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Let C = {a,, a2, . . . . a,} be an alphabet and let LcZ* be the commutative image of FP* 
where F and P are finite subsets of Z*. If, for any permutation c of { 1,2, . . . . n}, 

L n a&) a%, is context-free, then L is context-free. This theorem provides a solution to the 
Fliess conjecture in a restricted case. If the result could be extended to finite unions of the FP* 
above, the Fliess conjecture could be solved. 0 1987 Academic Press, Inc. 

1. INTRODUCTION 

One of the goals of formal language theory is to discover properties of families of 
languages, that is, properties that each member of the family will have. Two exam- 
ples of such structural properties in the context-free languages are: the semilinearity 
of languages under the Parikh mapping and the pairwise iteration of substrings in 
words as described by the pumping lemma. It has been shown that languages that 
do not have these properties are not context-free. 

In this paper we are concerned with structural characteristics of the family of 
commutative context-free languages. The general problem, known as the Fliess con- 
jecture, has been open since 1970 Cl]. The conjecture is: given a commutative 
language L over the alphabet Z= (a,, u2, . . . . an}, for every permutation 0 of 
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1, 2, . ..) n, if L n u~~lp~~2~f~~ a&, is context-free, then L is context-free. The problem 
has been solved for alphabets with one, two, or three letters [S, 6, S]; it remains 
unresolved for alphabets of four or more letters. Note that the hypothesis implies 
that L has a semilinear Parihk’s image L = corn(L) = com(F, P: u . . . u F, P)‘), 
where I;i’s and Pi’s are finite subsets of C*. In the present paper, we solve the 
problem for an arbitrary alphabet, with the supplementary assumption that 
L = com(FP*), F and P finite. 

2. PRELIMINARIES 

We assume the reader to be familiar with the fundamental notions of formal 
languages theory, as they can be found in [2,3 or 41. The notation we shall use is 
that if C is a finite alphabet, C* is the free monoid generated by C with the empty 
word e. We will write a* instead of {u} *, for a in C, and C+ is Z* - {e). For a 
word w in Z*, IwI is the length of w, and for a in Z, 1 WI, the number of occurrences 
of a in w, alph(w) is the subset of letters in C appearing in w. A language L c C* is 
bounded if there are words w,, w2, . . . . wk such that L c w:w: . . . wz. Let 
a= (a,, a2, . . . . a,), the mapping Y, or Y, if the alphabet is understood, is a 
function from C* to N” is defined by Y(w) = (Iw( (I,r ,,,_ ) w( .,). Let Y(L) = 
{ Y(w) I w E L}. Y is called a Parikh mapping. Another useful function is f,, which 
maps members of N” to C*, where f,(ii, iZ, . . . . i,) = U;IU~ . . . u$. 

For w in C* and P contained in C* we will write WP instead of {w} P. Corn(w) is 
the set of all permutations of symbols in w, while corn(P) is the commutatioe closure 
of P; that is, corn(P)= {corn(w) ( WEP). A set of the form {cc,,+n,a,+ ... + 
n,a, ) nj>O for 1 <j< m}, where aO, . . . . a,,, are elements of N”, is a linear subset of 
N”, denoted L(a,, {a,, . . . . a,}). A semilinear set is a finite union of linear sets. It is 
known that Y(L) is semilinear for any context-free language L (Parikh’s theorem) 
[7]. A subset X of N” is said to be stratified if the following two conditions are 
satisfied: (i) each element in X has at most two nonzero coordinates; (ii) there are 
no integers i, j, k, m, and x = (x,, . . . . x,) and x’ = (x;, . . . . xh) in X such that 1 d i < 
j < k <m < n and xixjxkxh # 0. The symbol $ is used for the shuffle operator. The 
notation concerning pushdown automata, their moves and their computations, is 
quite similar to that in the literature. 

In order to prove our results, three lemmas from [2] are required. These are 
stated below for future reference. 

LEMMA A. Let C= {a,,~,, . . . . a,} unda= (a,,~,, . . . . a,). Zf Wcu:a~...u~ is 
a context-free language, then f;'(W) is a finite union of linear sets, each with a 
stratified set of periods. 

