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We construct static, nonextremal black hole solutions of the Einstein–Maxwell equations in d =
6,7 spacetime dimensions, with an event horizon of S2 × Sd−4 topology. These configurations are
asymptotically flat, the U (1) field being purely magnetic, with a spherical distribution of monopole
charges but no net charge measured at infinity. They can be viewed as generalizations of the d = 5 static
dipole black ring, sharing its basic properties, in particular the presence of a conical singularity. The
magnetized version of these solutions is constructed by applying a Harrison transformation, which puts
them into an external magnetic field. For d = 5,6,7, balanced configurations approaching asymptotically
a Melvin universe background are found for a critical value of the background magnetic field.
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1. Introduction

A remarkable property of black rings is the existence of regu-
lar configurations with gauge dipoles that are independent of all
conserved charges. This strongly contrasts with the picture valid
in d = 4 black hole physics, and implies a violation of the ‘no
hair’ conjecture and of the black hole uniqueness. These aspects
are clearly illustrated by the d = 5 black ring found by Emparan
in [1], which was the first example of a black object that is asymp-
totically flat, possesses a regular horizon and is the source of a
dipolar gauge field. This exact solution of the Einstein–Maxwell
dilaton equations has an event horizon of S2 × S1 topology. The
U (1) field is purely magnetic, being produced by a circular dis-
tribution of magnetic monopoles.1 Then the ring creates a dipole
field only, with no net charge measured at infinity.2 Similar to the
vacuum case [2], the generic dipole rings (in particular the static
ones) are plagued by conical singularities. The balance is achieved
for a critical (nonzero) value of the angular momentum only.

It is clear that the dipole ring solution in [1] should have
generalizations in more than five dimensions. However, the ana-
lytic construction of these solutions seems to be intractable within
a nonperturbative approach. Some progress in this direction has
been achieved by using the blackfold approach. There the central

* Corresponding author.
E-mail address: eugen.radu@uni-oldenburg.de (E. Radu).

1 The electric dual of these solutions can be considered as well, the ring being
sourced in this case by an electric two-form potential.

2 Note that, as discussed in [3,4], the dipole moment enters the first law of ther-
modynamics.
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http://dx.doi.org/10.1016/j.physletb.2013.04.053
assumption is that some black objects, in certain ultra-spinning
regimes, can be approximated by very thin black strings or branes
curved into a given shape, see [5–7]. Ref. [8] has found in this way
generalizations of the dipole black ring for several topologies of
the horizon, in particular for the ring case, S1 × Sd−3. However, the
blackfold approach has some limitations; for example, black holes
with no black membrane behaviour cannot be described within
this framework.

A different approach for the construction of d � 5 black objects
with a nonspherical topology of the horizon has been proposed in
Refs. [9,10]. The solutions are found in this case nonperturbatively,
by solving numerically the Einstein equations with suitable bound-
ary conditions. A number of new solutions have been constructed
in this manner, in particular recently Ref. [11] has given numeri-
cal evidence for the existence of balanced spinning vacuum black
rings in d � 6 dimensions beyond the blackfold limit, and analyzed
their basic properties.

In this work we propose to construct new static nonextremal
black objects with an S2 × Sd−4 topology of the event horizon in
d = 6 and 7 dimensions, by extending the results in [9] to the
case of Einstein–Maxwell theory. These solutions can be viewed as
higher dimensional generalizations of the d = 5 static dipole ring
in [1], the magnetic field being analogous to a dipole, with no net
charge measured at infinity. However, in the absence of rotation,
these configurations have a conical singularity which provides the
force balance that allows for their existence for any d � 5.

However, as discussed in [12], the conical singularity of the
d = 5 static dipole ring can be removed by “immersing” it in a
background gauge field. In this work we show that this holds
for d > 5 solutions as well. By applying a magnetic Harrison

http://dx.doi.org/10.1016/j.physletb.2013.04.053
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:eugen.radu@uni-oldenburg.de
http://dx.doi.org/10.1016/j.physletb.2013.04.053
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transformation, the conical singularities disappear for a critical
value of the background magnetic field. The resulting configu-
rations describe d > 5 balanced black holes with a horizon of
S2 × Sd−4 topology, in a Melvin universe background.

