a language L within 
space S(n). Without loss of generality we can assume that M ' s  work tape is one-way 
infinite to the left, M never moves the work head off the right end of the work tape 
nor moves the input head outside the area delimited by the endmarkers r on the 
input tape, and M can accept an input only by entering a unique designated accepting 
state with the work tape entirely blank and both heads scanning the rightmost squares 
of their respective tapes. The  necessary modifications to M are straightforward; 
see, for example, [6]. 

As mentioned earlier, the vector machine which simulates M first constructs 
the one-step transition matrix for i.d. 's of M. Our formalization of i.d.'s is the 
following. Say M has states Q and tape alphabet F. For positive integer n, let s' be 
the least power of 2 such that s' ~ S(n) -[- 1, and define an n-i.d, of M to be a word ~/~-, 
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where 1- 6 F *  �9 F �9 Q - F* ,  [ T ] = S', ~ e 0* " 1 " 0",  and ] 7/ I = n + 2. Suppose  M 
is given inpu t  to c 1 �9 {0, 1}*, where n = ] to l; write r162 = oJ,~ lto~'"to2tolto0 �9 T h e n  
the  n-i .d.  3 = 0 ~ ~+llO~rlqrz, where rl~- 2 E F* ,  q ~Q,  and  0 ~< l ~ n -}- 1, describes 
the  s i tuat ion where M is in state q, *V2 is wri t ten on the work tape, the work head 
is scanning the r ightmost  symbol  of 7 a , and the input  head is scanning  to~. 

I n  particular,  0~+~l#~'-~q0 (0n+l l#~ ' -aq , )  is the un ique  initial (accepting) n-i.d. ,  
where q0 (q,) is the init ial  (accepting) state and # denotes the b lank tape symbol  in F. 

Let  N e x t i  denote the one-step t rans i t ion  relat ion defined on  i .d. 's  of M.  I f  3 
and  3' are n- i .d . ' s  and to is an inpu t  of length  n, then  Nex t / ( to ,  3, 3') iff 8 can reach 
3' by one step in a computa t ion  of M on  inpu t  to. 

We next  define b inary  words 7~, some of which serve to code n- i .d . ' s  of  M.  Let  
Z' -= Q u F,  let b be  the least power of 2 such that  20 >~ card(27), and  choose a one-  
to-one  map h: 2J - ~  {0, 1} ~. Extend the domain  of h to 27* in  the  obvious way. Now 
fix a part icular  n, let s' be as above, and let s = bs', m' = 2 ~, n' = the least power 
of 2 such that  n '  ) n -? 2, and  m = m'n'.  For  0 ~< z ~< m' - -  1, let p~ ~{0, 1} ~ 
be a b inary  representat ion of z (possibly wi th  leading zeros to make ]p~ ] = s). 
For  0 -<.. 1 <~ n' - -  1, let /~z = 0 n ' - t - l l 0 t .  T h e  b inary  words  7J, 0 ~< j ~ m - -  1, 
of length  m are now defined as follows. Wri te  j = n ' z  + l, where 0 ~< l ~< n '  - -  1 
and 0 ~ z ~ m' - -  1, and  define 7~ = 0~-~ '-~t~p ~ . (Thus ,  7J also depends  on n;  
we rely on context  to specify n.) 

I f  8 = ~ is an n-i .d,  of M as above, then  we say that  79 codes 3 iff ~/- h(r) is a suffix 
of 75 �9 I t  is obvious that  each n-i .d,  is coded by some 75, and  that  each 75 codes at 
most  one n-i .d.  