LEMMA B. Let L(c; {q}) and L(d; S) be linear sets of N” such that L(c; {q})n 
L(d; S) is infinite. Then there exists a positive integer k such that kq in L(0; S). 

LEMMA C. Zf X and Y are linear subsets of N”, then X n Y is semilinear and 
effectively calculable from X and Y. 
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3. RESULTS 

Our problem can be stated more simply using the notion of a B-CF language. 

DEFINITION. A language L over the alphabet Z= {a,, a,, . . . . a,} is said to be a 
B-CF language if and only if for every permutation z of [ 1, n], L n a:(,) . . . atn, is a 
context-free language. Then the Fliess conjecture can be stated as follows: 

A commutative language is context-free if” and only tf it is a B-CF language. 

Since the Parikh image of a context-free language is semilinear [7], it is sufticient 
to consider the commutative languages of the form com(w, Pj+ u . . . u wkPt) 
where, for i in [ 1, k], wi is a word and Pi is a finite language. The aim of this paper 
is to prove the Fliess conjecture in a nontrivial particular case. 

THEOREM 1. Let L be equal to com(FP*), where F and P are finite languages. 
Then L is a context-free language tf and only if L is a B-CF language. 

Remark. Note that the case considered here is slightly more general then the 
case of context-free languages having a linear Parikh image, since here the set F is 
not necessarily reduced to a single word. 

In order to establish this result, we will prove three lemmas and introduce some 
notation. Let C= {a,, u2, . . . . a,} and R= IJISiGiGna,?u~. We may assume that F 
and P are subsets of a:at...a,* since P’=com(P)=com(P’na:u~...u,*). Let 
Q = P n R and, for i, j in [ 1, n], Qi,, = corn(Q) n uTaj* and Q:,i = corn(Q) n u+a,+. 

LEMMA 2. Let F and P be finite sets, F nonempty, included in u:u: ‘. . a,* such 
that L = com(FP*) is a B-CF language. Then, P satisfies the two following proper- 
ties: 

(A) For all u in P, U+ n com(Q*) # @. 
(B) For all u in QiSj, for all v in Q:,,, where ui, uj, a,, a, are distinct letters, 

(uu)+ n (com(Q - Qi,j)* u com(Q - Q:, t)*) # 12/. 

Proof: First, we will prove Property (A). Since L n a:u: . .. a,* is assumed to be 
context-free, it follows from Lemma A that: 

(1) L = Uy=, com( w,P,*), for some integer m, where for all i in [ 1, m], wi in 
a:u: . . . a,* and Pi c R is finite. 

Let u be a word in P, u #e. Choose any w in F, from (1) it follows that there 
exists an integer j such that: wu* n com(w,P,+) is infinite. Then !P(wu+ n 
com( wj P,*)) is infinite. Set c = Y(w), q = U(u), d = Y(wj), and S = Y(Pj). Since 
com(wjPj*) = Y-‘(L(d; S)), we get Y(wu* n Y’-‘(L(d; S))) = Y(wu*) n L(d; S) = 
L(c; {q}) n L(d; S). From Lemma B, there exists a positive integer t such that tq in 
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L(0; S). Hence, !P(u’n com(P,?)) = u’(u’) n !P(PT) = tq n L(0; S) # 0, which 
implies that U’ in com(Pj*)). 

Now, let u be any word in Pi. From (1) we know that wju* c w,P, c L, then 
wju* ncom(FP*) is infinite and there exists a positive integer 1 such that u’ in 
com(P*). But, u in P, c R and u in a,, aq * * for some p, q in [ 1, n]. Thus, u’ in 
com(P*) n {up, a,}* = com((Pn afat)*) c com(Q*). Since Pj is finite, that implies 
that there exists a positive integer h such that for every w in P,, wh is in com(Q*). 
Let Pj = { wh 1 w E P,}, then, PJ* c com(Q*) and urh in com(P,I*) c com(Q*), hence 
u’ncom(Q*)#0. 