2. The model and general relations

2.1. The ansatz and equations

We consider the Einstein–Maxwell theory in d spacetime di-
mensions, defined by the following action

S = 1

16π

∫
ddx

√−g

(
R− 1

4
F 2

)
, (2.1)

the corresponding equations of motion being

E j
i = R j

i − 1

2
δ

j
i R − 1

2

(
Fik F jk − 1

4
δ

j
i F 2

)
= 0,

1√−g
∂i

(√−g F ij) = 0. (2.2)

The solutions in this work are static and axisymmetric configura-
tions, with a symmetry group Rt × U (1) × SO(d − 3) (where Rt

denotes the time translation). Following Appendix C of [10], we
take the following metric ansatz:

ds2 = f1(r, θ)
(
dr2 + r2 dθ2) + f2(r, θ)dψ2 + f3(r, θ)dΩ2

d−4

− f0(r, θ)dt2, (2.3)

where dΩ2
d−4 is the unit metric on Sd−4, the range of θ is 0 �

θ � π/2 and ψ is an angular coordinate, with 0 � ψ � 2π . Also,
r and t correspond to the radial and time coordinates, respectively.
We shall see that for the solutions in this work, the range of r
is 0 < rH � r < ∞; thus the (r, θ)-coordinates have a rectangular
boundary well suited for numerics.

For any value of d, the U (1) potential has a single component,

A = Aψ(r, θ)dψ. (2.4)

It is of interest to mention that the model admits a dual formula-
tion, with an ‘electric’ version of (2.1), with

S = 1

16π

∫
ddx

√−g

(
R − 1

2(d − 2)! F̃ 2
(d−2)

)
, (2.5)

where F̃ = �F = dB is a (d − 2)-form field strength (then the only
nonvanishing components of the (d−3)-form potential B are BΩt ).
However, in this work we shall restrict to the magnetic description
within the Einstein–Maxwell theory.

An appropriate combination of the Einstein equations, Et
t = 0,

Er
r + Eθ

θ = 0, Eψ
ψ = 0, and EΩ

Ω = 0, yields the following set of equa-
tions for the functions f1, f2, f3 and f0:

∇2 f1 − 1

f1
(∇ f1)

2 − (d − 4)(d − 5)
f1

4 f 2
3

(∇ f3)
2

− f1

2 f0 f2
(∇ f0) · (∇ f2) − (d − 4) f1

2 f0 f3
(∇ f0) · (∇ f3)

− (d − 4) f1

2 f2 f3
(∇ f2) · (∇ f3) + (d − 4)(d − 5) f 2

1

f3

+ (d − 4) f1
(∇ Aψ)2 = 0,
2(d − 2) f2
∇2 f2 − 1

2 f2
(∇ f2)

2 + 1

2 f0
(∇ f0) · (∇ f2)+ (d − 4)

2 f3
(∇ f2) · (∇ f3)

+ d − 3

d − 2
(∇ Aψ)2 = 0,

∇2 f3 + (d − 6)

2 f3
(∇ f3)

2 + 1

2 f0
(∇ f0) · (∇ f3)+ 1

2 f2
(∇ f2) · (∇ f3)

− 2(d − 5) f1 − f3

(d − 2) f2
(∇ Aψ)2 = 0,

∇2 f0 − 1

2 f0
(∇ f0)

2 + 1

2 f2
(∇ f0) · (∇ f2) + (d − 4)

2 f3
(∇ f0) · (∇ f3)

− f0

(d − 2) f2
(∇ Aψ)2 = 0. (2.6)

From the Maxwell equations, it follows that the magnetic poten-
tial Aψ is a solution of the equation

∇2 Aψ + 1

2 f0
(∇ f0) · (∇ Aψ) + 1

2 f2
(∇ f2) · (∇ Aψ)

+ (d − 4)

2 f3
(∇ f3) · (∇ Aψ) = 0. (2.7)

In the above relations, we have defined (∇U ) · (∇V ) = ∂r U∂r V +
1
r2 ∂θ U∂θ V , and ∇2U = ∂2

r U + 1
r2 ∂2

θ U + 1
r ∂r U .

The remaining Einstein equations Er
θ = 0, Er

r − Eθ
θ = 0 yield two

constraints. Following [13], we note that setting Et
t = Eϕ

ϕ = Er
r +

Eθ
θ = 0 in the identities ∇μEμr = 0 and ∇μEμθ = 0, we obtain the

Cauchy–Riemann relations ∂θ (
√−g Er

θ ) + ∂r̄(
√−g 1

2 (Er
r − Eθ

θ )) = 0,
∂r̄(

√−g Er
θ ) − ∂θ (

√−g 1
2 (Er

r − Eθ
θ )) = 0 (with r2∂/∂r = ∂/∂ r̄). Thus

the weighted constraints satisfy Laplace equations, and the con-
straints are fulfilled, when one of them is satisfied on the boundary
and the other at a single point [13].

