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We  revisit  our  hypothesis  that  drug  addiction  can be  viewed  as the  endpoint  of  a  series  of  transitions
from  initial  voluntarily  drug  use  to habitual,  and  ultimately  compulsive  drug  use.  We  especially  focus
on  the  transitions  in striatal  control  over  drug  seeking  behaviour  that  underlie  these  transitions  since
functional  heterogeneity  of the  striatum  was  a key area  of Ann  Kelley’s  research  interests  and  one in
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which  she  made  enormous  contributions.  We  also  discuss  the  hypothesis  in light of  recent  data  that
the  emergence  of  a compulsive  drug  seeking  habit  both  reflects  a shift  to dorsal  striatal  control  over
behaviour  and  impaired  prefontal  cortical  inhibitory  control  mechanisms.  We  further  discuss  aspects
of  the  vulnerability  to compulsive  drug  use  and  in particular  the  impact  of impulsivity.  In writing  this
review  we  acknowledge  the  untimely  death  of an  outstanding  scientist  and  a  dear  personal  friend.
refrontal cortex © 2013  Elsevier  Ltd.  
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. Introduction

Ann Kelley’s research focused on the functions of the basal
anglia. This work ranged from her PhD thesis on the role of sub-
tance P in the ventral tegmental area (Kelley and Iversen, 1978) to
ost-doctoral discoveries with Walle Nauta about anatomical inter-
ctions of the amygdala with the nucleus accumbens (Kelley et al.,
982). Subsequently, she systematically mapped the striatum for
he effects of amphetamine on conditioned reinforcement (Kelley
nd Delfs, 1991) and stereotyped behaviour (Kelley et al., 1988,
997). In fact, her interests in feeding motivation stemmed from
er observations on gnawing elicited within the striatum. She influ-
nced our own work through her attempts to dissociate functions
f the core and shell sub-regions of the nucleus accumbens (e.g.

the nucleus accumbens in control of eating and other aspects of
appetitive motivation.

In  addition to this research on the neurochemical coding of
motivational and hedonic mechanisms in the nucleus accumbens,
revealing distinct roles for opioid and dopaminergic transmission
in core and shell (Baldo and Kelley, 2007), Ann Kelley’s research
also focused on the neural mechanisms within the nucleus
accumbens of appetitive instrumental learning (Kelley, 2004). Her
approach was informed historically by Thorndike’s (1911) ‘law of
effect’ — that the probability of a response being made is increased
when followed by a reward (or ‘satisfaction’) and decreased when
followed by ‘discomfort’. Although intended to mark some dis-
tinction from pavlovian associations between stimuli, rather than
responses, and outcomes, Kelley recognised that these processes

Open access under CC BY-NC-ND license.
aldonado-Irizarry and Kelley, 1995). She was also one of the first
o highlight the apparently different effects of manipulating opi-
id (Bakshi and Kelley, 1993) and dopamine mechanisms within

∗ Corresponding author. Tel.: +44 1223 333583.
E-mail  address: bje10@cam.ac.uk (B.J. Everitt).

149-7634 © 2013 Elsevier Ltd. 
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Open access under CC BY-NC-ND license.
are ‘closely intertwined, both neurally and conceptually’ (Kelley,
2004) and this same realisation has framed much of our own
research on understanding the neural mechanisms underlying

drug addiction. This has centred around the notion that addiction
can be understood in terms of the operation of the brain’s pavlo-
vian and instrumental learning and memory systems and their
subversion by the potent actions of self-administered addictive

https://core.ac.uk/display/82631361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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http://creativecommons.org/licenses/by-nc-nd/3.0/
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rugs on dopaminergic transmission within corticostriatal
ystems (Everitt and Robbins, 2005; Robbins and Everitt,
999).

The hypothesis we advanced in 1999 and refined in 2005 was
hat drug addiction was the endpoint of a series of transitions
rom initial drug use, when a drug is voluntarily taken because
t has reinforcing effects (that embody positive subjective states),
hrough loss of control over this behavior as it emerges as a
timulus–response (S–R) habit, ultimately to become compulsive
nd not easily relinquished. Although the notion of progression
rom use to abuse to addiction was widely accepted, our exper-
mental approach was different, bringing a contemporary animal
earning theory analysis of pavlovian and instrumental learning
rocesses and interactions between them that might underlie drug
eeking and drug taking. Our overarching hypothesis was that the
ransition from voluntary to habitual and progressively compulsive
rug use is the result of dynamic shifts in the neural loci of control
ver behaviour, from the ventral to dorsal striatum, mediated by
ts stratified dopaminergic innervation, together with a progessive
ecrease in prefrontal cortical control over drug seeking and drug
aking behaviour (Everitt and Robbins, 2005; Everitt et al., 2008).
n the period since, considerable evidence has accrued to support
his hypothesis.

An  important fundamental principle guiding our research and
lso Ann Kelley’s (e.g. Kelley, 2004) was that the general concept
f positive reinforcement conflates at least two different processes
hich have been identified by contemporary analyses of condi-

ioning with conventional reinforcers (Dickinson, 1985; Dickinson
nd Balleine, 1994). The first is a cognitive process based upon
nowledge of the relationship between instrumental behaviour
nd its outcome (i.e. reinforcer). When controlled by this process,
nstrumental behaviour takes the form of intentional, goal-directed
ctions which are performed because the animal ‘knows’ that
hese actions (A) give access to the reinforcer or outcome (O).
he second is the stimulus–response (S–R) mechanism by which
einforcers strengthen an association between the response and
he contextual and discriminative stimuli present at the time of
einforcement. Behaviour controlled by this process is composed
f simple, habitual responses that are elicited automatically by
hese discriminative stimuli especially, we have argued, when pre-
ented response-contingently and acting as conditioned reinforcers
Everitt and Robbins, 2005).

