
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 12, 198--22l (1976)

A Characterization of the Power of Vector Machines*

VAUGHAN R. PRATT

Project MM C , 2YIassachusetts Institute of Technology, Cambridge, Massachusetts 02139

AND

LARRY J. STOCKMEYER

3/Iathematical Sciences Department, I B M Thomas J. Watson Research Center,
Yorktown Heights, New York 10598

A new formal model of register machines is described. Registers contain bit v e c t o r s

which are manipulated using bitwise Boolean operations and shifts. Our main results
relate the language recognition power of such vector machines to that of Tur ing
machines. A class of vector machines is exhibited for which time on a vector machine
supplies, to within a polynomial, just as much power as space on a Tur ing machine.
Moreover, this is true regardless of whether the machines are deterministic or non-
deterministic.

1. INTRODUCTION

I n t he l i t e ra tu re o n regis ter mach ines , i n c l u d i n g [3, 4, 12], t he d o m a i n of n u m b e r s

has he ld sway. I n th i s p a p e r we d raw a t t e n t i o n to a re la t ively neg lec ted d o m a i n t h a t

none the l e s s fo rms t he basis for t o d a y ' s c o m m e r c i a l c o m p u t e r s , namely , t h a t of b i t

vectors . A l t h o u g h t h e or ig ina l m o t i v a t i o n for u s i n g b i t vec to r s was to r e p r e s e n t

n u m b e r s , t he d e v e l o p m e n t of n o n n u m e r i c t e c h n i q u e s in r ecen t years has f o u n d

m a n y o the r uses for b i t vectors , and we shal l der ive our resu l t s for m a c h i n e s t h a t

e m b o d y no n o t i o n of n u m b e r . T h e a r i t h m e t i c ope ra t ions f o u n d in p rev ious fo rmal iza -

t ions of regis ter m a c h i n e s are replaced, in ou r case, b y b i twise Boolean ope ra t i ons

a n d shif ts . 1

* An earlier version of this paper appeared in [10]. This research was supported by the
National Science Foundation under research grant GJ-34671.

1 A paper of Hartmanis and Simon [5], based on our results, shows that introducing the

notion of number has, to within a polynomial, no effect on the power of vector machines, and
moreover, that the multiplication instruction may take over the role of the shift instruction.
We discuss this further below.

198
Copyright ~) 1976 by Academic Press, Inc.
All rights of reproduction in any form reserved

THE POWER OF VECTOR MACHINES 199

We shall show that such bit vector machines (VM's) have an astonishing amount
of power. Our main result is that, to within a polynomial, time on a vector machine
supplies at least as much computational power as space on a Turing machine. With
a minor restriction in the instruction set of the VM's, "a t least" may be replaced
by "just ," regardless of any questions of determinacy or nondeterminacy. More
precisely, any set accepted in space S(n) by a nondeterministic Turing machine
may be accepted in t ime O((S(n)) 2) by a deterministic vector machine. Conversely,
any set accepted in t ime T(n) by a nondeterministie vector machine may be accepted
in space O((T(n)) 2) by a deterministic Tur ing machine. An immediate corollary
is that P ~ N P on vector machines; that is, sets accepted in nondeterministic
polynomial time can be accepted in deterministic polynomial time.

Section 2 gives the basic definitions concerning vector machines. Section 4 discusses
several restrictions to the basic model. In Section 6, we state the characterization
outlined above and examine some corollaries. Sections 7 and 8 present the proofs
of the two main results which comprise the characterization. In Section 5, we examine
the effect of the arithmetic operations, addition and multiplication, on the power
of vector machines.

2. DEFINITIONS

Just as models of numeric register machines generally admit arbitrarily large
numbers, the vector machines we study here admit arbitrarily long vectors. Thus
we define a bit vector to be an ultimately constant sequence of bits (elements of {0, 1}).
Though the manufacturers of our machines may eschew numbers, we will want
to be able to simulate operations on integers (say, in the guise of two's complement
binary numerals), and so we adopt the traditional convention of writing the sequence
of bits from right to left. The length of a vector v, written [v l, is the number of
significant bits in it, that is, the length of the shortest initial segment of the sequence
whose removal would make the remaining sequence constant.

The vector machines one can buy today invariably include close approximations
to the following types of instructions, which we take to form the basis for the definitions
of a variety of closely related machines:

(i) A +- constant, an instruction to load a constant bit-vector into register A;

(ii) A +-- ~ B and A ~-- B A C, "bitwise parallel" Boolean operations;

(iii) A ~-- B 1' C (A +-- B $ C), which shifts B left (right) a distance given
by C; negative distances mean a right (left) shift; when shifting left the vacated
positions are filled with O's, and when shifting right the bits shifted out are discarded;

(iv) A = 0 and A if= 0, predicates for testing whether A is 0 everywhere.

Concerning the complement instruction A + - - ~ B , the entire vector is corn-

200 PRATT AND STOCKMEYER

plemented. Hence, if B is ultimately 0, A will be ultimately 1, and vice versa. Con-
cerning the shift instruction (iii), one must of course specify how the b~t-vector
contents of register C are to be interpreted as a shift distance. Several alternatives
are discussed below. One might also include indirect addressing instructions in
this repertoire. However, Hartmanis and Simon [5] observe that indirect addressing
has, to within a polynomial, no effect on the power of vector machines.

We define a vector machine (program) to be a finite directed graph with one start
vertex and a set of accepting vertices, and with edges each labeled with one assignment
instruction or predicate. Certain registers are designated as input registers. I f a program
mentions m registers, say 31d,~, then a configuration consists of (i) a node of
the graph, and (ii) bit vectors v 1 , vm (which specify the "current" contents of
_/i 1 , A,~). A computation of such a program is a path in the graph, together with
an initial configuration of the machine in which each noninput register contains
the zero vector, such that each predicate on the path is satisfied by the machine
configuration at the moment "control reaches" the edge bearing that predicate.
(This can readily be made more formal.) An accepting computation is a computation
which is a path from the start vertex to an accepting vertex. The time of a computation
is its length. The space of a computation is the maximum, over all configurations
during that computation, of the sum of the lengths of the vectors in the configuration.
A deterministic vector machine is one such that for any vertex and any machine
configuration, only one edge may be followed. (Hence, in a deterministic program
the only vertices with out-degree greater than 1 are those with at most one each
of A = 0 and ~/ =/: 0 leaving it, for some choice of register A.)

By taking the time of a computation to be its length, we have implicitly assigned
unit cost to each instruction (including predicates). This measure, combined with
the lengths to which we allow our vectors to grow, makes our machine an unrealistic
model of conventional binary computers. In the context of current architecture,
its main virtue is that we have nice results for it. However, bearing in mind the
currently plummetting costs of processors, we do not feel it is unrealistic to suggest
that future machines may benefit f rom some of our results. Although our main
theorem is unlikely to yield algorithms of practical interest, our algorithms for matrix
multiplication and transitive closure are well within practical limits, taking about
80" log n instructions to multiply n • n Boolean matrices, using a small number
of vectors each of length exactly n z. Hence, on a machine with megabit vectors,
100 • 100 Boolean matrices may be multiplied using about 560 instructions, only a
fortieth of the number of bits in the inputs!