We close this part by remarking that the solutions in this work
can also be studied by using Weyl-like coordinates, with ds2 =
f̄1(ρ, z)(dρ2 + dz2) + f2(ρ, z)dψ2 + f3(ρ, z)dΩ2

d−4 − f0(ρ, z)dt2,
and A = Aψ(ρ, z)dψ . The general transformation between (ρ, z)-
and (r, θ)-coordinates is given in Ref. [10]. Indeed, the vacuum
limit of the solutions in this work (Aψ ≡ 0) was studied in Ref. [9]
by employing the (ρ, z)-coordinates. The metric ansatz (2.3) in
terms of (r, θ) allows, however, for a better numerical accuracy.

2.2. Black holes with S2 × Sd−4 topology of the event horizon

2.2.1. Boundary conditions
Eqs. (2.6) are solved subject to a set of boundary condi-

tions which results from the requirement that the solutions de-
scribe asymptotically flat black objects with a regular horizon of
S2 × Sd−4 topology.3 We assume that as r → ∞, the Minkowski
spacetime background (with ds2 = dr2 + r2(dθ2 + cos2 θ dψ2 +
sin2 θ dΩ2

d−4) − dt2) is recovered, while the gauge potential van-
ishes. This implies

f0|r=∞ = 1, f1|r=∞ = 1, lim
r→∞

f2

r2
= cos2 θ,

lim
r→∞

f3

r2
= sin2 θ, Aψ |r=∞ = 0. (2.8)

Also, we impose the existence of a nonextremal event horizon,
which is located at a constant value of the radial coordinate,
r = rH > 0. There we require

3 In obtaining these conditions we are also guided by the d = 5 exact solution
discussed below.
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f0|r=rH = 0, ∂r f1|r=rH = ∂r f2|r=rH = ∂r f3|r=rH = 0,

∂r Aψ |r=rH = 0. (2.9)

The boundary conditions at θ = π/2 are

∂θ f0|θ=π/2 = ∂θ f1|θ=π/2 = f2|θ=π/2 = ∂θ f3|θ=π/2 = 0,

Aψ |θ=π/2 = 0. (2.10)

The absence of conical singularities requires also r2 f1 = f2 on that
boundary.

The boundary conditions for θ = 0 are more complicated, since
they encode the nontrivial topology of the horizon. The idea here
is that for some interval rH � r < R , we have for the metric the
same conditions as for θ = π/2, the asymptotic behaviour f2 ∼
cos2 θ , f3 ∼ sin2 θ being recovered for r > R (with R > rH an input
parameter). Therefore, for rH < r < R , we impose

∂θ f0|θ=0 = ∂θ f1|θ=0 = f2|θ=0 = ∂θ f3|θ=0 = 0,

Aψ |θ=0 = Ψ. (2.11)

For r > R we require instead

∂θ f0|θ=0 = ∂θ f1|θ=0 = ∂θ f2|θ=0 = f3|θ=0 = 0,

∂θ Aψ |θ=0 = 0. (2.12)

Although the constants R , rH which enter the above relations have
no invariant meaning, they provide a rough measure for the radii
of the Sd−4 and S2 spheres, respectively, on the horizon. Also, we
shall see that the parameter Ψ fixes the local charge of the solu-
tions.

2.2.2. Global quantities
The metric of a spatial cross section of the horizon is

dσ 2 = f1(rH , θ)r2
H dθ2 + f2(rH , θ)dψ2

+ f3(rH , θ)dΩ2
d−4. (2.13)

Since, from the above boundary conditions, the orbits of ψ shrink
to zero at θ = 0 and θ = π/2 while the area of Sd−4 does not van-
ish anywhere, the topology of the horizon is S2 × Sd−4 (in fact, for
all nonextremal solutions in this work, f2(rH , θ) ∼ sin2 2θ while
f1(rH , θ) and f3(rH , θ) are strictly positive and finite functions).
The event horizon area is given by

AH = 2πrH Vd−4

π/2∫
0

dθ

√
f1 f2 f d−4

3

∣∣∣
r=rH

, (2.14)

where Vd−4 is the area of the unit sphere Sd−4.
The Hawking temperature as computed from the surface gravity

or by requiring regularity on the Euclidean section, is

T H = 1

2π
lim

r→rH

√
f0

(r − rH )2 f1
= 1

β
, (2.15)

where the constraint equation Eθ
r = 0 guarantees that the Hawking

temperature is constant on the event horizon.
At infinity, the Minkowski background is approached. The total

mass of the solutions is given by [14] (where the integral is taken
over the (d − 2)-sphere at spatial infinity and k = ∂/∂t)

M = − (d − 2)

(d − 3)

1

16π

∮
∞

dSij ∇ ik j, (2.16)

and can be read from the asymptotic expression for f0,
−gtt = f0 ∼ 1 − 16πGM

(d − 2)Vd−2

1

rd−3
+ · · · . (2.17)