We  now describe the operat ion of a determinis t ic  vector machine  R ~ ~/}m which 
accepts L wi thin  t ime O((S(n)  + log n)~). ( In  the remainder  of the  proof, the constant  
implici t  in  the " O - n o t a t i o n "  depends  on M ,  b u t  no t  on  the inpu t  ~o.) Let  W denote 
the inpu t  register, and assume R receives inpu t  to. Le t  n = [ to [. For  the present,  
it  is convenien t  to assume that  R init ially receives also the integer s' (defined above) 
in some index register. Th i s  assumpt ion  will later be removed.  G iven  s', the other  
integers s, m', n', and  m defined above can now be computed  in index registers wi th in  
t ime  O(S(n)  + log n), as the reader can easily verify. For  example,  n '  is computed  
in register I by 

1 + - 2 ;  while ( W ] ' 2 ) $ I r  do I + - I ' ~ l .  

T h e  first goal of R is to construct  an m • m • m Boolean matr ix  /1 such that  
for all i a n d j  with 0 ~ i , j  ~ m - -  1, i fT i  codes an n-i .d.  3, then  aij 0 = 1 iffT~ codes 
an n-i .d.  8' such that  Nextm(to , 3, 3'). I f  7i does not  code an n-i .d. ,  or if k =/= 0, then  
the value of ai57,, is un impor tan t .  Thus ,  R first constructs  words 

vr  = (7 , ._1) '~(7 , ,~_~)  . . . .  ( 7 1 ) . , ( 7 0 ) m  
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and 

vc ~ (Y~-l~m-2 "'" YlY0) m- 

These words are useful for computing all ai~o in parallel, v~ and v c can be divided 
into contiguous segments of length m such that, for all i and j, a copy of Yi appears 
in v r and a copy of y~ appears in v c , both in the segment whose rightmost bit occupies 
position m2i + mj, which is the position aiJo is eventually to occupy. 

We first describe the macro dup, which is useful both in constructing these words 
and in subsequent procedures. I f  X contains the binary word fl, and L and K contain 
integers l and k where k is a power of 2, then dup(X, L, K)  halts within time O(log k) 

Vk-1 with i=0 (fl ~ il) stored in X. 

dup(X,L,  K):  while K > 1 do 

(X  +-  X v (X tL) ;  

L + - L t l ;  

K + - K $ I ) .  

The  following procedure layout is used to construct both v,. and v c . Layout(V, l) 
constructs 

= ~,,_lO*-"~m_~O ~ . . . . .  y~Ol-~ylOl-,~y 0 

in register V within t ime O(log m + log l), where the integer l, l / >  m, is available 
initially in some index register. Layou t  first constructs 

p , lOn,~-~p ,_~O ~,~-s ... plOn'~-~po 

in register V by the following. 

V + - O ; I + - n ' l ;  Z + -  1 ~I;  

do loge m' times 

(V +-  (V ,, (V 1"1)) v Z; 

z +-  ( ( z  ~ ( z  ~ I))  ~ I )  ~ l; 

I , - - I r  1). 

Executing dup(V, l, n') now gives (O~--spm,_a)~" "'" (OZ-Spl)~'(Ot-~po)n' in V. Layou t  
next constructs 

(O~-~'t~ ,_~O~-,," ... tLiO~-~'t~o)~" 
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in register X by 

X + - -  1; 

dup(X,  l + 1, n'); 

dup(X,  n'l, m') .  

Finally, V + -  V v (X 1" s) gives the desired word a in V. 
Now v r is constructed in V 1 by executing (layout(Vx, m2); dup(V1,  m, m)). v c is 

constructed in V 2 by (layout(V 2 , m); dup(V2,  m ~, m)). Thus,  v r and v c can be con- 
structed within t ime O(log m), that  is, t ime O ( S ( n )  + log n). 

R must  now compute the a~ o . An exact description of this process is unnecessarily 
tedious. Our  purpose is only to outline the general details sufficiently to allow the 
reader to construct the remainder easily. First  execute: 

Vo.*-- W f (s + 1); 

dup(Vo,  m, m2). 