In the sequel, we take liberties with this programming language. For example,
we write programs in an Algol-like notation, often utilizing "while-loops"; other
bitwise Boolean operations such as v and @ are used. However, it should be obvious
how to translate such constructs into the austere language described above at a cost
of a constant factor in time.

THE POWER OF VECTOR MACHINES 201

When the shift distance in instruction type (iii) is interpreted as a two's complement
binary number, we call the class of machines with just these four types of instructions,
and with no restrictions on their use, the class ~" of (unrestricted) vector machines.
Unfortunately we do not know how to characterize this class, so we will shortly
introduce related (possibly) weaker classes for which we have the characterization
promised in the Introduction.

We consider mainly the acceptance problem rather than the transduction problem.
Since a vector machine receives its input in a register, we only consider languages
which are sets of binary words.

DEFINITION-. Let L C 1 '{0, 1)*, and let F(n) be a function from positive integers
to real numbers. A vector machine V accepts L within time (space) F(n) iff V has
one input register, and for all ~ ~ 1 �9 {0, 1}*:

(1) w ~ L iff there is an accepting computation C of V whose initial configuration
has the bit vector ""000~o in the input register; and

(2) if o~ eL, then there is an accepting computation C as in (1) such that the
time (space) of C does not exceed F([co]).

Remark. I ~] denotes the length of the (finite) word co. In general, if oJ is a finite
binary word, we say that a register contains oJ if the register contains ...000~. We
assume L C 1 - {0, 1}* because a vector machine cannot distinguish among inputs
~o, 0~o, 00co, etc.

We let T M denote the class of nondeterministic Turing machines with two tapes,
one a read-only input tape and the other a read/write work tape. A Turing machine
is given input ~ by writing r162 on the input tape with the work tape entirely blank.
The time of a Turing machine computation is its length; the space of a computation
is the number of squares visited by the head on the work tape. Our definition of
time (space) bounded language acceptance for Turing machines is analogous to
that for vector machines. See [6] for further discussion of Turing machines and their
computations.

DEFINITION. Let c~ denote a class of machines (e.g., Y/" or TM). C~-TIME(F(n))
(c~-SPACE(F(n))) denotes the class of languages L C 1 �9 {0, 1 }* such that some member
of cg accepts L within time (space)F(n).

~D denotes the subclass of deterministic machines in 5 .

In Sections 6-8, we show how vector machines and Turing machines can simulate
one another, keeping careful track of how the resources used by the simulating
machine depend on those used by the simulated machine. However, for the discussion
of Sections 4 and 5, it is convenient to introduce notation which captures the idea

202 PRATT AND STOCKMEYER

of "simulation to within a polynomial." I f cC x and c~ denote classes of machines
and RES 1 and RES 2 each denote either T I M E or SPACE, we say W1-RES1
cgz-RES2 iff there is a positive integer k such that cgl-RESI(F(n)) C r ~)
for all F(n) ~ log n. (For definiteness, all logarithms are taken to the base 2.)

3. VM's AS MODELS OF PARALLELISM

One way to view vector machines is as a model of parallel computation. By mentally
"transposing" the machine and thinking of each bit position, over all vectors, as
forming a small processor, we can consider the four types of instructions as providing
facilities for

(i) initializing parts of the processors,

(ii) computing functions within the processors,

(iii) communicating between processors, and

(iv) testing the states of the processors.

Inasmuch as vector machines have an elegant definition, they form an elegant
model of parallel computation. In our proofs establishing the power of VM's, we
rely primarily on the VM's ability to set up and run exponentially many parallel
processes in a polynomial amount of time.

4. RESTRICTIONS ON V M ' s

We assumed in the definition of the class ~/r that B I" C meant B shifted a distance
given by C interpreted as a binary number. Without further qualifying this assumption
we have not been able to characterize satisfactorily the power of vector machines.
For example, if A initially contains 1, executing A +- A t A n times will yield a
binary number larger than

2

2
2

to height n. Yet for programs that merely accept or reject their input in t steps (as
opposed to those that do transduction) we have no evidence contradicting the pos-
sibility that an arbitrary vector machine could be simulated with at most a polynomial

THE POWER OF VECTOR MACHINES 203

increase in running t ime by a VM using vectors of length at most 2 *. Leaving this
as an interesting open problem, we shall confine our attention in this paper to those
vector machines that, one way or another, keep the length of their vectors to at most
k t after t steps, for some constant k.

One way to guarantee that vectors remain short is simply to forbid computations
in which the vectors grow too large. We shall call the class of vector machines restricted
in this way ~r �9 The definition of this class must also take into account the initial
length of the input vectors.

DEFINITION. A vector machine R belongs to the class "Y~: iff there is a constant
k such that during any computation C of R, the length of the contents of any register
does not exceed k * + n, where t is the length of C, and n = max{] v I] v is the contents
of a register in the initial configuration of C}.

A second way is to forbid the use of data subject to being shifted as data for shift
distances. This can be implemented by distinguishing two types of data, one of
which represents the bit vectors, the other shift distances. In [10] this was achieved
by treating the shift distances as numbers rather than vectors. Only shifts and bit
operations were permitted for the bit vectors, while only + , --, and integer-divide-
by-two were allowed for the numbers. As Hartmanis and Simon [5] point out, this
is a somewhat unusual machine architecture. A cleaner version of the same idea,
adopted here, is to have only bit vectors, rather than a mixture of bit vectors and
numbers, but to retain the distinction between data used for long shifts and data
specifying the shift distance. The latter may only be shifted by plus or minus 1,
the former only by data (interpreted as binary numbers) of the latter type. Both
types of data admit bit-parallel operations, but the two types obviously cannot be
allowed to communicate, except through shifts as just described. (One is tempted
here to speculate about hierarchies of such types; each type may only be shifted
a distance given by a lower type of data. We conjecture that this extension adds
no power, to within a polynomial.) We shall refer to this class of machines as ~ ,
the I indicating the presence of index registers, our term for those registers holding
shift distance data.

DEFINITION. A vector machine is in the class ~f i iff its registers can be partitioned
into two disjoint sets, one set called index registers and the other called vector registers,
such that (i) each Boolean operation in the program involves either only index
registers or only vector registers; and (ii) each shift instruction is of the form
A ~-- B]'~ 1 or I +-- J ~ l, where A and B denote vector registers, and I and J denote
index registers. For language recognition, we require the input register to be a vector
register. (Note that restrictions (i) and (ii) guarantee that the contents of a vector
register are never assigned to an index register.)

204 PRATT AND STOCKMEYER

LEMMA 4.1. l f R ~ r (3r and each input register of R is a vector register, then
R E 3r (ZC~n). In particular,

"F~(D)-TIME(F(n)) C r

Proof. Given R, there is a constant c such that vector length in index (vector)
registers is bounded above by c -~- t (resp., 2 ~+t + n) after t steps, where n is the
length of the longest input. This statement is easily verified by induction on t, and
the result follows. II

The classes $~ and $-~r arc the principal objects of study in this paper. Our main
results arc summarized (using the notation ~) as follows.