Using Gauss’ theorem, the Einstein equations and the boundary
conditions (2.8)–(2.12), one finds from (2.16) the following Smarr-
type relation

(d − 3)M = (d − 2)
1

4
T H AH + ΦQ. (2.18)

Here Q is the ‘local’ magnetic charge which enters the thermo-
dynamics4 as defined by evaluating the magnetic flux over the S2

sphere around the horizon,

Q = 1

4π

∫
S2

Fθψ dθ dψ = −Ψ

2
, (2.19)

and Φ is the thermodynamical conjugate variable to Q,

Φ = 1

8π

2π∫
0

dψ

∫
dΩd−4

R∫
rH

dr
√−g F θψ

∣∣
θ=0

= 1

4
Vd−4

R∫
rH

dr

r

√
f0 f d−4

3

f2
∂θ Aψ

∣∣∣∣
θ=0

, (2.20)

such that 1
16π

∫
F 2√−g dd−1x = 2ΦQ. Therefore, following [15],

we interpret the solutions as describing a spherical Sd−4 dis-
tribution of monopole charges, though with a zero net charge
(see also [16]).

As expected, in the absence of rotation, all these black objects
with S2 × Sd−4 horizon topology are plagued by conical singulari-
ties. As one can see from the boundary conditions, in this work we
have chosen5 to locate the conical singularity at θ = 0, rH < r < R ,
where we find a conical excess

δ = 2π

(
1 − lim

θ→0

f2

θ2r2 f1

)
< 0. (2.21)

This can be interpreted as the higher dimensional analogue of
a ‘strut’ (e.g. a membrane for d = 5), preventing the collapse of
the configurations. Although the presence of a conical singular-
ity is an undesirable feature, it has been argued in [17,18], that
such asymptotically flat black objects still admit a thermodynami-
cal description. Moreover, when working with the appropriate set
of thermodynamical variables, the Bekenstein–Hawking law still
holds, while the parameter δ enters the first law of thermody-
namics. Without going into details, we mention that the conjugate
extensive variable to δ is

A ≡ Area

β
, (2.22)

where Area is the spacetime area of the conical singularity’s world-
volume. For the line element (2.3), the line element of the two
dimensional surface spanned by the conical singularity is

dσ 2 = − f0 dt2 + f1 dr2 + f3 dΩ2
d−4, (2.23)

which implies

A = Vd−4

R∫
rH

dr
√

f0 f1 f d−4
3

∣∣∣
θ=0

. (2.24)

4 The asymptotic behaviour of the magnetic potential is Aψ → Q (∞) cos2 θ/rd−3.
However, Q (∞) does not enter any global law (this holds also for the d = 5 balanced
solution in [1]).

5 It is also possible to work with the conical singularity stretching towards the
boundary. However, in that case the spacetime will not be asymptotically flat.
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3. The solutions

3.1. The d = 5 static dipole black ring

The static dipole black ring is usually written in ring or in Weyl
coordinates, where it takes a relatively simple form. In what fol-
lows we shall write it within the ansatz (2.3), (2.4), which results
in rather complicated expressions. However, this helps us to make
contact with the numerical solutions found for d > 5.

In the (r, θ)-coordinates, the metric functions f i in the line el-
ement (2.3) are given by (note that for d = 5, the sphere Ωd−4
reduces to a circle):

f1(r, θ) = c2(r, θ) f (0)
1 (r, θ), f2(r, θ) = f (0)

2 (r, θ)

c2
1(r, θ)

,

f3(r, θ) = c1(r, θ) f (0)
3 (r, θ), f0(r, θ) = c1(r, θ) f (0)

0 (r, θ),

(3.1)

where

c1 = 1 − 2(R4 − r4
H )2

R4r2
H

w

1 + w

1

P (−)

,

c2 = 1

(1 + w)3

(
1 + w

R4 + r4
H

2R2r2
H

Q (−)

S1

)(
1 + w

R4 + r4
H

2R2r2
H

Q (+)

S1

)2

,

(3.2)

the magnetic potential (written in a gauge such that
Aψ(θ = π/2) = 0) being

Aψ = √
6

√
1 + R2 − r2

H

2R2r2
H

w

1 + w

R2 − r2
H

R2rH

√
(1 − w)w

1 + w

S(+)

P (+)

. (3.3)

In the above relations we note

S(±) = r2 + r4
H

r2
± (R2 + r2

H )2

R2
+ 2r2

H cos 2θ − R4,

P (±) = (r2 ± r2
H )2(R2 + r2

H )2

r2r2
H R2

− 2

(
1 + R2 − r2

H

2R2r2
H

w

1 + w

)
S(±),

Q (∓) = (r2 ± r2
H )2(R2 + r2

H )2

r2(R4 + r4
H )