Our enhanced, but still incomplete, understanding of the neural
asis of instrumental behaviour has depended upon studies with

ngestive reinforcers, since the relative contribution of the S–R habit
echanism and the cognitive A–O process can be determined by

he use of an outcome devaluation procedure in which, follow-

ng instrumental (i.e. operant) training, the value of the outcome
s changed and the impact this has on responding can be measured
Adams and Dickinson, 1981). If instrumental behaviour is con-
rolled by the S–R mechanism, performance should be unaffected

able 1
rocedures used to probe the associative structure underlying instrumental behavior.

Reinforcer devaluation procedure

(i) Lithium chloride post-ingestive malaise
(ii) Specific satiety (free access to reinforcer and ingestion to satiety immediately befor
(iii) Instrumental contingency degradation (altering the probability of reinforcer delive

of  two previously equally reinforced levers)
(iv) Extinction of the taking response in a seeking-taking chained schedule. Extinction o

the  absence of the seeking lever, so any change in responding depends upon ‘knowle
devalued  taking response outcome.

B The test phase in (i), (ii) and (iv) occurs in the absence of the reinforcer (i.e. in extinct
iii)  alters the relationship between response and outcome by intermittent non-continge
ut measures its impact on making antecedent seeking responses that provide the oppor
ehavioral Reviews 37 (2013) 1946–1954 1947

by  devaluation (see Table 1), whereas a change in the value of the
outcome should reduce actions based on the A–O relationship. Such
studies have shown that although instrumental learning may ini-
tially proceed via the cognitive A–O process (as studied by Kelley,
2004), its control passes to the S–R habit mechanism with extended
training (Adams, 1982; Dickinson, 1985). One of the challenges in
relating these concepts to the seeking and taking of drugs is that
intravenously self-admininstered drugs of abuse, such as stimu-
lants, apparently cannot be devalued by gastric malaise (by lithium
chloride) nor by specific satiety, since pre-loading with stimulants
or opiates markedly alters the propensity to respond, confounding
any interpretation of the devaluation event.

2. The transition from voluntary to habitual drug seeking
and  its striatal locus of control

While it is well established that the ventral striatum, includ-
ing the nucleus accumbens (Acb), plays a key role in mediating
the reinforcing effects of stimulant drugs through its dopaminergic
innervation (Wise, 2004), it has proven more problematic to define
the neural basis of the acquisition of the instrumental behaviour of
addictive drug self-administration because it is difficult to disen-
tangle the neural mechanisms of instrumental conditioning from
those mediating the rewarding and motor effects of the drugs.
Whereas the acquisition of cocaine self-administration is impaired
by manipulations that diminish the reinforcing effects of the drug,
such as Acb dopamine (DA) depletion (Roberts and Koob, 1982)
and DA receptor blockade (Robledo et al., 1992), it is not prevented
by specific lesions of either the Acb core (AcbC) or shell (AcbS)
(Ito et al., 2004), although this may  possibly indicate the particular
importance of the dopaminergic innervation of the olfactory tuber-
cle component of the ventral striatum in stimulant reinforcement
(Ikemoto, 2003).

However, we  have made a distinction between the fundamen-
tal and widely studied behaviour of drug self-admininstration, in
which each response is reinforced and there is thus a tight and pre-
dictable relationship between response and outcome (which we
have termed ‘drug taking’), and ‘drug seeking’ behaviour which
models ‘real world’ foraging for drugs (Everitt and Robbins, 2000;
Everitt et al., 2001). This seeking behaviour must be maintained
over long periods of time during which instrumental responding
is less predictably related to the drug outcome and is also greatly
influenced by drug-associated, pavlovian CSs, that in humans are
known to induce craving, drug seeking and relapse after abstinence
(O’Brien et al., 1991; Childress et al., 1999; Garavan et al., 2000;
Grant et al., 1996). We  therefore invested considerable effort in

establishing a second-order schedule of cocaine reinforcement in
which rats respond for between 15 and 60 min prior to each cocaine
infusion (or heroin, or highly palatable food delivery or, in earlier
times, a female in heat and subsequent sex). The key feature of

Effect on instrumental responding

Action-outcome Stimulus-response

Reduced responding Responding persists
e test) Reduced responding Responding persists
ry on one Reduced  responding Responding persists

ccurs in
dge’ of the

Reduced responding Responding persists

ion); (i) and (ii) involve affective devaluation (by directly reducing reward value);
nt reinforcer delivery; (iv) alters the value of the outcome of the taking response,
tunity to make the taking response.
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his seeking behaviour is that it is sensitive not only to the contin-
ency between instrumental responses and drug administration
uring its acquisition, but also to the presence of the CSs which,
s conditioned reinforcers, have an increasingly dominant effect
n the performance of seeking when it is well-established and, we
ave argued, habitual (Everitt et al., 2010). An important feature of
rug seeking measured in this way is that, following acquisition of
ocaine taking, the response contingencies in operation that deter-
ine when cocaine or heroin are self-administered intravenously

an be altered, challenging the animal’s A–O learning mechanism
efore progressing to S–R, habitual control. Using this behavioural
pproach, we have demonstrated the engagement of different sec-
ors of the striatum during the transition from goal-directed to
abitual drug seeking.