(*) TM-SPACE ~ ~qD-T1ME

~/k-TIME

TMD-SPACE

TM-SPACE

(Theorem 6.1)

(Lemma 4.1)

(Theorem 6.2)

(trivial).

Yet a third way to impose an upper bound of k e on vector length is to interpret
the shift distances as unary numbers, say by using the length of the shift distance
data as the distance to be shifted, and its sign as the direction. An interesting variation
on this idea forms the basis for the results of Hartmanis and Simon [5]. Their idea
is to replace shifts by multiplication (of binary numbers). This allows them to shift
vectors left, treating the shift distance data just as though they were unary numbers.
Thev accomplish right shifts by shifting left everything but the item to be shifted
right, which in a machine with indirect addressing will introduce no more than a
factor proportional to the running time and otherwise will introduce only a constant
factor. We shall call this class of machines "WM (for multiplication). Combining our
result that TM-SPACE ~ 3e~D-TIME (Theorem 6.1) with the remarks above,
it is straightforward to prove that TM-SPACE ~ ~r The main result
of Hartmanis and Simon is that the converse also holds; namely, that 3r
TMD-SPACE. Thus,) ~ - T I M E and ~/fMD-TIME also fit into the cycle (*) above.
(By employing the multiplication algorithm of Proposition 5.3, this result that
'r ~ TMD-SPACE is an immediate corollary of our Theorem 6.2.)

One drawback of the multiplication model is that it misleadingly focuses attention
on the arithmetic operations provided, making it appear that the power of the machine
is in some sense a comment on the power of multiplication. As we remarked earlier,
the power really comes from cooperation between the logical and the shift operations;
the arithmetic is just an obscure way of supplying one half of the source of parallelism.
The convolution one normally thinks of as the source of real power in multiplication
turns out not to play any role in the proof that TM-SPACE ~ ~MD-TIME. I f
numeric register machines with multiplication, but without bitwise Boolean operations,

THE POWER OF VECTOR MACHINES 205

were as powerful as vector machines, then it would say something about the power
of arithmetic.

In fact, there is evidence to support the conjecture that the Boolean operations
play an essential role. Let E = 1 �9 ((3, 1}* �9 0 be the set of binary representations
of even positive integers. Let ~/PA be the class of (nondeterministic) register machine
programs containing only instructions to load constants, test for zero, add, subtract,
and multiply. Then we have the following; details will appear in a forthcoming
paper.

THEOREM. I f R E 3r and R accepts E within time T(n), then there is a constant

c ~ 0 such that T(n) ~ cn for all n.

However, it is clear that instructions to load constant 1, bitwise and, and test
for zero are sufficient to accept E within constant time. Also, E can be accepted by a
Tur ing machine within constant space. In particular, Theorem 6.1 (cf. (*)) is not
true with ~t/'A in place of ~/~ID �9

Hartmanis and Simon also suggest using concatenation of the significant digits
of two vectors, e.g., ""00101 concat ' "00110 is ""00101110. I t is not difficult to
see how this could be used similarly to implement shifts. We find this machine more
attractive than the multiplication machine, as it is less misleading.

5. ARITHMETIC

On commercial computers the above repertoire of instructions is by no means
exhaustive. For our purposes, however, we do not need the other instructions (e.g.,
addition and multiplication of binary numbers) as we are concerned with charac-
terizing the power of vector machines only to within polynomial t ime loss, and such
instructions can be simulated with polynomial overhead using the above set. Let
cs denote the class cs augmented by an instruction for binary addition. The results
of this section, together with L e m m a 4.1, establish the following.

THEOREM 5.1

~ + - T I M E ~ Z - T I M E ;

3r ~ 3r

3r ~ YFK-TIME;

each inequality holding also in the deterministic case.

The results of this section are not necessary to the sequel.

206 PRATT AND STOCKMEYER

PROPOSITION 5.1. There is a machine in the class ~r which recognizes negative
vectors within time O(log n), where n is the length of the vector. (A negative bit vector
is ultimately 1, nonnegative ultimately 0.)

Proof. The following procedure leaves X nonzero if and only if X was initially
negative.

I +-- 1; while X =# 0 and ~-~X @ 0 do (X +- X J,I; I +- I j' 1). |

PROPOSITION 5.2. The sum of two nonnegative binary numbers can be computed
on a vector machine in ~/]lD within a number of steps proportional to the logarithm of
the maximum of the lengths of the inputs.

Proof. The following algorithm implements addition using only the operations
^, v, @, ~', and test for zero. We leave to the reader the straightforward task of
verifying its correctness.

G + - A A B ; P + - A v B;

I + - 1 ;

while P @ 0 do

(G +- G v ((G ~'I) A P);

P + - - P A P ~ I ;

I +--2 ~' 1);

A @ B @ (G ~ I) . |

r Generate and propagate info r

r I takes on values 1, 2, 4, 8 r

r Propagate carries through G r

r Spread G left r

r Clear used P to avoid crosstalk r

r Double propagation distance r

It is interesting to note that only monotonic operations were required to compute
the vector G of carries.

COROLLARY 5.1. Negation may be performed in O(log n) steps.

Proof. Combine the fast sign-test algorithm with the identity - -x = (~ x) + 1
for two's complement negation. (We assume two's complement notation for no
especial reason. One's complement notation admits a constant t ime negation algorithm,
since - -x = ,-~x.)

COROLLARY 5.2. Addition of either positive or negative numbers may be performed
in time O(log n) by a machine in ~IID.

PROPOSITION 5.3. Multiplication of nonnegative binary numbers may be performed
by a machine in ~ n within time O(log n), where n is the length of the result.

Proof. Without loss of generality, assume that [A [= [B [---- m = some power

THE POWER OF VECTOR MACHINES 207

of 2, where A and B are the operands to be multiplied. Concatenate m copies of
the 2m low-order digits of .4, calling the result A B. Concatenate 2m copies of the
m low-order digits of B, calling the result B A. Using the method of Section 7.2,
this takes time O(log m). Thinking of B A as a 2m by m matrix stored by rows, transpose
B A (See Section 7.1) and bitwise and the result with A B, calling the result U. Tha t
is, U +- transpose(B A) ^ A B. Imagine that U is structured into m fields, each of
length 2m. The product of A and B is just the sum of the m binary numbers in these m
fields with appropriate displacements; i.e., the number in the ith field (0 ~< i <~ m)
is shifted left i before it is added into the sum.

]t is easy to compute this sum within O(log m) steps on a machine in ~/~ID§ �9 First
construct the mask M = lm*0 "~2. Using M, we mask out the leftmost rn/2 fields
of U and shift these fields right m 2 -- m/2, calling the result V. (The shift m 2 places
them below the rightmost m/2 fields, and the shift --m/2 supplies the displacement
mentioned above.) Execute

u ~ (~ + v) ^ ~ M

so that U now contains m/2 fields. (Since the field width is 2m, there is no interaction
between fields when this addition is performed.) Now shift M right mZ/2, use M to
mask out the leftmost m/4 fields of U, shift these fields right m2/2 -- m/4, perform
the addition, and so on. After log 2 m iterations of this process, the rightmost fieId
of U contains the desired product. This method takes t ime O(log m) on a machine
in ~'~D§ and, therefore, t ime O(log 2 m) on a machine in ~/~D.