− S(±),

S1 = (r2 − r2
H )2(R2 + r2

H )2

2r2 R2r2
H

− S(−), (3.4)

with R4 =
√

(
r4

H +R4

R2 − r4+r4
H

r2 cos 2θ)2 + (r4−r4
H )2

r4 sin2 2θ . Also, f (0)
i

are the functions which enter the line element of the d = 5 static
vacuum black ring, with

f (0)
1 (r, θ) = 1

F1(r, θ)
, f (0)

2 (r, θ) = r2 F2(r, θ)

F3(r, θ)
,

f (0)
3 (r, θ) = r2 F3(r, θ), f (0)

0 (r, θ) = F0(r), (3.5)

and

F0 =
(

r2 − r2
H

r2 + r2
H

)2

,

F1 = R3(
1 − r2

H
R2

)2(
1 − r2

H
r2

)(
1 + r2

H
r2

)4

×
[(

1 + r4
H
4

)(
1 + r4

H
4

)
− 4r4

H
2 2

cos 2θ − 2r2
H
2

R3

]
,

r R r R R
F2 =
(

1 + r2
H

r2

)4

sin2 θ cos2 θ,

F3 = 1

2

[
R3 + R2

r2

(
1 + r4

H

R4
− r2

H

R2

(
r2

H

r2
+ r2

r2
H

)
cos 2θ

)]
, (3.6)

where R3 =
√

(1 + R4

r4 − 2R2

r2 cos 2θ)(1 + r8
H

r4 R4 − 2r4
H

r2 R2 cos 2θ).

This solution has three parameters, rH , R (which were intro-
duced in the previous section) and w , which is fixed by the value
of the magnetic potential at θ = 0, rH < r < R via (note that
0 � w < 1):

Ψ = 2

R

√
w

1 − w2

√
2R2r2

H + (
R4 + r4

H

)
w. (3.7)

A direct computation shows that this is indeed a solution of the
Einstein–Maxwell equations. Also, one can see that c1 → 1, c2 → 1
and Aψ → 0 as w → 0, this corresponding to the vacuum black
ring limit.

The computation of the quantities of interest for this solution
is a straightforward application of the general formalism in Sec-
tion 2.2.2. In the nonextremal case, one can write the following
suggestive expressions:

M = M(0)(1 + U ), T H = T (0)
H

(1 + U )3/2
,

AH = A(0)
H (1 + U )3/2, (3.8)

where

M(0) = 3πr2
H

4
, T (0)

H = R2 + r2
H

8π Rr2
H

,

A(0)
H = 4π2 Rr4

H

R2 + r2
H

(3.9)

are the mass, temperature and area of the vacuum static black ring
solution, and

Q = 2
√

3Rr2
H

√
U (1 + U )√

R4 + r4
H − 2R2r2

H (1 + 2U )

,

Φ =
√

3π

2R

√
U (R4 + r4

H − 2R2r2
H (1 + 2U ))

√
1 + U

, (3.10)

with 0 � U < (R2 − r2
H )2/(4R2r2

H ) a free parameter.6 The static
dipole rings have a conical excess

δ = 2π

[
1 − R2 + r2

H

R2 − r2
H

(
1 + 4R2r2

H U

R4 + r4
H − 2R2r2

H (1 + 2U )

)3/2]
,

(3.11)

while the expression of the corresponding conjugate extensive
variable A cannot be written in closed form.

The basic properties of the d = 5 nonextremal solution turn out
to be generic and will be discussed in the following subsection.
Here we mention only that the extremal solutions are found by
taking the limit rH → 0 in the relations (3.1)–(3.6). They have a
relatively simple form

6 The relation between w and U is w = 2R2r2
H U/((R2 − r2

H )2 − 2R2r2
H U ).
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f1 = (r2 + wT(−))(r2 + wT(+))
2

(1 + w)4r4 R1
,

f2 = 2r4 sin2 θ cos2 θ(r2 + wT(+))
2

(T+ − r2 cos 2θ)(r2 + wT(+))2
,

f3 = (T(+) − r2 cos 2θ)(r2 + wT(−))

2(r2 + wT(+))
,

f0 = r2 + wT(−)

r2 + wT(+)

, Aψ = R w
√

3

√
1 − w

1 + w

r2 − T(−)

r2 + wT(+)

, (3.12)

with T(±) = R1 ± R2, R1 = √
r4 + R4 − 2r2 R2 cos 2θ and w =

Q/
√
Q2 + 3R2. The horizon of the extremal solutions has zero

area, since the length of the S1 direction vanishes there, gψψ → 0.