In  our earlier review (Everitt and Robbins, 2005) we  discussed
he data available at the time that could be seen as consistent with
ur hypothesis. Thus, we had shown that AcbC, but not AcbS, lesions
mpaired the acquisition of cocaine seeking and that this was likely
ue to a disruption of the control over instrumental responses by
onditioned reinforcers (Ito et al., 2004) and an impaired ability to
olerate the delays to primary reinforcement in this task (Cardinal
t al., 2001). However, when cocaine seeking behaviour was over-
rained, its locus of control devolved to the anterior dorsolateral
triatum (aDLS), being also greatly decreased by dopamine recep-
or blockade in the aDLS, but not in the AcbC (Vanderschuren et al.,
005). These data were in accord with our prior observation that
ell-established cocaine seeking under the second-order schedule

s associated with increased extracellular dopamine in the aDLS, but
ot in the AcbC or AcbS (Ito et al., 2000, 2002). Interestingly, while
cbS lesions were without effect on the acquisition of cocaine seek-

ng, they prevented the effects of self-admininistered cocaine from
otentiating responding, recapitulating our earlier data demon-
trating the role of the AcbC in conditioned reinforcement and AcbS
opamine in its potentiation (Taylor and Robbins, 1984; Parkinson
t al., 1999), and reflecting dissociations in the functions of the
ore and shell nodes within limbic cortical-ventral striatal circuitry
hat complemented those demonstrated by Ann Kelley. Indeed,
isconnecting the basolateral amygdala and AcbC using unilateral
anipulations of each structure, but on opposite sides of the brain,

lso greatly impaired cocaine seeking, thereby showing the func-
ional importance of the operation of this system (Di Ciano and
veritt, 2004). These data are consistent with the widely accepted
iew that the nucleus AcbC, with its afferents from the amyg-
ala mediates the impact of CSs on appetitive behaviour, not only
onditioned reinforcement, but pavlovian motivation (measured
y pavlovian-instrumental transfer tasks) and conditioned pavlo-
ian approach (reviews: Cardinal et al., 2002; Cardinal and Everitt,
004; Blaiss and Janak, 2009). However, it left open the issue of
he striatal locus (or loci) of instrumental A–O learning, rather than
einforcement and pavlovian-instrumental interactions, in the ear-
iest stages of acquiring new drug seeking strategies when they are
oal-directed.

This issue has become clearer from studies of responding for
ngestive rewards, showing that early acquisition and performance
epends upon the pDMS whereas habitual behaviour that develops
fter overtraining depends upon the aDLS (Balleine et al., 2009; Yin
t al., 2006). In addition, both NMDA receptor blockade (Yin et al.,
005) and disruption of extracellular signal-regulated kinase (ERK)
ignalling in the pDMS, but not the aDLS, prevented A–O learn-
ng during the acquisition of food-reinforced responding which

as shown to be immediately insensitive to outcome devaluation
Shiflett et al., 2010) (see Table 1). Conversely in overtrained rats,

esions, inactivation (Yin et al., 2006) or dopaminergic denervation
Faure et al., 2005) of the aDLS disrupted both the performance
nd establishment of S–R control over behaviour. It is important to
ealise here that there is no or little change in overall instrumental
ehavioral Reviews 37 (2013) 1946–1954

response  output following pDMS or aDLS lesions or inactivations,
but the associative structure underlying responding is different,
being either under the control of the value of the outcome (pDMS,
A–O learning) or stimuli associated with the outcome (aDLS, S–R
learning). This pDMS to aDLS shift in the control over behaviour
has also been shown in spatial navigation tasks to reflect the tran-
sition from flexible, adaptive to inflexible, habitual performance
(Packard and McGaugh, 1996; Lex et al., 2011).

We have therefore recently investigated the involvement of
dopamine signaling in the pDMS and aDMS in the early and
later, well-established stages of performance of cocaine seeking,
revealing a double dissociation in their functional engagement at
these time points (Murray et al., 2012). Bilateral infusions of the
dopamine receptor antagonist �-flupenthixol into the pDMS dose-
dependently impaired cocaine seeking only during early stage tests
when animals had to adapt to a change in response contingency
both for the CS and cocaine. But identical infusions had no effect
when infused after extended training. In contrast, �-flupenthixol
infusions into the aDLS had no effect during the early tests, but
greatly reduced cocaine seeking at the later, well established or
habitual stage, so confirming our earlier findings (Belin and Everitt,
2008; Vanderschuren et al., 2005). These effects on learning and
performance could not be attributed to �-flupenthixol-induced
changes  in cocaine reinforcement (Veeneman et al., 2012), both
because the effects on seeking were measured before any influ-
ence of self-administered cocaine infusion in each test session and
also because �-flupenthixol had no measurable effect on taking
responses when cocaine was  self-administered after each response.
Nor did the shift from pDMS to aDLS control simply reflect the
impact of a long history of cocaine self-administration, since match-
ing the total cocaine intake to that of the extended training group,
but under a continuous (FR1) reinforcement schedule prior to the
first seeking tests, resulted in the same sensitivity to pDMS �-
flupenthixol infusions that was seen after a short cocaine taking
history. Thus, the shift from pDMS to aDLS control over cocaine
seeking resulted from an interaction between cocaine taking and
extended training under an instrumental seeking schedule that
facilitates the emergence of habitual control over behaviour (Belin
et al., 2009; Dickinson, 1985).