To reduce the time to O(log m) for ~//ID, we use the well-known technique of
carry-save addition. Given three binary numbers X, Y, Z, the binary numbers
S ~ X @ Y O Z and C = ((X ^ Y) v (Y A Z) v (Z A X)) I" I, satisfy Sq-C-- - - -
X ~- 7t ~ -~- Z. (On a bi t-by-bit basis, think of S as the sum and C as the carry when
adding three bits together. This instance of unary to binary conversion is called a
full adder.) Given four binary numbers W, X, Y, Z, applying this method twice
allows us to compute S and C such that S + C = W + X + Y + Z. In the multi-
plication procedure just described, replace U and V by Us, Uc, g s , and V c .
The addition U + V at each iteration is replaced by the carry-save operations to
compute a "new" U s and U c from the "o ld" Us, Uc, Vs , and V c . After log S m
iterations, at fixed time per iteration, add Us and Uc by the procedure of Proposi-
tion 5.2 to yield the desired product. |

6. THE CHARACTERIZATION AND CONSEQUENCES

Our main results, which were summarized in (*) in Section 4, are stated as two
theorems.

THEOREM 6.1. TM-SPACE(S(n)) _C (3 ~}D-TIME(c "(S(n) + log n)2).
e>0

208 PRATT AND STOCKMEYER

THEOREM 6.2. 3~K-TIME(T(n)) _C TMD-SPACE(T(n) �9 (T(n) 4- log n)).

Theorems 6.1 and 6.2 are proved in Sections 7 and 8, respectively. First, we examine
some immediate corollaries of these results.

The first corollary shows that, for vector machines in the classes ~ and ~r
nondeterministic time is polynomially related to deterministic time. In particular,
P = N P (cf. [1, 7]) for ~ and ~ .

COROLLARY 6.1. Let T(n) ~ logn.

3~ll-TIME(T(n)) C 0 3r �9
e>o

Proof. Immediate from Theorems 6.1 and 6.2 and Lemma 4.1. |

Remark. By Lemma 4.1, Corollary 6.1 is true with K in place of I. The exponent
4 can possibly be reduced by a direct simulation. If it can be reduced to 2, then,
together with Savitch's [11] result that TM-SPACE(S(n))C TMD-SPACE((S(n))2),
we could say that a deterministic X can accept any set accepted by a nondeterministic
Y, for X, Y6 {space bounded T M) u {time bounded 3r with the bound being
at most squared.

Another corollary follows immediately from Theorem 6.1, since all context-free
languages are in TMB-SPACE(Iog ~ n) [9], and all context-sensitive languages are
in TM-SPACE(n) [8].

COROLLARY 6.2. I f L C 1 �9 {0, 1}* is context-free, then L ~ r �9 log 4 n)
for some c. I f L _C 1 �9 {0, 1}* is context-sensitive, then L e ~IID-TIME(c �9 n 2) for some c.

An interesting question is the relationship between the time required to perform
a computation in a deterministic serial fashion and the time required by an un-
bounded parallel method. Can one always obtain a "polynomial in log" time
improvement by going from serial to parallel computation ? If we equate vector
machines with parallel computation, then this question is equivalent to an open
question concerning the "time-storage trade-off" relation [2] for Turing machines.

COROLLARY 6.3. The following statements are equivalent.

(1) There is a k such that for all T(n) >~ n,

TMD-TIME(T(n)) C 1,) $~D-TIME(c -(log T(n))~).
c>O

(2) There is a k such that for all T(n) ~ n,

TMD-TIME(T(n)) C_ TMD- SPACE((log T(n))~).

Cook [2] has conjectured that (2) is false, even if T(n) is restricted to be a polynomial.

THE POWER OF VECTOR MACHINES 209

7. PROOF OF THEOREM 6.1

The proof of Theorem 6.1 proceeds by four main steps. First, we show that a
vector machine in the class ~]m can transpose a Boolean matrix within time propor-
tional to the logarithm of its size. Given this transposition procedure, it is easy to
compute the product of m • m Boolean matrices within time O(log m). This matrix
multiplication procedure is then used to compute the transitive closure of an m • m
Boolean matrix within time O(log 2 m). Finally, a vector machine in ~ D simulates
a space S(n) bounded Tur ing machine M by first constructing the one-step transition
matrix for instantaneous descriptions (i.d.'s) of M, and then computing the transitive
closure of this matrix. A space S(n) bounded computation of M on an input of length n
can involve at most m = n " c s~n) different i.d.'s for some constant c. Since the transi-
tion matrix is m • m, the transitive closure computation takes time O((S(n) + log n)2).

In the vector machine programs described in this section, we let U, V,..., Z
(possibly subscripted) denote vector registers, and L Jr, K, P, Q denote index
registers.

Since index registers are used primarily to hold shift distances, comprehension
of the programs is enhanced by thinking of index registers as containing integers
(rather than binary representations). Recall that the operations 1 i' 1 and I $1 perform
on integers the operations 2 I and [I/2J, respectively. Vector registers should be
viewed as containing binary words. I f ~o is a word and m is a positive integer, oJ ~
denotes the word ~ococo'.-w (m times). We consistently denote integers (words) by
lowercase Roman (Greek) letters.

7.1. 3/Iatrix Transposition

Throughout this paper the Boolean matrices we deal with each reside in a single
vector. As such, they appear as one-dimensional matrices A (vectors) with elements a i .
However, we shall interpret them as n-dimensional tin-1 • dn-2 • "'" • dl X do
matrices by decomposing i as ('..(i~_id~_2 + i~_~) dn-a + "") do + io, where 0
i~- < dj for each j. This is exactly how n-dimensional arrays are mapped by compilers
into linear storage. Furthermore, we shall insist that the dimensions dj always be
a power of 2; then if i is written in binary notation, its decomposition amounts to
no more than the identification of n "fields" (contiguous substrings) of i whose
concatenation yields i. We write

a i ~ a i n _ l i n _ 2 . . . i l i o .

The transpose of A about coordinates p and q, written T~q(A), is a dn-1 • dn-2 •
�9 ". • dq+l • dv x dq_ 1 • "'" • d~+ 1 x dq x d~_a x "'" • d o matrix A' satisfying

a~ n .] . . . i q~ l i p iq_ l . , . i p+ l iq lp_ l . , . i 0 ~ - a i n 1 . . . iq~ l iq iq_ l . .* ip+l ip ip_ l . . . io �9

210 PRATT AND STOCKMEYER

That is, coordinates p and q (p < q) have been interchanged. I f n -- 2, this yields
the usual definition of the transpose A r, namely, ajri = alj �9 Thus, given

A = f g ,

where a-h denote O's and l's, we have

A T ~

As bit vectors, these quantities are abcdefgh and aebfcgdh, respectively, which are
moderately complicated permutations of each other. Our objective is to perform
these permutations in time O (~ 5 log dj).