Their mass and potential are given by M = 3πQR2

4(Q+
√
Q2+3R2)

, Φ =
3π R2

2(Q+
√
Q2+3R2)

, their conical excess is δ = − 4π(4Q3+9R2)

(−Q+
√
Q2+3R2)3

.

3.2. d = 6,7 numerical solutions

3.2.1. Remarks on the numerics
Higher dimensional generalizations of the d = 5 nonextremal

solution (3.1)–(3.6) are found by replacing in the five dimen-
sional line element the S1 direction which is not associated
with the magnetic potential, with the line element of a round
(d − 4)-sphere, while preserving at the same time the basic prop-
erties of the metric functions and of the magnetic potential.

Since no closed form solution is available in this case, the set
of five coupled nonlinear elliptic partial differential equations (2.6),
(2.7) is solved numerically, subject to the boundary conditions
(2.8)–(2.12).

The numerical scheme we have used is identical with that de-
scribed at length in [10] and thus we shall not enter into details.
We mention only that in practice we have worked with a set of
‘auxiliary’ functions Fi defined via7

f0 = f (0)
0 eF0 , f1 = f (0)

1 eF1 , f2 = f (0)
2 eF2 ,

f3 = f (0)
3 eF3 , (3.13)

where f (0)
i are ‘background’ functions corresponding to the d = 5

static vacuum black ring as given by (3.5). These ‘background’ func-
tions f (0)

i are used to fix the topology of the horizon and to ‘ab-
sorb’ the coordinate divergences of the functions f i . The ‘auxiliary’
functions Fi are smooth and finite everywhere such that they do
not lead to the occurrence of new zeros of the functions f i (there-
fore the rod structure of the solutions remains fixed by f (0)

i [10]).
However, Fi encode the effects of changing the spacetime dimen-
sion from d = 5 and also of introducing the local charge Q.

In our approach, the input parameters are the value d of the
spacetime dimension, the event horizon radius rH , the radius R
of the Sd−4-sphere, and the value of the local charge Q (i.e. the
parameter Ψ in the boundary conditions (2.11)). The physical pa-
rameters are encoded in the values of the functions f i (and their
derivatives) on the boundary of the integration domain. For exam-
ple, the mass parameter M is computed from the asymptotic form
(2.17) of the metric function gtt = − f0, the Smarr relation (2.18)
being used to verify the accuracy of the solutions.

7 Note that this procedure has some similarities with the construction of distorted
black holes [19]. However, in our case, the field equations do not reduce to simple
Laplace equations.
3.2.2. Properties of the solutions
To obtain nonextremal Einstein–Maxwell solutions with S2 ×

Sd−4 horizon topology, one starts with the vacuum configurations
in [9] and turns on the parameter Ψ which enters the boundary
conditions for the magnetic potential. The iterations converge, and,
in principle, repeating the procedure it is possible to obtain solu-
tions with arbitrary values of Q.

We have started with a test of the numerical scheme, by recov-
ering in this way the d = 5 static dipole black rings. Afterwards,
new solutions in d = 6,7 dimensions have been studied in a sys-
tematic way. Solutions with d > 7 should also exist; however, we
did not try to find them and their study may require a different
numerical method. We mention that, for all solutions, we have ver-
ified that the Kretschmann scalar stays finite everywhere.8

The central result in this work is that the d = 5 static nonex-
tremal dipole ring has higher dimensional generalizations with an
S2 × Sd−4 horizon topology. Moreover, the properties of the five
dimensional solutions are generic, being recovered for d > 5.

Let us start with a discussion of the solutions’ features for a
fixed value of the magnetic charge Q. Perhaps the most important
feature is that all d � 5 solutions have conical singularities. Thus
we have found it convenient to take the relative conical excess
δ/(δ − 2π) as the control parameter and to consider the following
dimensionless quantities,9 the scale being fixed here by M:

aH = p1
AH

M
d−2
d−3

, tH = p2T H M
1

d−3 , aδ = 1

Vd−4

A
M

,

ϕ = Φ

M
d−4
d−3

, (3.14)

with p1 = (( d−2
16π )d−2 Vd−2)

1
d−3 , p2 = 1

d−3 ( 22(d−1)πd−2

(d−2)Vd−2
)

1
d−3 two coef-

ficients which have been chosen such that aH = 1, tH = 1 corre-
sponds to the Schwarzschild–Tangherlini black hole.