Next, we will prove Property B. Let rt be a permutation of [ 1, n] such that 
z(l)=& 7c(2)=s, 7r(3)= j and 7c(4)= t. By hypothesis, L’= Ln~~~,,a,*~,,.~.a&,, is 
context-free. By the definition of com(L’) and Lemma A, com(L’) = L = 
U;=r com(w,P,*),whereforeverykin [l,m], w,ina:...a,*andP,cRisafinite 
set such that: either P, n a+ai~ = 0 or P, n as+ a: = 0. We choose any w in F. 
Since w(uu)* c L, w(uu)* n com(w,P,*) is infinite for some k in [l, m]. Thus (uu)’ 
is in com(P,*) for some positive integer 1. One can assume, for instance, that 
Pk n a+~,” = 0. Now by using Property A, we can prove that there exists a 
positive integer h such that Pi = { wh 1 w E Pk} c com(Q*). But P, c R - aTa,+ ; 
hence, Pi c com(Q - Q:,j)* and (uu)~’ c com(Q - Ql., ,)*, which implies Proper- 
ty B. I 

Lemma 2 may be illustrated by the following examples; let .Z = {aI, a,, a3, ad}. 

EXAMPLE 1. Let P= Qu (a1a2a3} with Q= {a:a,, ala:, a,~:, a3a$}. Proper- 
ty A of Lemma 2 holds because (a,a2a3)2 is in com((a:a,)(a,a:)) c com(Q*). Then 
com(P*) = com(FQ*) with F= { e, a,a2a3}. Property B is also satisfied because 

-(a:a2a3a:)’ in com((afa,)(a,a:)* (a,a:))ccom(Q- Q;,4)*, 

-(a,a:a2a$2 in com((aTa,)(a,a:)(a,a$*) c com(Q - Q;,4)*. 

EXAMPLE 2. Let P= {afa,, a,a$, a,a3, ala:, a2a3, aga:}. Since P=Q, it 
remains to be shown that property B is satisfied. But 

-afa2a:a: in com((alu,)(a,aj)(a2a3)) c com(Q - Q;, 2)*, 

-aIa:a:a: in com((a,a:)(a,a,)*)ccom(Q-Q;,,)*, 

- (alaia2a3)* in com((alas)(alaj)(a:aj)) c com(Q - Q;, X)*. 

EXAMPLE 3. Given P= (a,a~,a,a3,a2a3,a2a4,a:a4) then a,a:a:a4 is in 
com((ala3)(a2a3)(a2a4))=com(Q-Q;,2)*. But, (ala3a2a4)+n tcom(Q- Ql,d*u 
com(Q - Q;,,)*) = 0. This comes from the fact that u in com(Q - Q;. 3)* implies 
Ju],,>2 Iu],, and u in com(Q-Q;,4)* implies Iul,,>2 (~1~~. From the preceding 
Lemma, L =com(P*) is not a B-CF language. (It can also be verified that 
L n a:aj’afa$ is context-free but L n a~a~a~a~ is not context-free.) 
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If a finite set Q c R satisfies Property B, it will be shown that L = com(Q*) is 
context-free. First, we will show that Property B implies another property that will 
be crucial for our proof. For that we need a new definition. 

DEFINITION. A word w in L is said to be z-reducible, for some z in Q, if and only 
if there exists a word u in L such that uz in corn(w). 

LEMMA 3. Let Q be a finite set where Q c R and L =com(Q*). If Q satisfies 
Property B of Lemma 2, then it also satisfies the following property: 

(C) There exists a positive integer k such that for all u in Qi,j, for all v in Q:, , 
where ai, aj, a,, a, are distinct letters, (uv)~ is z-reducible for some z in Qi, s u Qj, S. 

Proof: Let us consider u in Q:, j and v in Q:, , where ai, aj, a,, a, are distinct 
letters. The hypothesis implies that there is a positive integer k such that either: 

(1) (uvJk in com(Q?jQ:,QftQ,?,Qfl) or 
(2) (uvlk in com(Q:,Q:,Q~,Q,r,Q~l). 