We implement, in constant time, the primitive operation of transposition about
r coordinates each of size 2. That is, we show how to compute a i, = a i , where i '

in binary is i with two bits interchanged. Once we can transpose individual bits
of i, it is easy to see how whole blocks of bits can be transposed, in time proportional
to the number of affected bits. We remind the reader of the algorithm for exchanging
arbitrary-sized blocks fl~ and fl~ of data (in our case blocks of bits) using the identity

" "]~o--l~q]~o+l " ' " ~ q - - l ~ o ~ q + l ] ~ _ 1 (] ~ R (~ + I . . . ~ q _ l) R ~qR)R ~q+l"" ",

and point out that reversing a block of n items takes [n/2] transpositions of pairs
of items. Hence, transposing a matrix can be clone in time proportional to the number
of bits between and including the transposed bits in the binary representation of
the index. In the applications to follow, the matrices are cubes (all dimensions of
equal size), which simplifies transposition of blocks; it suffices to move two pointers
through the two blocks in parallel, transposing a pair of bits at each step. The bits
lying between the blocks need not be touched.

Having shown how to apply the index-bit-transposer, we turn now to its imple-
mentation. Consider the transposition about coordinates 0 and 2 of the 2 • 2 • 2
cube Z whose linear representation is abcdefgh, with a = z m , b = Zll 0 g = z001 ,
h = z000, where the indices of z are in binary. The transposition is aecgbfdh. If
we look in Fig. 1 at what moved where, we observe three types of motion: (i) no
motion; (ii) motion right three positions; (iii) motion left three positions.

In case (i), the stationary bits were, not surprisingly, those with bits 2 and 0 (the
two bits at either end) the same, namely, 111, 101, 010, and 000, corresponding
to a, c, f, and h, respectively. In case (ii), with b = .~11o and d = Zloo, the bits were
1 and O, respectively, while in case (iii) they were 0 and 1, respectively. Interchanging

THE POWER OF VECTOR MACHINES 211

these bits gave rise to a left translation of 2 0 - - 2 2 bits for (ii) and 2 z - - 2 0 bits for
(iii). I t should be clear that these three cases are all we need to consider in general.
Hence the implementat ion separates the matrix into three components, shifts two
components, then reassembles them. I f bits p and q are to be transposed, the shift
distances are ~:(2 v - - 2q).

0

Fm. 1.

b c d e f g h

X ' ,J

e c g b f d h

The transpose T02 of the 2 • 2 • 2 cube.

This leaves only the problem of separating the components. We introduce masks
/*z.j for l ~ 1 and 0 ~< j < l;/,~,~ is that binary word of length 2 ~ whose ith bi t is 1
just when t h e j t h bit of i is 1. Hence,

/~t,o = "'10101010,

/ ~ z a = "'" 1 1 0 0 1 1 0 0 ,

b~z,2 = ""11110000, etc.

(I t is no coincidence that the columns are consecutive binary numbers.) I f A is a vector
of length 2 ~, then A ^ (/*z,~ ~ / % 0) is the stationary component, A A (/&9 ^ ~/h ,q)
moves left 2 q - - 2" positions, and A n (~ /h .~ A tZZ,q) moves left 2 p - - 2 q positions.

Note that/z~,~_ 1 can be constructed in l - - l iterations of

X +-- ((X ~ I) v X) ~ I ; I + - 1 I' 1, (1)

where X is initially 10 and I is initially 1. Any other tzt.j (0 <~ j < l) may then be
produced using the identity

m,J-a = m,J @ (m,j 4 2J-1). (2)

We can combine all of the above into the following procedure for transposing
coordinates p and q, where d~ = dq = m = some power of 2. The parameters
P and Q to the procedure are powers of 2 that identify the leftmost bits of the respective
blocks; that is, if block p ' s leftmost bit is x, then P contains 2 ~, and similarly for Q.
The parameter M initially contains m, and L contains the length of the vector A
being transposed (- -mn if A is an n-dimensional cube).

57I/I2/2-6

212 PRATT AND STOCKMEYER

Transpose (P, Q, L, M) :

Y ~-- fflog L.log p ; Z +--/Zlog L.log 0 ; r Construct masks using (1) and (2) r

do log 2 M times r Count by halving M each time r

(A ~ - - A A (Y ~ Z) v ((A ^ Y A ~ Z) ~ Q) ~ P v ((A A ~ Y A Z) ~ P) ~ Q ;

P ~-- P ~ 1 ; Q +- Q ~ 1 ; r Move pointers right r

Y +- Y @ (Y $ P) ; r Next mask, cf. (2) r

Z ~-- Z ~) (Z $ Q)).

Note that we keep only two masks in storage at a time. The procedure Transpose
(P, Q, L, M) runs within time O(n" log m). (In subsequent applications of this proce-
dure, we always have n ~ 3.)

7.2. Mult iplying Boolean Matrices

Given m • m Boolean matrices A and B, the objective is to compute C satisfying

ci~ - - V (ai~ A bt~j).
k

We assume that A and B are stored initially in two vector registers, and that m
(= a power of 2) is available in an index register. We shall accomplish the "A," for
all triples i, j , k, in one operation, and the " v " in O(log2 m) operations. Clearly,
at least m a bits must participate if the m 3 and's are all to be done at once. This is
done by expanding each of A and B to m • m • m matrices (i.e., vectors of length m 3)
A ' and B ' satisfying

a'~,:~ : aik , b~i ~ = bk~.

Then C' : A ' ^ B ' contains all the products necessary to form C.
We now show how to carry out this expansion. Let A" denote an m X m • m

matrix satisfying

a~, k : a i ~ .

Since (from the vector viewpoint) A" is just m copies of .4 concatenated together,
,4" can be formed in log2m iterations of (A + - - A v (A ~ I) ; I + - - I ~ l) , with I
initially m 2. We may now form A ' from A" by transposing about 0 and 2, so that

a~ij = a'fik : a ik ,

as desired. Similarly, form B" satisfying

bi% -- bkj

THE POWER OF VECTOR MACHINES 213

and transpose about 1 and 2, so that, as desired,

b~ij : - b~'k~ = bkj.

Hence, we can form C' as To2(A") ^ T12(B"), in O(log m) operations.
T h e desired product C = AB can now be computed by oring together the m

blocks of length m 2 that comprise C', thereby implementing "Vff ' . The following
suffices, and it, too, takes O(log m) steps.

f 4--- /n 3,

do log 2 m times (f ~-- I ~ 1; C ' + - C ' v (C' ~I)); C +- C ' ^ 1 m2.

Therefore, the product C can be computed in O(log m) steps. (The computation
of m 2 and m 3 causes no problem here, because powers of 2 can trivially be multiplied
within t ime proportional to the logarithms of their magnitudes; to wit, successively
halve one multiplicand while doubling the other, until the former becomes 1. In
the sequel, we implicitly use this ability to multiply powers of 2 in logarithmic time.)

7.3. Transitive Closure

I f A is an m • m Boolean matrix, the transitive closure of A is defined by

A* : E v A v A 2 v A 3 v . ' ' ,

where E denotes the m • m identity matrix. I t is easy to see that also A* = (A v E) m.
A vector machine in the class ~/]ID can compute A* within t ime O(log ~ m) by suc-
cessively squaring the matrix (A v E) log 2 m times, using the matrix multiplication
procedure just described in Section 7.2. (Since the vector representation of E is
(0ml)% it should be clear that E can be constructed in O(log m) steps.)