In terms of the dimensionless ratio rH/R , the solutions interpo-
late between two limits (although these regions of the parameter
space are difficult to approach numerically). For R → ∞ and rH , Q
nonvanishing, the radius on the horizon of the Sd−4-sphere in-
creases and asymptotically it becomes a (d−4)-plane, while δ → 0.
After a suitable rescaling,10 one finds the magnetically charged
black brane solution

ds2 = H2(r)U1(r)
[
dr2 + r2(4 dθ2 + sin2 2θ dψ2)]

+ 1

(H(r))
2

d−3

(
dx2

1 + · · · + dx2
d−4 − U0(r)dt2),

A = −Q(1 + cos 2θ)dψ, (3.15)

where

H(r) = 1

(r + rH )2

(
r2 + r2

H + 2rrH

√
1 + d − 3

8(d − 2)

Q2

r2
H

)
,

U1(r) =
(

1 + rH

r

)4

, U0(r) =
(

r − rH

r + rH

)2

. (3.16)

This corresponds to a magnetically charged Reissner–Nordström
black hole uplifted to d dimensions, i.e. with (d − 4) flat directions.

8 Here we ignore the δ-Dirac terms in the expression of the Riemann tensor in
the presence of a conical singularity. In fact, the presence of a conical singularity has
a rather neutral effect on the numerics, since the solver does not notice it directly.

9 Note that in a numerical approach it is rather difficult to work with dimension-
less ‘reduced’ quantities in a systematic way, since, except for Q, it is not possible
to fix any other quantity which enters the Smarr relation and the first law.
10 For the d = 5 exact solution, this rescaling is r → √

2Rr, rH → √
2RrH , w →

w/R .
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Fig. 1. A number of quantities are shown as functions of the relative angular excess δ/(δ − 2π) for black hole solutions with the same local charge Q.
The limit rH/R → 1 is somehow more subtle, since the coni-
cal excess diverges, δ → −∞, and the magnetic field vanishes. As
can be seen in Fig. 1, the Schwarzschild–Tangherlini black hole
with an Sd−2 horizon topology is recovered in this limit. This
can be understood by studying the d = 5 exact solution. There,
as R → rH one finds c1 → 1 + O (R − rH ), c2 → 1 + O (R − rH )

while Aψ ∼ O (R − rH )2 (i.e. a vanishing charge), with the limit-
ing expressions f1 = f2/(r2 cos2 θ) = f3/(r2 sin2 θ) = (1 + r2

H/r2)2,
f0 = (r2 − r2

H )2/(r2 + r2
H )2.

Some results illustrating these aspects are shown in Fig. 1 (note
that we have found similar results for other values of Q as well).

A different situation which can be studied numerically is to
keep fixed the radii rH and R and to vary the value of the lo-
cal charge Q. Interestingly, turning on a magnetic field increases
the absolute value of the conical excess, see Fig. 2 (left). For fixed
rH , R , the values of the magnetic potential, horizon area, the pa-
rameter A and the mass increase with Q, while the temperature
decreases.

It seems that similar to the d = 5 case, the extremal solutions
are found in the limit rH → 0, for nonvanishing R and Q. However,
we could not approach this limit and the numerical construction of
the extremal solutions would require a different numerical scheme,
with another set of ‘background’ functions. This holds also for the
d = 5 solutions, in which case it can be understood by notic-
ing that the behaviour of the metric functions f1, f3 as r → rH

(i.e. f1 ∼ 1/r2, f2 ∼ r2) is not compatible with the boundary con-
ditions (2.9). We conjecture that the picture found for d = 5 is
generic and the extremal solutions will always possess a horizon
with vanishing area.

4. Balanced black holes with S2 × Sd−4 event horizon topology
in a Melvin universe background

The occurrence of conical singularities is not an unusual fea-
ture in general relativity. However, sometimes this pathology
can be cured by placing the solutions in an external field (see
e.g. [20–22]). This was the case for the d = 5 static dipole ring [12]
and also for extremal solutions in [15], which could be balanced
by “immersing” them in a background gauge field, via a magnetic
Harrison transformation. Unsurprisingly, this works also for the
configurations considered in this work.

The magnetic Harrison transformation can be summarized as
follows (see e.g. [23]). Let us consider a solution of the Einstein–
Maxwell equations of the form

ds2 = g yy dy2 + dσ 2 , A = A y dy, (4.1)
d−1
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Fig. 2. Left: The angular excess δ is shown as a function of the local charge for solutions with the same values of rH , R . Right: The dimensionless critical magnetic field
bc = BQ is shown as a function of the dimensionless event horizon area for balanced black holes with S2 × Sd−4 horizon topology in a Melvin universe background. The
inset shows bc as a function of the ratio R/rH .
with ∂/∂ y a Killing vector. Then the configuration

ds2 = 1

Λ2
g yy dy2 + Λ

2
d−3 dσ 2

d−1,

A = 1

Λ

[
A y + B

(
g yy + d − 3

2(d − 2)
A2

y

)]
dy, (4.2)

with

Λ =
(

1 + d − 3

2(d − 2)
B A y

)2

+ d − 3

2(d − 2)
B2 g yy, (4.3)

solves also the Einstein–Maxwell equations (with B an arbitrary
parameter).