This  has the effect of constructing, for each Yi in l/1 , a copy of the input  "oppos i te"  
the part  of ~i which codes the position of the input  head. For  example, Fig. 2 shows 

V0: 0 "'" 0 0 0 oJn �9 . . . . . . . . . . .  w~ ....... o~2 % 0 0 "'" 0 0 0 

VI: 0 "'" 0 0 0 0 "'" 0 0 1 0 "'" 0 0 0 c, "" c3 c2 Cx 

V2: 0 "'" 0 0 0 0 "'" 0 1 0 0 "'" 0 0 0 c~" "'" c3' c (  el' 

Va: 0 "'" 0 0 1 0 "'" 0 0 0 0 "" 0 0 1 0 "'" 0 0 0 

FIG. 2. Segment0. 

the segment of Vo, V1, and V2 in which 7i ~ appears in V 1 and 7Jo appears in V z ,  

for a particular i o and Jo, (cf. the definition of vr and v c above). In  Fig. 2, w = 
co,~ ... oJ2w 1 is the input, and )qo = 0 " " 0 0 1 0 u  and Y~o = O ' " O 0 1 0 v G ' " ' c 2 ' q "  
where c ~ , c ( E { 0 ,  1} for 1 ~ k ~< s. 

T o  simplify the discussion, we concentrate attention on this segment (henceforth 
�9 called segment0). The  process we describe for computing aid00 in segment 0 is actually 

being performed in parallel on all segments to compute all the ai~o. 
Figure 2 also shows segment o of register V3 which contains (0m-8-n-210~100 m~. 

The  following program constructs this word within t ime O(log m). 

Vs+-- W t  1; 

dup (V a , - -1 ,  n'); r V a contains 1 '~+1 r 

/73 + -  V3 @ (V3 ~ 1); r Vs contains 10~1 r 

dup(V a 1' s, m, m2). 
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The next goal is to compute bits which determine the input symbol scanned by 
(the n-i.d, coded by) 7 q ,  and the direction the input head moved in going from ~,i0 
to YJ0' and then to spread these bits over the rightmost s bits in segment 0 . Let d 
be the least power of 2 such that d ~ s 4- n'. Execute: 

Vo +- Vo ^ V1; 

v .  ~ v~ ^ v1; 

dup(Vo, --1, d); 

dup(V3, --  1, d). 

The  effect here is to spread l ' s  over the rightmost s bits of segment o in V o (resp., V3) 
iff co, = 1 (resp., co, = r (See Fig. 2.) 

To compute bits for the input head motion, construct (lm-S0s) m2 in register Z and 
execute: 

v , , -  (v~ ~, 1) ^ v ~ ^ z ;  

Vs ~-- VI ^ V2 ^ Z; 

v~ +- v~ ^ (v~ ~ 1) ^ z;  

followed by d u p ( V ~ , - - 1 ,  d) for k = 4, 5, 6. This spreads l ' s  across V4 (resp., 
V 5 ,Ve)  i f f l '  = l - - l ( r e s p . , l ' = l , l ' = l q - l ) .  

Now assume that 7q codes an n-i.d. 3 of  M. The  rightmost s bits of segment 0 
contain all the information required to determine if 7~0 codes an n-i.d. 3' such that 
NextM(co , 3, 3'). I t  is easy to see that, given the input symbol and the input head 
shift information, each neighborhood of three symbols ala2a z ~ Z '3 in an n-i.d. 3 
determines a set NM(alO'2(r3) C S 3 such that s o m e  O'1'Ot2'O'3 t e NM(aaCr2a3) must occupy 
the same neighborhood in any n-i.d. 3' which follows in one step from 3. (See, for 
example, [14].) R can thus examine each such neighborhood in V 0 - -  V6, and deter- 
mine whether the neighborhood is consistent with a legal move of M. This information 
is collected at the rightmost bit of segment 0 to constitute aqJ00. This process can 
clearly be performed within O(s), that is, O(S(n)) steps (in fact, O(log s) steps are 
sufficient), and can be done in parallel for all segments to compute all the ai~ 0 . We 
let the reader supply any further details required to convince himself that the transition 
matrix .4 can be computed within time O(S(n) 4- log n). 