Whilst there is now clear and consistent evidence of the tran-
sition from ventral to dorsomedial and dorsolateral striatum in
the control over cocaine seeking behaviour, there is no direct evi-
dence of a shift from A–O (or goal-directed) to S–R mechanisms.
This reflects the special difficulty of implementing the usual crite-
ria for establishing habit-like S–R representations (see Table 1)
with intravenously (i.v.) self-administered drug reinforcers. For
example, it is very difficult to devalue i.v. cocaine by lithium
chloride (LiCl)-induced gastric malaise, there being little or no evi-
dence of cross-modal associations between gastric malaise and the
reinforcing effects of drugs mediated directly in the brain by an
increase in dopamine transmission. Additionally, the use of ‘sati-
ety’ (commonly used to define habitual responding with ingestive
reinforcers) and contingency degradation (response-independent
delivery of the drug) has proven difficult to employ in the drug-
seeking context. However, we have shown that responding for oral
cocaine became habitual and resistant to reinforcer devaluation
by LiCl injection (Miles et al., 2003). Furthermore, responding for
alcohol became resistant to LiCl-induced devaluation much more
rapidly than responding for sucrose, suggesting that ingestion of an
addictive drug leads to the more rapid instantiation of a S–R habit
process than is the case for ingestive natural rewards (Dickinson
et al., 2002).
Nonetheless, a devaluation procedure also used in studies of
ingestive rewards has been employed to reveal the shift from
goal-directed to habitual cocaine seeking under a seeking-taking
chained schedule (see Table 1) in which animals performed a drug
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eeking response in the initial link of the chain, which then gave
ccess to a drug-taking response in the second link, performance
f which delivered cocaine (Olmstead et al., 2001). After a brief
istory of self-admininistration, cocaine seeking was  shown to be
oal-directed since performance was sensitive to devaluation by
xtinguishing the taking link in the absence of opportunity to make

 seeking response (Olmstead et al., 2001). The key point in inter-
reting this result is that the seeking response was  never directly
einforced by cocaine, it only provided the opportunity to make the
aking response. Thus, the propensity to make seeking responses
epends upon the value of the outcome of the taking response
i.e. cocaine) once the opportunity to make it had been earned.
xtinction of the taking response resulted, on first presentation of
he seeking lever, in a marked reduction in responding suggesting
hat seeking behaviour was driven by the value of the outcome.
his devaluation effect demonstrated that cocaine seeking at an
arly stage of performance is mediated by the value of the seeking
esponse outcome.

Our  seeking-taking procedure was adopted subsequently by
oni Shippenberg and colleagues to do the experiment that we
hould have completed earlier, namely to allow animals to self-
dmininster cocaine over a much extended period in order to see
hether cocaine seeking became habitual and insensitive to deval-
ation. Zapata et al. (2010) confirmed our earlier result that cocaine
eeking is goal-directed early after acquisition, but further showed
hat it became insensitive to devaluation of the taking link after

 prolonged drug taking history. In addition, they were able to
emonstrate that inactivation of the aDLS reinstated sensitivity of
eeking to the devaluation manipulation, so that it again became
oal-directed, a result that is consistent with that from studies with
n ingestive reward (Yin et al., 2004, 2005; Balleine et al., 2009).

The  shift from DMS to DLS control over responding for an addic-
ive drug has now also been studied in detail for alcohol, with the
dvantage that a devaluation manipulation (a satiety procedure
nvolving 45 min  of free access to alcohol before test; see Table 1)

as employed with this orally ingested drug to make possible an
ssessment of sensitivity or resistance to reinforcer devaluation
fter one, two, four or eight weeks of training (Corbit et al., 2012).
t was demonstrated that instrumental alcohol seeking became
nsensitive to devaluation after 4 weeks of training (similar to the
esults of Dickinson et al., 2002), with the S–R process overshad-
wing the A–O process to gain full control over behaviour by eight
eeks. This behavioural transition from goal-directed to habitual

ontrol over alcohol seeking was further shown to be mirrored by
 shift from the DMS  to the DLS. Thus, whereas inactivation of the
MS prevented the expression of an ethanol devaluation effect fol-

owing two weeks of training, this manipulation was  ineffective
fter 8 weeks of training when inactivation of the DLS restored sen-
itivity to devaluation, having had no behavioural consequences
t the earlier stage (Corbit et al., 2012). Thus goal-directed and
abitual alcohol seeking depend, as we have argued for cocaine
eeking, on DMS and DLS processes that are likely engaged in par-
llel, but with the aDLS-dependent S–R process eventually exerting
ominant control over behaviour.

The recruitment of the aDLS by prolonged self-administration
f psychostimulant drugs is also correlated with a progressive
ncrease in dendritic spines and implied neural plasticity in the
LS, as compared to the DMS  (Jedynak et al., 2007). Similarly,

n monkeys self-administering cocaine, adaptations in metabolic
arkers, the DA transporter and D2 DA receptors that were

nitially restricted to more ventral parts of the striatum were, after
rolonged cocaine admininstration, increasingly prominent in the

orsal and lateral anterior striatum (Letchworth et al., 1999, 2001;
orrino et al., 2004). We  earlier showed increased extracellular DA
n the DLS, but not in the AcbS or AcbC after several weeks of cocaine
eeking experience (Ito et al., 2000, 2002), data that are consistent
ehavioral Reviews 37 (2013) 1946–1954 1949

with  the finding that prior administration of cocaine results in
a shift in the balance of CS-evoked firing from ventral to dorsal
striatum (Takahashi et al., 2007). Habitual control over behaviour
is also associated with on-line transitions in electrophysiological
activity between the DMS  and DLS in a T-maze task in rats, such
that DMS  neuronal activity was  actively engaged during acquisi-
tion and early behavioural performance, but then progressively
decreased over training, eventually leaving DLS activity to drive
habitual performance (Thorn et al., 2010). These experimental data
provide a context for the observations that cue-induced craving
in human cocaine addicts is associated with increased metabolic
activity and dopamine release in the dorsal striatum (Garavan et al.,
2000; Volkow et al., 2006; Wong et al., 2006). Moreover, Ersche
et al. (2012a,b) recently reported that the left putamen was siginif-
icantly enlarged both in cocaine-dependent individuals and their
non-drug abusing siblings, suggesting an endophenotype for drug
addiction that is associated with a predisposition to acquire the
drug seeking and taking habits characteristic of the addicted state.