In case (1) the occurrences of symbols a, must necessarily be produced by Qzs or 
QjrS. Then, in this case, there exists a word z in Qi,$ u Qj,S such that (uv)~ is 
z-reducible. 

In case (2) there are two subcases. If (uv)~ is z-reducible, for some z in Qi s u Qj, s 
(case 2.1) and we are done; otherwise, it is easy to show that (uvjk is in 
com( Q’$Q:: Q>,:) (case 2.2). 

We set Q:,, = {v,, v2, . . . . up> with 

In order to prove the property in case (2.2), we will use an induction on the 
index q of the uy’s. First, we will prove that, if u = vi, case (2.2) cannot occur. That 
will require showing that (uv~)~ is z-reducible for some z in Qi,S u Qj,S. Assume that 
(uv,)~ in com(w, wZwj) with w, in Q:,:, wz in Q$ and wJ in Q(i:. Since (u~i)~ is not 
z-reducible for some z in Q,,,, w2 in com(Qh, u Q,,,)* and from the choice of vi, 

Thus, we get a contradiction, since 

b:la, = IWkla, = lWlla, + IW*la, + lW31a, > Ma, 

and 
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Now, we define inductively, m, = k and m4 = (k + l)“‘,m1 for q > 1. We make the 
following induction hypothesis: for 1 < q < Z, 1 a given integer in [2, p], (uu~)“‘-’ is 
z-reducible, for some z in Qi,, u Qj,s. This hypothesis holds for I = 2. If the word 
(uu[)~ is z-reducible, for some z in Qi,, u Q,,,, then the same holds for (uu~)“” and the 
induction is extended. Otherwise, the remark made for U, can be used again. This 
time, it leads to the conclusion that (~0,)’ is v,-reducible for some q in [ 1, I - 11. 
Then, ( UU!) ‘+’ is (uu,)-reducible and (uo~)“” is (uu,)“‘ml-reducible. Since, from the 
induction hypothesis, (uu~)~‘-~ is itself z-reducible for some z in Q,,.? u Qj,,s, the same 
holds for (uu[)~’ and the induction is extended. 

Since Q is finite, that implies property C. i 

Let us consider, now a finite set Q c R satisfying condition C. We will build a 
pushdown automaton (pda) that recognizes L= com(Q*). This pda works non- 
deterministically, trying to reduce an input word to the empty word, using the set 
of congruences {w E e 1 w E Q}. Clearly, such a pda cannot work in “realtime” and 
reading something it must sometimes wait to read something more, before perform- 
ing a useful reduction (useful in the sense that the reduction not lead to a deadlock 
preventing us from going further in reducing the input word to the empty word). At 
this step, Lemma 3 plays a crucial role, since it ensures that it is unnecessary to wait 
more than a fixed number of symbols of the same type, before performing a useful 
reduction. This waiting time is simulated in the pda by the linite set of states, each 
state being considered as a word of length less than or equal to a fixed integer. 

LEMMA 4. Let Q be a finite set included in R satisfying Property C of Lemma 3. 
Then L = com( Q*) is a context-free language. 

Proof Let k be the integer given by Lemma 3. We set N=p( 1 + nk) where 
P=CU,O 1~1. We define the pda M= (S, C, r, sO, z,,, 6, F) where: 

(1) s= (uEC* ) f or all aEC, lulUd N} is the set of states; 

(2) C= {a,, a2, . . . . a,}; 

(3) r=zu {zo}; 

(4) s0 = e is the initial state; 
(5) F= {s,,} is the set of final states; 
(6) z0 is the bottom-of-store symbol; 
(7) 6, the transition function, is defined by the allowed moves: 

(a) Stack, for all u in S, for all a in Z, for all y in C*, (u, a, z,y) +” 
(u, e, z,ya) 

(b) Pop, for all y in C*, for all u in S with IuI,<N, (u, e, z,ya)P 
(ua, e, z,Y); 

(c) Reduce, for all y in C*, for all u in S, (u, e, z,y) I-~ (u’, e, z,y) if and 
only if there exists a z in Q such that U’Z in corn(u). 
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Let T(M) be the language recognized by M by empty store (reinitializations of 
the store are allowed); that is, T(M) = (wEC* 1 (e, w, z0 2 (e, e, z,)}. We will 
prove that T(M) = L. 