By two applications of the transposition procedure, followed by an appropriate 
mask, we can construct within O(log m) steps an m • m matrix B satisfying bii = aij 0 . 
Now R calls the transitive closure procedure of Section 7.3 which computes B* 
within O(log 2 m), that is, O((S(n) -q- log n) 2) steps. I f  integers e and f are such that 
7% (~'f) codes the initial (accepting) n-i.d, of M, then M accepts w iff b~* I = 1. It  is 
not hard to see that e and f, and then me 4-f, can be computed within O(log m) 
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steps. The  bit b~*j can thus be extracted and tested. This  completes the description 
of R under the assumption that s' is available initially. 

I f  s' is not available, then R runs the entire procedure described above, with s' 
taking on successive powers of two, until it is discovered that M accepts the input. 
The  first at tempted value of s' should be l = 2 fl~176 (which can be computed 
in O(log n) steps). I f  M does accept the input of length n, then R will discover this 
fact when s ' =  l - 2  u, where u = [ l og ( (S (n )+  1)/logn)]. I t  follows that, when 
computing on accepted inputs of length n, R runs within t ime 

c" ( l .  2 ~ + log n) 2 ~ c' �9 (S(n) + logn) ~ 
k=0 

for constants c and c' independent of n. (Recall that l = O(log n).) Th is  completes 
the proof of Theorem 6.1. 

Remark. The  vector machine R above accepts L within space O(m3), that is, space 
O(n3d s~)) for some constant d depending on M. The  time bound O((S(n) + log n) ~) 
still holds if R ' s  shift distances are restricted to be powers of 2. 

8. PROOF OF THEOREM 6.2 

Let  R be a nondeterministic vector machine in the class Y/K which accepts a language 
L within time T(n). Assume the registers appearing in R 's  program are labeled 
Vo, 1/'1 ..... V,~ for some m; say V 0 is the input register. Let  c be the constant such 
that vector length does not exceed c ~ + n after t steps, where n is the input length. 

We describe the operation of a deterministic Tur ing machine M which accepts 
L within space a �9 T(n) ' (T(n) + log n) for some constant a. By the classical constant 
factor "speedup"  result [13], M can be modified to operate within space T(n)" 
(T(n) + log n). For the moment,  it is convenient to assume that T(n) is tape con- 
structable (cf. [6]); that is, given any input of length n, M can first delimit a block 
of T(n) tape squares. 

Within space T(n), M can store a "choice sequence," which is a list of decisions 
made by R at each of its T(n) steps. More precisely, a choice sequence is a word 
in (1, 2, 3,..., d)* of length T(n), where d is the outdegree of R ' s  graph (program). 
I f  the edges directed out of each vertex are given unique labels from {1, 2, 3 ..... d}, 
then a choice sequence specifies, in the obvious way, a path through the graph starting 
at the designated start vertex. Thus  M ' s  outer loop cycles through all possible choice 
sequences in lexicographic order, which disposes of the issue of nondeterminism 
for R. 

For each choice sequence, M attempts to make progress through R ' s  graph (program) 
by following the specified path. While following a particular path, M keeps a counter t 
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then return 

(3) if 
constant; 

equal to the number  of edges followed thus far along the path. As M progresses 
along a path, M processes the instructions encountered on the edges as follows. 

An instruction which changes the contents of a register (i.e., instruction types 
(i)-(iii) in Section 2) is not executed but is recorded on the work tape together with 
the current value of t. 

I f  a predicate is encountered, it must be evaluated to determine whether M should 
continue following this choice sequence or cycle to the next one. Predicates are 
evaluated with the help of a procedure find(b, i, t) which returns the bth bit of the 
contents of register V i at step t, for 0 ~ b ~ c r(n~ + n, 0 ~ i ~ m, and 0 ~ t 
T(n). T o  test whether or not Vi ----- 0 at step t, it suffices to compute find(b, i, t) 
for 0 ~ b ~ c ~ + n. The  recursive procedure f ind is as follows. 