These observations supporting the increasing importance of the
dorsal striatum in well-established, or habitual, drug seeking raise
the issue of how, in neural terms, such a shift in the locus of
control from ventral to dorsal striatum might occur. We  hypoth-
esized (Everitt and Robbins, 2005; Belin and Everitt, 2008) that
it could be mediated by the striato-nigro-striatal ascending, or
‘spiralling’ dopamine-dependent circuitry that functionally links
domains of the ventral and dorsal striatum, initially revealed in
the primate brain (Haber et al., 2000), but also seen in the rat
brain (Ikemoto, 2007). We investigated the functional importance
of this link by ‘disconnecting’ the ventral from the dorsal striatum
by infusing the dopamine receptor antagonist, alpha-flupenthixol
into the aDLS, contralateral to a selective lesion of the AcbC, thus
effectively compromising any recruitment of dopamine transmis-
sion in the aDLS by antecedent activity in the AcbC on one side of
the brain, but blocking the consequences of it in the intact aDLS
(Belin and Everitt, 2008). This disconnection resulted in an iden-
tical degree of reduction in well-established cocaine seeking to
that observed after bilateral infusions of alpha-flupenthixol into the
aDLS (Belin and Everitt, 2008; Murray et al., 2012; Vanderschuren
et al., 2005). Thus, the long-term performance of instrumental seek-
ing responses for cocaine depends upon a striatal network involving
interactions between the AcbC and dopamine transmission in the
aDLS. Direct evidence that the AcbC regulates DA release in the
aDLS was  provided by an in vivo voltammetric study of DA release
in both structures during cocaine self-administration in rats; a spe-
cific lesion of the AcbC prevented a late-emerging (after 3 weeks of
self-admininstration) DA transient in the ipsilateral, but not con-
tralateral DLS, thereby indicating AcbC control over DA function
in the DLS interacting with the duration of the history of cocaine
self-administration (Willuhn et al., 2012).

Evidence from computational modelling and functional imaging
studies has provided further evidence that ventral striatal processes
may drive nigro-dorsal striatal activity to guide decision making
(Kahnt et al., 2009). Taken together with the data summarised
above, this suggests that a distributed ventral striatal—posterior
dorsomedial striatal network is engaged in the acquisition and
early performance of cocaine seeking under A–O control, but that
an AcbC—aDLS circuit dominates well-established habitual perfor-
mace (Murray et al., 2012).

3.  Impulsivity and compulsive drug seeking in addiction
Having argued and, together with others, experimentally
demonstrated that drug seeking becomes habitual, being evoked
and maintained by drug associated CSs in the drug user’s envi-
ronment so that drug seeking persists even when the drug’s value
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ay  have decreased (e.g. through tolerance), it should be acknowl-
dged that there is nothing aberrant or unusual about devolving
ehavioural control to a dorsal striatal S–R ‘habit’ mechanism. This
lso occurs, as we have seen, in individuals responding for ingestive
ewards although it may  develop more rapidly when the reinforcer
s an addictive drug (Dickinson et al., 2002; Corbit et al., 2012).
abits also dominate behaviour in other aspects of our every-
ay lives (Duhigg, 2012). Automatisation of behaviour frees up
ognitive processes to enable us to respond to rapidly changing con-
ingencies and expectations in the environment. However, we  have
rgued (Everitt and Robbins, 2005; Everitt et al., 2008) that it is per-
aps the compulsive nature of CS-evoked drug seeking habits that

s at the core of drug addiction. Thus, individuals addicted to drugs
eek and take them compulsively, at the expense of other sources
f reinforcement and despite negative outcomes that include risk
o the individual in terms of deterioration in their personal physical
nd mental health, and when negotiating the dangerous environ-
ents in which they must forage to fuel their compulsive habit.
owever, not all individuals that experiment with drugs, or even

ake them on a frequent basis become dependent. Only some indi-
iduals are vulnerable to lose control over their drug intake, a
roportion that is often estimated to be about 20% of those initially
xposed to addictive drugs (Anthony et al., 1994). What do we  know
bout this vulnerability at a psychological or neurobiological level
f analysis?

We  have developed a model of compulsive cocaine seeking,
efined as persistent responding for the drug despite the threat
r reality of an aversive outcome. Rats were trained on the cocaine
eeking-taking chained schedule described above (Olmstead et al.,
000), but intermittent punishment of the seeking response was
ubsequently introduced (i.e. on 50% of the seeking bouts, the out-
ome was not the opportunity to take cocaine, but instead delivery
f a mild footshock; Pelloux et al., 2007). Introduction of punish-
ent resulted in the suppression of cocaine seeking, or abstinence,

n all animals after acquisition of the seeking-taking chain and a
elatively short cocaine self-admininstration history. But after an
xtended (Pelloux et al., 2007; Vanderschuren and Everitt, 2004)
r escalated (Jonkman et al., 2012a,b; Pelloux et al., 2012) self-
dministration history a sub-group of 17–20% of individuals were
ompletely resistant to punishment, continuing to seek and take
rugs despite the ongoing, daily experience of the negative out-
ome. The degree of cocaine exposure, rather than the degree of
onditioning through pavlovian pairings of CS and drug, was shown
o be critical in determining the propensity to persist in seeking
ocaine under punishment (Jonkman et al., 2012a,b). In related
esearch, Deroche-Gamonet et al. (2004), identified the emergence
f three addiction-like behavioural criteria in rats, but again only
fter about 40 days of cocaine self-administration: (i) an increased
otivation to take the drug measured as break-points under a pro-

ressive ratio of cocaine reinforcement, (ii) an inability to refrain
rom drug-seeking during signalled periods of drug unavailability
nd (iii) persistent responding for cocaine even when it was  pun-
shed by mild footshock. Having established these procedures for

easuring compulsive cocaine seeking, we have begun to inves-
igate the predisposing, or vulnerability, factors involved and the
nderlying neural mechanisms.