7.4. Completion of the Proof

Let M be a nondeterministic Tur ing machine which accepts a language L within
space S(n). Without loss of generality we can assume that M ' s work tape is one-way
infinite to the left, M never moves the work head off the right end of the work tape
nor moves the input head outside the area delimited by the endmarkers r on the
input tape, and M can accept an input only by entering a unique designated accepting
state with the work tape entirely blank and both heads scanning the rightmost squares
of their respective tapes. The necessary modifications to M are straightforward;
see, for example, [6].

As mentioned earlier, the vector machine which simulates M first constructs
the one-step transition matrix for i.d. 's of M. Our formalization of i.d.'s is the
following. Say M has states Q and tape alphabet F. For positive integer n, let s' be
the least power of 2 such that s' ~ S(n) -[- 1, and define an n-i.d, of M to be a word ~/~-,

214 PRATT AND STOCKMEYER

where 1- 6 F * �9 F �9 Q - F* , [T] = S', ~ e 0* " 1 " 0", and] 7/ I = n + 2. Suppose M
is given inpu t to c 1 �9 {0, 1}*, where n =] to l; write r162 = oJ,~ lto~'"to2tolto0 �9 T h e n
the n-i .d. 3 = 0 ~ ~+llO~rlqrz, where rl~- 2 E F* , q ~Q, and 0 ~< l ~ n -}- 1, describes
the s i tuat ion where M is in state q, *V2 is wri t ten on the work tape, the work head
is scanning the r ightmost symbol of 7 a , and the input head is scanning to~.

I n particular, 0~+~l#~'-~q0 (0n+l l#~ ' -aq ,) is the un ique initial (accepting) n-i.d. ,
where q0 (q,) is the init ial (accepting) state and # denotes the b lank tape symbol in F.

Let N e x t i denote the one-step t rans i t ion relat ion defined on i .d. 's of M. I f 3
and 3' are n- i .d . ' s and to is an inpu t of length n, then Nex t / (to , 3, 3') iff 8 can reach
3' by one step in a computa t ion of M on inpu t to.

We next define b inary words 7~, some of which serve to code n- i .d . ' s of M. Let
Z' -= Q u F, let b be the least power of 2 such that 20 >~ card(27), and choose a one-
to-one map h: 2J - ~ {0, 1} ~. Extend the domain of h to 27* in the obvious way. Now
fix a part icular n, let s' be as above, and let s = bs', m' = 2 ~, n' = the least power
of 2 such that n ') n -? 2, and m = m'n'. For 0 ~< z ~< m' - - 1, let p~ ~{0, 1} ~
be a b inary representat ion of z (possibly wi th leading zeros to make]p~] = s).
For 0 -<.. 1 <~ n' - - 1, let /~z = 0 n ' - t - l l 0 t . T h e b inary words 7J, 0 ~< j ~ m - - 1,
of length m are now defined as follows. Wri te j = n ' z + l, where 0 ~< l ~< n ' - - 1
and 0 ~ z ~ m' - - 1, and define 7~ = 0~-~ '-~t~p ~ . (Thus , 7J also depends on n;
we rely on context to specify n.)

I f 8 = ~ is an n-i .d, of M as above, then we say that 79 codes 3 iff ~/- h(r) is a suffix
of 75 �9 I t is obvious that each n-i .d, is coded by some 75, and that each 75 codes at
most one n-i .d.

We now describe the operat ion of a determinis t ic vector machine R ~ ~/}m which
accepts L wi thin t ime O((S(n) + log n)~). (In the remainder of the proof, the constant
implici t in the " O - n o t a t i o n " depends on M , b u t no t on the inpu t ~o.) Let W denote
the inpu t register, and assume R receives inpu t to. Le t n = [to [. For the present,
it is convenien t to assume that R init ially receives also the integer s' (defined above)
in some index register. Th i s assumpt ion will later be removed. G iven s', the other
integers s, m', n', and m defined above can now be computed in index registers wi th in
t ime O(S(n) + log n), as the reader can easily verify. For example, n ' is computed
in register I by

1 + - 2 ; while (W] ' 2) $ I r do I + - I ' ~ l .

T h e first goal of R is to construct an m • m • m Boolean matr ix /1 such that
for all i a n d j with 0 ~ i , j ~ m - - 1, i fT i codes an n-i .d. 3, then aij 0 = 1 iffT~ codes
an n-i .d. 8' such that Nextm(to , 3, 3'). I f 7i does not code an n-i .d. , or if k =/= 0, then
the value of ai57,, is un impor tan t . Thus , R first constructs words

vr = (7 , ._1) '~(7 , ,~_~) (7 1) . , (7 0) m

THE POWER OF VECTOR MACHINES 215

and

vc ~ (Y~-l~m-2 "'" YlY0) m-

These words are useful for computing all ai~o in parallel, v~ and v c can be divided
into contiguous segments of length m such that, for all i and j, a copy of Yi appears
in v r and a copy of y~ appears in v c , both in the segment whose rightmost bit occupies
position m2i + mj, which is the position aiJo is eventually to occupy.

We first describe the macro dup, which is useful both in constructing these words
and in subsequent procedures. I f X contains the binary word fl, and L and K contain
integers l and k where k is a power of 2, then dup(X, L, K) halts within time O(log k)

Vk-1 with i=0 (fl ~ il) stored in X.

dup(X,L, K): while K > 1 do

(X +- X v (X tL) ;

L + - L t l ;

K + - K $ I) .

The following procedure layout is used to construct both v,. and v c . Layout(V, l)
constructs

= ~,,_lO*-"~m_~O ~ y~Ol-~ylOl-,~y 0

in register V within t ime O(log m + log l), where the integer l, l / > m, is available
initially in some index register. Layou t first constructs

p , lOn,~-~p ,_~O ~,~-s ... plOn'~-~po

in register V by the following.

V + - O ; I + - n ' l ; Z + - 1 ~I;

do loge m' times

(V +- (V ,, (V 1"1)) v Z;

z +- ((z ~ (z ~ I)) ~ I) ~ l;

I , - - I r 1).

Executing dup(V, l, n') now gives (O~--spm,_a)~" "'" (OZ-Spl)~'(Ot-~po)n' in V. Layou t
next constructs

(O~-~'t~ ,_~O~-,," ... tLiO~-~'t~o)~"

216 PRATT AND STOCKMEYER

in register X by

X + - - 1;

dup(X, l + 1, n');

dup(X, n'l, m') .

Finally, V + - V v (X 1" s) gives the desired word a in V.
Now v r is constructed in V 1 by executing (layout(Vx, m2); dup(V1, m, m)). v c is

constructed in V 2 by (layout(V 2 , m); dup(V2, m ~, m)). Thus, v r and v c can be con-
structed within t ime O(log m), that is, t ime O (S (n) + log n).

R must now compute the a~ o . An exact description of this process is unnecessarily
tedious. Our purpose is only to outline the general details sufficiently to allow the
reader to construct the remainder easily. First execute:

Vo.*-- W f (s + 1);

dup(Vo, m, m2).