Find(b, i, t): 

(1) I f  t = 0, then return (if i = 0 then the bth symbol of the input else 0); 

(2) if the instruction recorded at step t does not change the contents of V i ,  
find(b, i, t - -  1); 

" V ~ + - c o n s t a n t "  is recorded at step t then return the bth bit of the 

(4) if "Vi +-- V~ @ V~" is recorded at step t, where @ denotes a Boolean 
operation, then return (find(b, j, t) @ find(b, k, t)); 

(5) if "Vi  ~ -  V~ t Vfl' is recorded at step t then: 

(5.1) let B = d + n, and calculate the length I of the contents of Vk at 
step t by: 

I ~ - - l ' ~ - - 0 ;  

w h i l e l ' ~ B - - 1  do 

(if find(l', k, t) ~ find(l' + 1, k, t) then l ~ -  l '  + l; l '  ~-- l '  + 1); 

(5.2) if l >  1 + I o g B  then return find(B, j, t) (note that i f l >  1 + l o g B ,  
then V k contains an integer z with ]z  I ~ B. I f  z ~ 0, then fnd (B , j ,  t) is clearly 
the correct result. I f  z ~ 0, then Vj. must be identically zero, and this is again correct); 

(5.3) let s = find(/, k, t), let z denote the integer with binary representation 
�9 "sss f i nd ( / - -  1, k, t) find(l - -  2, k, t) ... find(0, k, t), and 

l find(b - -  z, j ,  t) if 0 ~ b - - z  < B ,  
return find(B, j, t) if b - - z ~ B ,  

0 if b - - z  d 0 .  

This  completes the description of M. I t  remains only to observe that M operates 
within space O(T(n) �9 (T(n) + log n)). First, space O(T(n) �9 log T(n)) is sufficient to 
record all integers t, 0 ~ t ~ T(n), in binary, together with the instructions executed 
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at these steps. To bound the space used by find, first note that each variable, e.g., 
B, b, t, l, z, can be represented in binary within space O(log B). In  the obvious stack 
implementation of find, each stack frame thus occupies space O(T(n) + log n). Stack 
depth is bounded above by T(n), whence the bound O(T(n ) . (T (n ) -q - logn ) ) .  If  
T(n) is not tape constructable, then, as in [11], M attempts the above procedure 
using k tape squares for k = 1, 2, 3,..., until it is discovered that R accepts the input. 
This completes the proof of Theorem 6.2. 

Remark. (Generalization to transduction.) Both Theorems 6.1 and 6.2 can be 
generalized (at least in spirit) to the transduction problem, i.e., the problem of com- 
puting a total function f :  1 �9 {0, 1}* --~ 1 - {0, 1}*. A deterministic vector machine R 
computes f within time T(n) if, for all ~, when started with oJ in an input register, 
R halts within T([ co ]) steps with f(eo) in a designated output register. A Turing 
machine is given a separate output tape scanned by a one-way write-only head; 
the space of a computation is counted only on the work tape. We consider only 
deterministic machines for transduction problems. 

The  proof of Theorem 6.2 generalizes easily to the transduction problem. When 
M discovers that R has halted, M simply uses f ind to produce in order the bits of  
the output register. 

The  basic outline of the proof of Theorem 6.1 carries over to the transduction 
problem, although the details are more involved. The  t-step transition matrix A ~o 
for a deterministic Turing machine M now has a binary word at in the (i,./')-position 
iff the ith i.d. of M can reach t h e j t h  i.d. in exactly t steps while producing e~ on the 
output tape. It  is clear how to define multiplication of such matrices so that A ~o = 
A")  �9 A"I; however, the implementation of this multiplication is slightly more involved 
than before because A "~ may contain words of varying lengths. I t  is possible, however, 
to carry out such multiplication on a VM within time O(loga m) which gives time 
O(log a m) for the analog of transitive closure. Using this method, the exponent 2 
in Theorem 6. I becomes 3 for transduction. 
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