In terms of vulnerability, we have shown in a series of stud-
es that a high level of impulsivity in rats confers vulnerability
o several key aspects of cocaine, but not heroin, seeking and
aking behaviour (Dalley et al., 2007; Belin and Everitt, 2008;
conomidou et al., 2009; McNamara et al., 2010). Thus, highly
mpulsive responding in an attentional task (the 5-choice serial

eaction time task, 5-CSRTT) in about 7% of a Lister hooded rat
opulation, which is associated with low dopamine D2 receptor
vailability in the NAc but not DS, predicted subsequent (i) esca-
ated responding for i.v. cocaine on a binge access schedule (Dalley
ehavioral Reviews 37 (2013) 1946–1954

et  al., 2007), (ii) an increased propensity to relapse after absti-
nence (Economidou et al., 2009) and (iii) a tendency to respond
compulsively for cocaine under punishment after a prolonged
period of access to the drug (Everitt et al., 2008). The results of
these studies provide experimental evidence that high levels of
impulsivity can antedate the onset of compulsive drug use, thereby
emphasizing the importance of pre-existing impulsivity seen in
individuals addicted to drugs (Dom et al., 2006; Jentsch and Taylor,
1999; Ersche et al., 2012b; Verdejo-Garcia and Perez-Garcia, 2007;
Chakroun et al., 2004). The latter study used an endophenotype
design to show that another measure of impulsivity, prolonged
stop-signal reaction times, in a commonly used test of response
inhibition (stop-signal task), was significantly greater not only in
chronic cocaine abusers, but also in their non-drug abusing siblings.

Demonstrating that impulsivity is a factor underlying the
tendency to escalate drug intake and to relapse after absti-
nence indicates that impulsivity might be a therapeutic target
for the pharmacological treatment of addiction. Intriguingly, the
anti-ADHD drug atomoxetine (a selective noradrenaline reup-
take inhibitor) remediated high levels of impulsivity both when
administered systemically and also when infused into the shell
sub-region of the accumbens (Fernando et al., 2012; Economidou
et al., 2012). Systemic atomoxetine also greatly reduced cocaine-
and heroin-seeking under a second-order schedule of i.v. drug
self-administration (Economidou et al., 2012), but not compulsive
cocaine seeking (Pelloux et al., 2012). These results perhaps sug-
gest a role for atomoxetine in the treatment of those individuals
who are addicted to cocaine, but who do not show a compulsive
pattern of use (Ersche et al., 2012a,b).

There are several possible origins of compulsion within the
brain that are not mutually exclusive. The neuroadaptations occur-
ring during behavioural sensitization to stimulant drugs have been
argued to underlie an extreme incentive motivational state of
drug ‘wanting’ (Robinson and Berridge, 1993). Those addicted to
drugs may  experience this state especially when exposed to drug-
associated cues, which leads to over-activation of the sensitized
dopaminergic innervation of the Acb, in which plasticity-associated
structural changes in dendritic spines result from a sensitisation
treatment regimen (Ferrario et al., 2005). One interpretation of
compulsive drug seeking, then, is that it is a behavioural mani-
festation of this potentiated motivational state; its impact on the
motivation to seek drugs has been demonstrated in some stud-
ies (see Vezina, 2004). However, stimulant sensitization also leads
to the more rapid instantiation of S–R habits (Nelson et al., 2006)
and it is not easy to differentiate at the behavioural level between
an increased tendency to repeat drug seeking responses elicited
and maintained by drug-associated CSs — what we have called the
‘must do!’ of compulsive habits (Everitt and Robbins, 2005) — from
an increased desire for a drug.

An alternative, potentially powerful source of the motiva-
tion is negative reinforcement — the alleviation or avoidance
through self-medication of the negative affective state resulting
from withdrawal from drugs, perhaps resulting in a persistent
hedonic allostatic state of dysphoria or anhedonia (Koob and
Le Moal, 2005; Koob and Volkow, 2010). The neural counter-
adaptations correlating with this state are prevalent in the central
and extended amygdala as well as within the reward system (Koob,
2008). These positive and negative reinforcement mechanisms
induced by short-term (sensitisation) and long-term (tolerance,
withdrawal and hedonic allostasis) exposure to addictive drugs are
not either/or, and addiction may  reflect a combination of increased
incentive motivation mediated by the up-regulation of ventral

striatal DA transmission, by strongly consolidated S–R habits medi-
ated by the dorsal striatal, DA-dependent mechanisms, and the
drive engendered by negative emotional states in extra-striatal
networks.
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However, there may  be additional neural mechanisms underly-
ng the compulsive drug seeking seen in drug addiction. Indeed, it
s significant that chronic stimulant abusers have elevated scores
n the OCDUS scale for measuring compulsive drug use, which
aptures behavioural predispositions in drug taking rather than
eflecting subjective motivational responses based on ‘liking’ or
wanting’ (Ersche et al., 2010). Moreover, stimulant abusers and
heir siblings have a propensity to exhibit obsessive-compulsive
ike or ritualistic behaviours as measured by the Padua Inventory
or Obsessive-Compulsive Disorder ritualistic behaviors, indicative
f a possible overlap between these disorders (Ersche et al., 2011a,
012b). We  and others have hypothesized that the compulsive
ature of drug seeking and taking might arise in part as the direct
r indirect consequence of toxic drug effects based on impaired
op-down control by prefrontal cortical processes and a shift in
he balance of behavioral control from PFC to striatum (Jentsch
nd Taylor, 1999; Robbins and Everitt, 1999; Everitt and Robbins,
005; Olausson et al., 2007).