This has the effect of constructing, for each Yi in l/1 , a copy of the input "oppos i te"
the part of ~i which codes the position of the input head. For example, Fig. 2 shows

V0: 0 "'" 0 0 0 oJn �9 w~ o~2 % 0 0 "'" 0 0 0

VI: 0 "'" 0 0 0 0 "'" 0 0 1 0 "'" 0 0 0 c, "" c3 c2 Cx

V2: 0 "'" 0 0 0 0 "'" 0 1 0 0 "'" 0 0 0 c~" "'" c3' c (el'

Va: 0 "'" 0 0 1 0 "'" 0 0 0 0 "" 0 0 1 0 "'" 0 0 0

FIG. 2. Segment0.

the segment of Vo, V1, and V2 in which 7i ~ appears in V 1 and 7Jo appears in V z ,

for a particular i o and Jo, (cf. the definition of vr and v c above). In Fig. 2, w =
co,~ ... oJ2w 1 is the input, and)qo = 0 " " 0 0 1 0 u and Y~o = O ' " O 0 1 0 v G ' " ' c 2 ' q "
where c ~ , c (E { 0 , 1} for 1 ~ k ~< s.

T o simplify the discussion, we concentrate attention on this segment (henceforth
�9 called segment0). The process we describe for computing aid00 in segment 0 is actually

being performed in parallel on all segments to compute all the ai~o.
Figure 2 also shows segment o of register V3 which contains (0m-8-n-210~100 m~.

The following program constructs this word within t ime O(log m).

Vs+-- W t 1;

dup (V a , - -1 , n'); r V a contains 1 '~+1 r

/73 + - V3 @ (V3 ~ 1); r Vs contains 10~1 r

dup(V a 1' s, m, m2).

THE POWER OF VECTOR MACHINES 217

The next goal is to compute bits which determine the input symbol scanned by
(the n-i.d, coded by) 7 q , and the direction the input head moved in going from ~,i0
to YJ0' and then to spread these bits over the rightmost s bits in segment 0 . Let d
be the least power of 2 such that d ~ s 4- n'. Execute:

Vo +- Vo ^ V1;

v . ~ v~ ^ v1;

dup(Vo, --1, d);

dup(V3, -- 1, d).

The effect here is to spread l ' s over the rightmost s bits of segment o in V o (resp., V3)
iff co, = 1 (resp., co, = r (See Fig. 2.)

To compute bits for the input head motion, construct (lm-S0s) m2 in register Z and
execute:

v , , - (v~ ~, 1) ^ v ~ ^ z ;

Vs ~-- VI ^ V2 ^ Z;

v~ +- v~ ^ (v~ ~ 1) ^ z;

followed by d u p (V ~ , - - 1 , d) for k = 4, 5, 6. This spreads l ' s across V4 (resp.,
V 5 ,Ve) i f f l ' = l - - l (r e s p . , l ' = l , l ' = l q - l) .

Now assume that 7q codes an n-i.d. 3 of M. The rightmost s bits of segment 0
contain all the information required to determine if 7~0 codes an n-i.d. 3' such that
NextM(co , 3, 3'). I t is easy to see that, given the input symbol and the input head
shift information, each neighborhood of three symbols ala2a z ~ Z '3 in an n-i.d. 3
determines a set NM(alO'2(r3) C S 3 such that s o m e O'1'Ot2'O'3 t e NM(aaCr2a3) must occupy
the same neighborhood in any n-i.d. 3' which follows in one step from 3. (See, for
example, [14].) R can thus examine each such neighborhood in V 0 - - V6, and deter-
mine whether the neighborhood is consistent with a legal move of M. This information
is collected at the rightmost bit of segment 0 to constitute aqJ00. This process can
clearly be performed within O(s), that is, O(S(n)) steps (in fact, O(log s) steps are
sufficient), and can be done in parallel for all segments to compute all the ai~ 0 . We
let the reader supply any further details required to convince himself that the transition
matrix .4 can be computed within time O(S(n) 4- log n).

By two applications of the transposition procedure, followed by an appropriate
mask, we can construct within O(log m) steps an m • m matrix B satisfying bii = aij 0 .
Now R calls the transitive closure procedure of Section 7.3 which computes B*
within O(log 2 m), that is, O((S(n) -q- log n) 2) steps. I f integers e and f are such that
7% (~'f) codes the initial (accepting) n-i.d, of M, then M accepts w iff b~* I = 1. It is
not hard to see that e and f, and then me 4-f, can be computed within O(log m)

218 PRATT AND STOCKMEYER

steps. The bit b~*j can thus be extracted and tested. This completes the description
of R under the assumption that s' is available initially.

I f s' is not available, then R runs the entire procedure described above, with s'
taking on successive powers of two, until it is discovered that M accepts the input.
The first at tempted value of s' should be l = 2 fl~176 (which can be computed
in O(log n) steps). I f M does accept the input of length n, then R will discover this
fact when s ' = l - 2 u, where u = [l og ((S (n)+ 1)/logn)]. I t follows that, when
computing on accepted inputs of length n, R runs within t ime

c" (l . 2 ~ + log n) 2 ~ c' �9 (S(n) + logn) ~
k=0

for constants c and c' independent of n. (Recall that l = O(log n).) Th is completes
the proof of Theorem 6.1.

Remark. The vector machine R above accepts L within space O(m3), that is, space
O(n3d s~)) for some constant d depending on M. The time bound O((S(n) + log n) ~)
still holds if R ' s shift distances are restricted to be powers of 2.

8. PROOF OF THEOREM 6.2

Let R be a nondeterministic vector machine in the class Y/K which accepts a language
L within time T(n). Assume the registers appearing in R 's program are labeled
Vo, 1/'1 V,~ for some m; say V 0 is the input register. Let c be the constant such
that vector length does not exceed c ~ + n after t steps, where n is the input length.

We describe the operation of a deterministic Tur ing machine M which accepts
L within space a �9 T(n) ' (T(n) + log n) for some constant a. By the classical constant
factor "speedup" result [13], M can be modified to operate within space T(n)"
(T(n) + log n). For the moment, it is convenient to assume that T(n) is tape con-
structable (cf. [6]); that is, given any input of length n, M can first delimit a block
of T(n) tape squares.

Within space T(n), M can store a "choice sequence," which is a list of decisions
made by R at each of its T(n) steps. More precisely, a choice sequence is a word
in (1, 2, 3,..., d)* of length T(n), where d is the outdegree of R ' s graph (program).
I f the edges directed out of each vertex are given unique labels from {1, 2, 3 d},
then a choice sequence specifies, in the obvious way, a path through the graph starting
at the designated start vertex. Thus M ' s outer loop cycles through all possible choice
sequences in lexicographic order, which disposes of the issue of nondeterminism
for R.

For each choice sequence, M attempts to make progress through R ' s graph (program)
by following the specified path. While following a particular path, M keeps a counter t

THE POWER OF VECTOR MACHINES 219

then return

(3) if
constant;

equal to the number of edges followed thus far along the path. As M progresses
along a path, M processes the instructions encountered on the edges as follows.