Clearly, one can establish by induction on the length of the computation in M 
that, if (e, w, zO) 2 (u, e, z,y), then there exists a word u in Q* such that w in com- 
(uuy). Thus, if w in T(M), (e, w, zO) 2 (e, e, zO) and w in corn(v) for some u in Q*; 
hence w in com(Q*) = L and so T(M) c L. In order to prove the other inclusion, 
we must first prove the following claim: 

Claim. Let w,, w2 be words in C* such that w, w2 is in L. Then there exists a 
computation in M: (e, w 1, zO) 2 (y, e, z,y) that satisfies the following four con- 
ditions: 

(1) w=yw,y in L; 

(2) for all aj, aj in alph(y), f or all u in Qj, w is not u-reducible; 
(3) if y = y’aj then Iyl+ = N; 

(4) for all ai in alph(y), IyI.,2ri(w)kp, where ri(w)=card{jE [l,n] 1 there 
exists a u in Qi,i such that w is u-reducible}. 

Proof of the claim. By induction on the length of w,. 

Basis. Iw,l=O. Then, w2 in L and taking y=y=e, we get (e, wr,z,,)cli 
(y, e, z,,), w = yw, y in L and, since alph(y) = 0, conditions 2, 3, and 4 are satisfied. 

Inductive step. We make the induction hypothesis that the claim holds for any 
w, such that I w, I < q (q a given positive integer) and let w, , ) w, 1 = q, be a word 
such that w1 w2 in L. Setting w1 = w’, ak, ak in Z, and w; = ak wl, we have from the 
induction hypothesis that there is a computation: (e, w; , z,,) 2 (y, e, z,y) satisfying 
conditions 1 to 4 with w= yw;y. 

We will now distinguish between two main cases. 

Case 1. IyJ,, < N. Then te? wiak? zO) * (.h akF zoy) *’ by ey %wk) + 

(yak, e, zOy). From the inductive hypothesis, it is easy to verify that conditions 1 to 
4 hold for that computation. 

Case 2. I ylok = N. At this step. We must distinguish between subcases. 

Subcase 1. ak in 4W). Then (e, wiakv Zo) * (Y, ak? Z,Y) l-s (J’, e, &,?a,). 
Since alph(ya,) = alph(y), it is easy to verify, from the induction hypothesis, that 
conditions 1 to 4 hold for that computation. 

Subcase 2. uk is not in alph(y). 
Subcase 2.1. There exists a u in Qk,k such that w is u-reducible. Since 

1~1~~ =N> 1~1, there exists a y, such that y,u in corn(y). Then 
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Note that pop is allowed since lyil,, < lel,, = N. Since 
w=yw;y in L is u-reducible, y,a,w,y = yiw;y is in L and 
condition 1 holds. Moreover, it is easy to verify that con- 
ditions 2 to 4 are satisfied since uk is not in alph(y). 

Subcase 2.2. For all u in Qk, w is not u-reducible. 
Subcase 2.2.1. For all ai in alph(y ) and all u in Qi.k, w is not u-reducible. 

Then, clearly the computation (e, w;a,, zo) 2 
b? sky z,y) -Y (y, e, zoyak) satisfies conditions 1 to 4. 

Subcase 2.2.2. y = y’u, and there exists a u in Qj,k such that w is 
u-reducible. From Condition 3, we get Iyl,, = N. Now, 
since l,v(,= Iyl,, = N there exists a word y, such that y,u 
in comb). Then (e, $ uk? zd * (.h ak, zd) t--” 

(y, e, yak)+’ (yl, e, yak) +* (ylakaj, e, y’). clearly, con- 

dition 1 is satisfied. Since y,akajwzy’ u-reducible implies 
yw;y u-reducible, condition 2 holds. Since lyl:, = N = 
p(kn+ 1) and lul.,< IuI <p, clearly, lyil.,>,pkn implying 
Jy, akajlo, 3 yj(yi aka,wZy’) kp and condition 4 iS satisfied. 
Now if condition 3 does not hold, it suffices to repeat 
the pop operation until condition 3 is satisfied, the other 
conditions remaining true. 