There are abundant data suggesting PFC, especially orbitofrontal
OFC), dysfunction in humans addicted to cocaine and other drugs
Volkow and Fowler, 2000; Volkow et al., 2002, 2004; Rogers et al.,
999; Ersche et al., 2005, 2008). There is reduced activity of the OFC

n cocaine and methamphetamine abusers which correlates with
educed D2/3 dopamine receptors in the striatum (Volkow et al.,
001) and reduced OFC grey matter volume (Ersche et al., 2011a,b,
012a,b). There are several reports of impaired behavioural and
ognitive functions, including poor behavioural adjustment to envi-
onmental contingencies (Bechara, 2005), impaired probabilistic
eversal learning in cocaine abusers (Ersche et al., 2008, 2012a),
ossibly due to reduced inhibitory control and deficits in decision-
aking on computerized versions of a gambling task (Ersche et al.,

005; Rogers et al., 1999) that are indicative of OFC dysfunc-
ion, since similar changes in behaviour are seen in individuals
ith OFC damage (Rogers et al., 1999). This has encouraged the

iew that chronic drug taking may  be causal in inducing these
refrontal cortex-dependent deficits. But suboptimal prefrontal
ortical, including OFC and anterior cingulate cortex, function
Hester and Garavan, 2004; Kaufman et al., 2003; Matochik et al.,
003; Volkow and Fowler, 2000) may  also represent a pre-existing
ulnerability trait that results in poor decisions and/or a lack of
ensitivity to the consequences of such decisions, and hence drug
buse leading to addiction (Ersche et al., 2012a,b). However, evi-
ence against that view comes from a recent endophenotype study
f non drug-abusing stimulant abusers (Ersche et al., 2012b) in
hich grey matter changes in the OFC and anterior cingulate cor-

ex were not observed in the siblings. Rather, increases occurred in
he medial temporal lobe and putamen and reductions in the supe-
ior temporal gyrus, post-central gyrus and insula. The increases in
he putamen are consistent with the function of this dorsal striatal
rea, that is homologous with the DLS in the rat brain, subserving
abit learning and its implication in response control. The siblings
lso had reduced white matter in prefrontal cortical areas probably
nnervating the right inferior frontal gyrus and pre-supplementary

otor area, regions known to be implicated in response control on
uch tests as the stop-signal reaction time task (Aron et al., 2003;
ron and Poldrack, 2006; Duann et al., 2009).

Experimental studies primarily involving psychostimulant
reatment  of rats and monkeys even after brief periods of expo-
ure have supported the view that disrupted OFC function may
ndeed be a consequence of toxic drug effects during an addict’s
istory of drug abuse (Jentsch and Taylor, 1999; Schoenbaum et al.,
006). Short-term experimenter- or self-administered cocaine or

mphetamine enhanced the development of impulsivity (Jentsch
nd Taylor, 1999; Roesch et al., 2007) which, as we  have seen,
ay result in loss of control over cocaine intake and a tendency to

ompulsive cocaine seeking (Dalley et al., 2007; Belin et al., 2008).
ehavioral Reviews 37 (2013) 1946–1954 1951

Reversal  learning is impaired by cocaine treatment in monkeys
(Jentsch et al., 2002) and rats (Schoenbaum et al., 2004), and is seen
in cocaine-dependent humans (Ersche et al., 2008). Rats having
self-administered and then been withdrawn from cocaine exhib-
ited both increased extinction responding and a marked deficit in
reversal learning during withdrawal (Calu et al., 2007). Schoen-
baum and colleagues have emphasized both the similarity between
OFC lesions and these apparently long-lasting effects of relatively
short-term treatment with cocaine, but also showed that the deficit
in reversal learning is reflected in a change in the properties of
OFC neurons, which do not develop appropriate responses to cues
predicting outcomes (Stalnaker et al., 2006).

Other considerations implicate the orbitofrontal cortex in com-
pulsivity related to chronic drug abuse. Obsessive-compulsive
disorder  (OCD), perhaps the prototypical compulsive syndrome,
is associated, like drug abuse, with altered OFC-striatal func-
tion (Menzies et al., 2007). Of especial significance is the recent
study by Meunier et al. (2012) which used measures of functional
connectivity obtained in resting state to compare patients with
obsessive-compulsive disorder to those with stimulant depend-
ence. Remarkably, both groups had reduced connectivity in only
two OFC regions of 50 defined cortical nodes. Moreover, this
reduced connectivity significantly correlated in both cases with
increased compulsivity, whether for OCD (Y-Box scale) or for the
patients with stimulant dependence (OCDUS scale). Thus, increased
compulsivity appears to be related to reduced OFC connectivity, as
we would have predicted. The parallels between chronic stimulant
abuse and OCD are further emphasised by the discovery of reduced
D2 striatal receptors in patients with OCD (Denys et al., 2004;
Perani et al., 2008), as also occurs in cocaine or methamphetamine
abusers (see above Volkow et al., 2001). The significant associ-
ation between striatal D2/3 receptor number and orbitofrontal
metabolism in stimulant abusers (Volkow et al., 2001) has not
yet been confirmed in patients with OCD, but seems likely given
the changes in OFC structure and function associated with that
disorder.