An instruction which changes the contents of a register (i.e., instruction types
(i)-(iii) in Section 2) is not executed but is recorded on the work tape together with
the current value of t.

I f a predicate is encountered, it must be evaluated to determine whether M should
continue following this choice sequence or cycle to the next one. Predicates are
evaluated with the help of a procedure find(b, i, t) which returns the bth bit of the
contents of register V i at step t, for 0 ~ b ~ c r(n~ + n, 0 ~ i ~ m, and 0 ~ t
T(n). T o test whether or not Vi ----- 0 at step t, it suffices to compute find(b, i, t)
for 0 ~ b ~ c ~ + n. The recursive procedure f ind is as follows.

Find(b, i, t):

(1) I f t = 0, then return (if i = 0 then the bth symbol of the input else 0);

(2) if the instruction recorded at step t does not change the contents of V i ,
find(b, i, t - - 1);

" V ~ + - c o n s t a n t " is recorded at step t then return the bth bit of the

(4) if "Vi +-- V~ @ V~" is recorded at step t, where @ denotes a Boolean
operation, then return (find(b, j, t) @ find(b, k, t));

(5) if "Vi ~ - V~ t Vfl' is recorded at step t then:

(5.1) let B = d + n, and calculate the length I of the contents of Vk at
step t by:

I ~ - - l ' ~ - - 0 ;

w h i l e l ' ~ B - - 1 do

(if find(l', k, t) ~ find(l' + 1, k, t) then l ~ - l ' + l; l ' ~-- l ' + 1);

(5.2) if l > 1 + I o g B then return find(B, j, t) (note that i f l > 1 + l o g B ,
then V k contains an integer z with]z I ~ B. I f z ~ 0, then fnd (B , j , t) is clearly
the correct result. I f z ~ 0, then Vj. must be identically zero, and this is again correct);

(5.3) let s = find(/, k, t), let z denote the integer with binary representation
�9 "sss f i nd (/ - - 1, k, t) find(l - - 2, k, t) ... find(0, k, t), and

l find(b - - z, j , t) if 0 ~ b - - z < B ,
return find(B, j, t) if b - - z ~ B ,

0 if b - - z d 0 .

This completes the description of M. I t remains only to observe that M operates
within space O(T(n) �9 (T(n) + log n)). First, space O(T(n) �9 log T(n)) is sufficient to
record all integers t, 0 ~ t ~ T(n), in binary, together with the instructions executed

220 PRATT AND STOCKMEYER

at these steps. To bound the space used by find, first note that each variable, e.g.,
B, b, t, l, z, can be represented in binary within space O(log B). In the obvious stack
implementation of find, each stack frame thus occupies space O(T(n) + log n). Stack
depth is bounded above by T(n), whence the bound O(T(n) . (T (n) -q - logn)) . If
T(n) is not tape constructable, then, as in [11], M attempts the above procedure
using k tape squares for k = 1, 2, 3,..., until it is discovered that R accepts the input.
This completes the proof of Theorem 6.2.

Remark. (Generalization to transduction.) Both Theorems 6.1 and 6.2 can be
generalized (at least in spirit) to the transduction problem, i.e., the problem of com-
puting a total function f : 1 �9 {0, 1}* --~ 1 - {0, 1}*. A deterministic vector machine R
computes f within time T(n) if, for all ~, when started with oJ in an input register,
R halts within T([co]) steps with f(eo) in a designated output register. A Turing
machine is given a separate output tape scanned by a one-way write-only head;
the space of a computation is counted only on the work tape. We consider only
deterministic machines for transduction problems.

The proof of Theorem 6.2 generalizes easily to the transduction problem. When
M discovers that R has halted, M simply uses f ind to produce in order the bits of
the output register.

The basic outline of the proof of Theorem 6.1 carries over to the transduction
problem, although the details are more involved. The t-step transition matrix A ~o
for a deterministic Turing machine M now has a binary word at in the (i,./')-position
iff the ith i.d. of M can reach t h e j t h i.d. in exactly t steps while producing e~ on the
output tape. It is clear how to define multiplication of such matrices so that A ~o =
A") �9 A"I; however, the implementation of this multiplication is slightly more involved
than before because A "~ may contain words of varying lengths. I t is possible, however,
to carry out such multiplication on a VM within time O(loga m) which gives time
O(log a m) for the analog of transitive closure. Using this method, the exponent 2
in Theorem 6. I becomes 3 for transduction.

ACKNOWLEDGMENTS

Michael J. Fischer and Michael O. Rabin were a source of helpful ideas. E. Gilbert suggested
a simplification of our addition algorithm.

REFERENCES

1. S. A. CooK, The complexity of theorem proving procedures, in "Proceedings of the Third
Annual ACM Symposium on the Theory of Computing" (1971), pp. 151-158.

2. S. A. COOK, An observation on time-storage trade off, J. Comput. System Sei. 9 (1974),
308-316.

THE POWER OF VECTOR MACHINES 221

3. S. A. COOK AND R. A. Recrmow, Time bounded random access machines,]. Comput.
System Sei. 7 (1973), 354--375.

4. J. HARTMANm, Computational complexity of random access stored program machines,
Math. Systems Theory 5 (1971), 232-245.

5. J. HAVTMANtS AND J. SIMON, On the power of multiplication in random access machines, in
"Proceedings of the Fifteenth Annual Symposium on Switching and Automata Theory"
(1974), pp. 13-23.

6. J. E. HOPCROFT AND J. D. ULLMAN, "Formal Languages and Their Relation to Automata,"
Addison-Wesley, Reading, Mass., 1969.

7. R. M. KARV, Reducibility among combinatorial problems, in "Complexity of Computer
Computat ions" (R. E. Miller and J. W. Thatcher, Eds.), pp. 85-104, Plenum Press, New
York, 1972.

8. S. Y. KUROD/~, Classes of languages and linear-bounded automata, Information and Control
7 (1964), 207-223.

9. P. M. LEwis II, R. E. STEARNS, AND J. HARTMANIS, Memory bounds for recognition of
context-free and context-sensitive languages, IEEE Conf. Rec. Switching Circuit Theory
Logical Design (1965), 191-202.

10. V. R. PRATT, M. O. RAVIN, AND L. J. STOCKMEYER, A characterization of the power of
vector machines, in "Proceedings of the Sixth Annual ACM Symposium on the Theory of
Computing" (1974), pp. 122-134.

11. W. J. SAVITCH, Relationships between nondeterministic and deterministic tape com-
plexities, J. Comput. System Sci. 4 (1970), 177-192.

12. J. C. SHEPHERDSON AND H. E. STtm~IS, Computability of recursive functions, J. Assoc.
Comput. Mach. 10 (1963), 217-255.

13. R. E. STEARNS, J. HARTMANIS, AND P. M. LEwis II, Hierarchies of memory limited com-
putations, 1EEE Conf. Rec. Switching Circuit Theory Logical Design (1965), 179-190.

14. L. J. STOCKMEYER AND A. R. MEYER, Word problems requiring exponential time, in "Pro-
ceedings of the Fifth Annual A C M Symposium on the Theory of Computing" (1973),
pp. 1-9.