The Harrison transformation (4.2) applied with respect to the
Killing vector ∂/∂ψ results in the following line element

ds2 = Λ
2

d−3
(

f1
(
dr2 + r2 dθ2) + f3 dΩ2

d−4 − f0 dt2)+ 1

Λ2
f2 dψ2,

with Λ =
(

1 + d − 3

2(d − 2)
B Aψ

)2

+ d − 3

2(d − 2)
B2 f2, (4.4)

and the new magnetic potential

A′
ψ = 1

Λ

[
Aψ + B

(
f2 + d − 3

2(d − 2)
A2

ψ

)]
. (4.5)

One can see that the new line element preserves some of the ba-
sic properties of the B = 0 seed configuration. The horizon is still
located at r = rH and has an S2 × Sd−4 topology, since the qual-
itative behaviour of the metric functions at θ = 0,π/2 remains
unchanged (note that Λ > 0 everywhere). However, the geome-
try is distorted and the asymptotic behaviour is very different.
As r → ∞, the solution becomes

ds2 = Λ
2

d−3
(
dr2 + r2(dθ2 + sin2 θ dΩ2

d−4

) − dt2)
+ r2 cos2 θ

Λ2
dψ2,

Aψ = Br2 cos2 θ

Λ
, with Λ = 1 + d − 3

2(d − 2)
B2r2 cos2 θ,

which is a higher dimensional generalization of the d = 4 Melvin
magnetic universe [24]. A direct calculation shows that the horizon
area and the temperature of the new solutions (4.4), (4.5) are not
affected by the external magnetic field, coinciding with the corre-
sponding quantities of the B = 0 seed configurations.

Moreover, by employing the same approach as in [25,12], it is
straightforward to show that the mass of the new solutions, as
defined with respect to the Melvin universe background, still pre-
serves the expression found in the asymptotically flat case.11

The configurations with generic values of B possess again a
conical singularity at θ = 0, rH < r < R . However, this conical sin-
gularity vanishes for a critical value of the magnetic field,

Bc = 1

Q
4(d − 2)

(d − 3)

(
1 −

(
1 − δ

2π

) d−3
2(d−2)

)
. (4.6)

The dimensionless quantity bc = BcQ is shown in Fig. 2 (right)
as a function of the parameters aH and R/rH for d = 5,6,7 solu-
tions. One can see that bc diverges as the Schwarzschild limit is
approached.

5. Conclusions

In this work we have shown numerical evidence that the vac-
uum static black holes with S2 × Sd−4 horizon topology discussed
in [9] admit nonextremal generalizations in Einstein–Maxwell the-
ory. These new solutions have a dipolar magnetic field, which is
created by a spherical Sd−4 distribution of monopoles. They also
share the basic properties of the d = 5 static dipole ring and pos-
sess conical singularities, which, in the absence of rotation, prevent
the black objects to collapse. Of course, on general grounds, one
expects the d > 5 new solutions in this work to possess rotating
generalizations and thus to achieve balance for a critical value of
the angular momentum. Unfortunately, the explicit construction of
such solutions proves a very difficult numerical problem, see the
discussion in [10].

However, as discussed in the second part of this work, these
static black objects with an S2 × Sd−4 topology of the horizon
can be held in equilibrium by switching on a magnetic field with
an appropriate strength. To the best of our knowledge, this is the

11 The fact that the thermodynamics of a magnetized static black hole is not af-
fected by the presence of the background magnetic field has also been noticed for
other solutions, see e.g. [25,12,22].
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first explicit construction of d > 5 static and balanced black objects
which are regular on and outside an event horizon of nonspherical
topology.12 However, the magnetic field does not vanish asymptot-
ically, such that the background spacetime corresponds in this case
to a d dimensional Melvin universe. Therefore the construction of
asymptotically flat, static balanced black objects with a nonspheri-
cal horizon topology remains an open problem.

Our preliminary results indicate that the solutions in this work
can be generalized to include a dilaton. In this ways, they could
be uplifted to higher dimensions and interpreted in a string the-
ory context. Moreover, we expect that all static configurations with
a nonspherical horizon topology discussed in [10] would admit
generalizations with a dipolar magnetic field. Although the asymp-
totically flat static solutions will possess conical singularities, the
interaction with an external magnetic field would balance them.
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