Another possible behavioural index of compulsivity is persever-
ative responding in reversal learning (rewarded with food). Again,
as might be predicted, experimental lesions of the OFC impair
reversal learning (e.g. Dias et al., 1996; Chudasama and Robbins,
2003; Clarke et al., 2008). Patients with OCD (and their non-OCD
siblings) also exhibit reduced activation of the OFC (Chamberlain
et al., 2008). OCD has been linked with serotonergic dysfunction
and indeed is generally treated with serotonin selective reuptake
inhibitors (SSRIs). Again, consistent with reversal learning repre-
senting a possible marker of compulsivity, Clarke et al. (2004) found
that serotonin or 5-HT depletion in the marmoset prefrontal cor-
tex impaired reversal learning. Hence, 5-HT might modulate the
top-down inhibitory functions of the OFC and be implicated in
compulsive behaviour.

Patients  with chronic stimulant abuse also exhibit enhanced
perseverative responding in association with reduced activity in the
anterior head of the caudate nucleus (Ersche et al., 2008, 2011b).
Intriguingly, both of these deficits are reversed by treatment with
the dopamine D2 receptor agonist pramipexole, consistent with the
possible restoration of D2 signalling in these addicted individuals
sufficient to restore normal orbitofrontal-striatal function. Impor-
tantly, no such improvement was  seen in patients with OCD (Ersche
et al., 2011b), suggesting some dissociation between these two
phenotypes, despite their many commonalities as seen throughout
this review.

The  involvement of 5-HT in compulsive cocaine seeking has

also been demonstrated in an experimental study in rats (Pelloux
et al., 2012). The sub-population of rats exhibiting compulsive
self-administration behaviour in the face of punishment after an
escalated history of intake showed a marked reduction in 5-HT
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tilisation in prefrontal cortical areas, as well as in the amygdala
nd dorsal striatum, together with reductions in dorsal striatal DA
urnover (Pelloux et al., 2012). These deficits occurred in the 20%
f compulsive rats, but not in those that suppressed their cocaine
eeking under punishment, despite the same extent of cocaine
xposure, suggesting an interaction between toxic drug effects and

 predisposing factor. This deficit in 5-HT was shown causally to be
elated to compulsive seeking as depleting the forebrain of 5-HT
sing the serotonin toxin 5,7-dihydroxytryptamine induced resis-
ance to punishment of seeking in rats after a brief cocaine history
hen none normally show a compulsive tendency. Compulsive

ocaine seeking was reduced by treatment with a selective SSRI,
italopram (Pelloux et al., 2012), suggesting a potential therapeu-
ic use of SSRIs as an abstinence promoting treatment in cocaine
busers, especially those with a compulsive pattern of use (Ersche
t al., 2010). Treatment with a 5-HT2C receptor antagonist also
nduced a compulsive tendency in rats after a short cocaine history,

hilst a 5-HT2C receptor agonist reinstated sensitivity to punish-
ent in rats in which this behaviour had been induced by prior

orebrain 5-HT depletion (Pelloux et al., 2012). Consequently, 5-
T, putatively in the OFC, can be linked to the development of
ompulsive drug-seeking, and a SSRI might also be a plausible
reatment to reduce compulsive drug-seeking in humans. How-
ver, treatment of addicted individuals with lower, antidepressant
oses of SSRIs has not generally been regarded as a successful
ddiction therapy, but perhaps the use of higher doses such as
hose employed in the treatment of OCD, may  have better efficacy
Moeller et al., 2007; Vayalapalli, 2011). It is notable that early post
ortem studies of chronic methamphetamine abusers reported evi-

ence of reduced 5-HT markers in the PFC (Wilson et al., 1996)
nd other studies have found increased levels of 5-HT transporters
n cocaine and alcohol abusers (Little et al., 1998; Jacobsen et al.,
000).

We have also shown that the dorsal striatum mediates the
erformance of a well-established cocaine seeking habit under
unishment by selectively inactivating the aDLS or the midlateral
triatum in rats responding for cocaine in the seeking—taking task
t three timepoints: (i) after the acquisition of cocaine seeking,
ii) after extended cocaine self-administration and finally (iii) after
he introduction of intermittent, seeking-contingent foot shock
unishment (Jonkman et al., 2012a,b). The results showed that

nactivation of the aDLS selectively disrupted punished drug seek-
ng, but did not affect unpunished drug seeking, even after extended
raining. Inactivation of the midlateral striatum, an area that would
lso have been affected by alpha-flupenthixol infusions in our ear-
ier studies (Vanderschuren et al., 2005; Belin and Everitt, 2008;

urray et al., 2012) disrupted drug seeking at all stages of training.
he effect of inactivating the aDLS under punishment conditions
as present before delivery of the first shock in the session, and

esponding reverted to baseline the next day. Thus, it seems that
nactivation of the aDLS enhanced the influence of recalled threat
f the negative consequences of cocaine seeking (Jonkman et al.,
012a,b). These results suggest a novel differentiation of function

n the sensorimotor striatum, where the aDLS selectively mediates
he rigidity of responding after over-training and under the threat
f punishment, while the midlateral striatum mediates responding
tself at all stages of training, reflecting its motor cortical con-
ectivity. The relationship between changes in prefrontal cortical

unction, including reductions in 5-HT utilisation to this emergent
nvolvement of a specific region of the dorsal striatum in cocaine
eeking under punishment remains to be established.

A more general question arising from the research summarised

bove is the relationship of other neuropsychiatric disorders
o other syndromes in which impulsivity or compulsivity and
heir mediation by fronto-striatal mechanisms form a prominent
art, such as gambling (Grant and Potenza, 2012) or compulsive
ehavioral Reviews 37 (2013) 1946–1954

eating  (Smith and Robbins, in press). It is perhaps too early to
be confident that this is the case, but there are some intriguing
behavioral and neural parallels with what we have described here
for drug addiction. Given the focus of Ann Kelley’s work on the
neural mechanisms of food-motivated behavior, this may  not
perhaps be altogether surprising.
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