Subcase 2.2.3. y = y’aj, for all u in Qk, w is not u-reducible and there 
exists cli in alph(y) and v in Qi,k such that w is u-reducible. 

First, we will prove that w is not uk-reducible. Let us suppose the contrary and let 
w’ be a word such that W’D in corn(w). Since lw’l 11, = I WI ~, > N and from the choice 
of N, there necessarily exists an integer t in [ 1, n] and a word u in Q,,., such that w’ 
is uk-reducible. Thus, w is (uu)k-reducible. From the induction hypothesis and the 
hypothesis of Subcase 2.2.3, v is in Q;,k, t not in {i, j, k) and u in Qi,,. From 
Lemma 3, there exists a word z in Qi. ju Qj,k such that w is z-reducible, con- 
tradicting our hypothesis. 

.Consequently, there exists a word u0 in QTk and a word w” in L such that w”uO in 
corn(w), luOl 6pk and for all u in Qi,k, w” is not u-reducible. From the induction 
hypothesis, lylak = N2pk and Iyl,,> ri(w) kpapk; hence, there exists a word y, 
such that y,u, in corn(y). Then (e, ~;a,, 0 z ) 2 (y, ak, zOy) F’ by eT %yak) +r 

(y,, e, ~,,?a,) P (y,ak, e, z,y). Clearly, conditions 1 to 3 are satisfied and for con- 
dition4 blakla,> LA.,- Id 2 Ivl.,-Mi(w)- 1)3pk(rj(y,akw)), by the 
choice of ug, r,(y,akw,y’) = T;(W) - 1. 

That ends the proof of the claim. 
Now let w be a word in L. From the claim, there is a computation 

(e, W, zo) 2 (y, e, zOy) satisfying conditions 1 to 3. In order to prove that w in 
T(M), it suffices to prove that (y, e, z,y) +--‘* (e, e, zO). We will make an induction 
on the length of y. If Iy( = 0, then y in L and there is a computation (y, e, z. rr 
(e,e,zo).If~y~>,1,y=y’a,forsomeujin~andthereisaworduinQwith~u~~,#O, 
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such that yy is u-reducible. From the claim, there exists an a, in Z-alph(y) such that 
u in Q:,j and jyl,=N> IuI,,. Since Lyle,= lyyl,,, there exists a wordy’such thaty’u 
in corn(y). Now it follows that: (y, e, zor’uj) +’ (y’, e, zOr’aj) I-J’ (y’uj, e, z,y) P* 
(y,, e, z,y,), where (y,, e, z,y,) satisfies conditions 1 to 3 and lyil % (~‘1 < Iy(. Thus, 
from the (implicit) induction hypothesis, w in 7’(M). So we get that L = T(M), 
hence L is context-free. 1 

We now return to the proof of Theorem 1. 

Proof of Theorem 1. Let F and P be finite sets included in C*, where 
c= {a,, a,, . ..) a,}, L=com(FP*); recall that R=UIgiCjinuTaf, Q=PnR and 
for i, j in [ 1, n] Qi,j = corn(Q) n u~u,? and QL. = Q, - (a* u a?). If L is a context- 
free language, then L is a B-CF language. 

Conversely, let us assume that L is a B-CF language. From Lemma 2, P satisfies 
Properties A and B. Hence from Lemma 3, Q satisfies Property C and from 
Lemma 4, com(Q*) is a context-free language. Now, from Property A, one can find 
a finite set G such that com(P*) = corn(G) $ com(Q*). Since the family of context- 
free languages is closed under shuffle with a regular language we get that com(P*) 
is a contex-free language. At last, com(FP*) = corn(F) $ com(P*) is also a context- 
free language. 1 

From Lemmas 2, 3, and 4 we can deduce immediately the following result, which 
does not appear in the statement of Theorem 1: 

PROPOSITION 5. Let F and P be finite nonempty subsets of .?I*. Then the following 
conditions are equivalent: 

(1) com(P*) is a context-free language. 
(2) com(FP*) is a context-free language. 
(3) P satisfies the two following properties: 

A. For all u in P, u+ n com(Q*) # 0. 
B. For all u in QiSj, for all v in Qr,, where a,, a,, a,, a, are distinct letters, 

(uu)+ n (com(Q - Qi,j)* u com(Q - Ql,,)*) # 0. 
Remark. If P = Q, only Property B must be considered. It is then easy to con- 

clude: com(Q*) is a context-free language if and only if for all i, j, s, t in Cl, n], 
com(Q*) n u~u,~u~u~ is context-free. If there is an i in [l, n] such that 
Q - C*Ui~* = 0, then com(Q*) is context-free. In the general case, Properties A 
and B in the above proposition are decidable by Lemma C. Indeed, 
u+ n com(Q*) # 0 if and only if ul(u+ n com(Q*)) # 0. But Y(u+ n com(Q*)) = 
Y( u + ) n !P( Q * ) is a calculable. semilinear set by Lemma C since Y( u + ) and !P( Q * ) 
are clearly calculable linear sets. Similarly, ul((uu) + n (com(Q - Q;, j)* u 
com(Q - Q:,,)*)) is a calculable semilinear set. Thus we can state: 

COROLLARY 6. One can decide, given a finite lunguuge P, whether or not 
com(P*) is a context-free lunguuge. 



320 BEAUQUIER, BLATTNER, AND LATTEUX 

EXAMPLE 4. Given C = {a,, a,, . . . . a,}, consider the language L, where 
L= {uE(C’)* 1 for all ie [l, n], (~1 22 luIU,}. It can be shown that L=com(P*) 
with P = { a,a, 1 1 ,< i <j < n>. If aj, ai, a,, a, are four distinct letters in C, aia,asa, is 
in com((a,a,)(aja,)) c com(Q - Q:,i)*. Then, we may conclude from Proposition 5, 
that L is context-free. 

EXAMPLE 5. More generally, take two positive numbers s and t, such that 
s < t 6 ns and the commutative language L(s, t) = {u E C* 1 there exists a k, /uI = kt 
and for all i E [ 1, n], Iu( o, B ks} (the preceding case is similar to that of s = 1 and 
t = 2). One is able to prove that L(s, t) = com(P*) with P = L(s, t) n 2’. There are 
two cases: 

(a) If t > 2s, then for all i, j in [ 1, n], P n UT,,? = @, hence Q = a. Property 
3A is not satisfied, and L(s, t) is not a context-free language. 

(b) If td2s, then Q={a+j’]l<i<j<n, l<t,, t,ds, and t,+t,=t.) 
Then one is able to show that Properties 3A and 3B are satisfied, which implies that 
the language L(s, t) is context-free if and only if t d 2s. 

At last, we are able to show, from Proposition 5, that it is easy to deduce a well- 
known result on commutative languages over three letter alphabets. 

COROLLARY 7 [S, 6, 81. Let L be a commutative language included in CT with 
C, = {a,, a,, a3}. Then, L is a context-free language if and only if L n a:ufa,* is a 
context-free language. 

Proof. If L is a context-free language, L n a:a,*a: is a context-free language. 
Conversely, if L n a:aTa: is a context-free language, there exist w,, w2 ,..., w, in C* 
and finite sets Ql, Qz, . . . . Q,c (aTa: vaTa,* ua~a~) such that corn(L) = 
com(w, QT u ... u w,QT). For i in [ 1, t], Q, satisfies Properties A and B and from 
Proposition 5, L, = com(w,Q*) is a context-free language. Thus, corn(L) = U:=, L, 
is a context-free language. 1 
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