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a b s t r a c t

The advent of high throughput technologies, in particular microarrays, for biological
research has revived interest in clustering, resulting in a plethora of new clustering
algorithms. However, model selection, i.e., the identification of the correct number of
clusters in a dataset, has received relatively little attention. Indeed, although central
for statistics, its difficulty is also well known. Fortunately, a few novel techniques for
model selection, representing a sharp departure from previous ones in statistics, have
been proposed and gained prominence for microarray data analysis. Among those, the
stability-based methods are the most robust and best performing in terms of prediction,
but the slowest in terms of time. It is very unfortunate that as fascinating and classic an
area of statistics as model selection, with important practical applications, has received
very little attention in terms of algorithmic design and engineering. In this paper, in
order to partially fill this gap, we make the following contributions: (A) the first general
algorithmic paradigm for stability-based methods for model selection; (B) reductions
showing that all of the known methods in this class are an instance of the proposed
paradigm; (C) a novel algorithmic paradigm for the class of stability-based methods for
cluster validity, i.e., methods assessing how statistically significant is a given clustering
solution; (D) a general algorithmic paradigm that describes heuristic and very effective
speed-ups known in the literature for stability-based model selection methods.

Since the performance evaluation of model selection algorithms is mainly experimen-
tal, we offer, for completeness and without even attempting to be exhaustive, a represen-
tative synopsis of known experimental benchmarking results that highlight the ability of
stability-basedmethods for model selection and the computational resources that they re-
quire for the task. As a whole, the contributions of this paper generalize in several respects
referencemethodologies in statistics and show that algorithmic approaches can yield deep
methodological insights into this area, in addition to practical computational procedures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the past 15 years, a paradigm shift in Life Sciences research has taken place, thanks to the availability of genomic
and proteomic data on an unprecedented scale. Such a revolutionary change has posed new challenges to mathematics,
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statistics and computer science, since the conceptual tools proper of those three disciplines are fundamental for the
study of biological questions via computational tools. Microarrays is one of the technologies that has most affected
such a paradigm shift. Indeed, experiments based on it are common practice in biological and medical research to
address a wide range of problems, including the classification of tumors [5,7,25,33,55,56,60], where a reliable and precise
classification is essential for successful diagnosis and treatment. Microarray experiments, thanks to the monitoring of
gene expression levels on a genomic scale, may lead to a more complete understanding of biomolecular variations
within tumor classes and therefore to a finer and more reliable ‘‘taxonomy’’ within each class. In turn, as stated in
[25,33], the identification of new tumor (sub)classes using gene expression profiles can be seen as an important statistical
and machine learning problem whose quest for a solution has resulted, in particular, in revived interest in cluster
analysis.

However, the novelty, noisiness and high dimensionality of microarray data provide new challenges even to a classic
and well studied area such as clustering. More in general, new methodological and computational challenges are proposed
daily triggering, as observed by Mehta et al. [52], a ‘‘malthusian growth’’ of new statistical and computational methods for
genomic analysis. Unfortunately, many of them are questionable (see again [52]).

In the classic statistics and data analysis literature, there are two essential aspects of clustering: finding a ‘‘good’’ partition
of the datasets and estimating the number of clusters, if any, in a dataset. The former problem is usually solved by the use
of a clustering algorithm. For recent reviews on clustering algorithms, in particular for biomedical research, the reader is
referred to [8,23]. However, themost fundamental issue is the latter problem, referred to asmodel selection,which is usually
solved with the use of internal/relative measures (defined in Section 2).

Although there is a vast amount of knowledge available in statistics and in the general data analysis literature, e.g., [18,34,
35,38,41,45], gene expression data provide unique challenges to internal validation measures, as already outlined. Despite
their potentially important role, both the use of classic internal validation measures and the design of new ones, specific
for microarray data, do not seem to have great prominence in bioinformatics, where attention is mostly given to clustering
algorithms. The excellent survey by Handl et al. [36] is a big step forward in making the study of those techniques a central
part of both research and practice in bioinformatics. It is also worth mentioning that a recent systematic presentation of
statistical indices for clustering,with particular attention tomicroarray data, is given in [57]. It is also somewhat discouraging
to have to report that such a beautiful area of statistics, with important applications, has received very little attention both
in terms of algorithmic design and engineering. Along with original results, the state of the art regarding those two latter
points is described in [32].

Among those measures, the new class of stability-based measures, among others, has gained prominence due to their
robustness and predictive power (see [31] and references therein). Although from the theoretic point of view they exhibit
shortcomings [9] that seem to be common to other outstanding methods in this area, e.g., the Gap Statistics [66] (Gap,
for short), they work remarkably well in practice. Unfortunately, on benchmark datasets, they also prove to be very slow
methods [31], a state that limits their use to datasets with a small aspect ratio, i.e., number of items to classify and number
of experimental conditions per item. For one of those stability-basedmethods, i.e., Consensus Clustering byMonti et al. [53]
(Consensus, for short), a speed-up has been proposed [32], i.e., Fast Consensus (FC, for short), that substantially extends
the dimensionality spectrum in which that particular method can be used.

The stability-based measures proposed in the literature have a common root in earlier work by Breckenridge [18]
and Breiman [19], which were concerned with cluster validity and classification boosting, respectively, rather than model
selection. Common features of those measures have been highlighted by Valentini [68]. In this paper we propose a general
algorithmic paradigm for stability-based measures and show that all the known measures in that class are instances of the
paradigm. The paradigm turns out to be so rich that even the referencemethod Gap [66], not perceived to be stability-based,
also falls into this class. Moreover, it offers a powerful methodological tool in order to derive novel, and hopefully more
effective, stability-based measures. Since stability-based cluster validity methods are essential ‘‘subroutines’’ of stability-
based model selection methods, we also provide the first algorithmic paradigm for those former methods. In addition,
motivated by the need to obtain fast stability-based model selection methods, we also formalize an algorithmic paradigm
from which heuristic speed-ups can be derived.

Overall, our contribution is to show that, generalizing the techniques due to Breckenridge [18], Breiman [19] and
Valentini [68], there are unifying algorithmic principles able to describe one of the most promising classes of statistical
indices known in the literature. Apart for the methodological and theoretic contribution, the heuristic speed-up paradigm
may have a fundamental practical impact.

The remainder of this paper is organized as follows. Section 2 presents a formal statement of the problems we are
interested. For the convenience of the reader, Sections 3 and 4 outline essential building blocks of stability-based methods,
i.e., data generation procedures and statistical techniques allowing for the establishment of the level of agreement between
two clustering solutions. Sections 5, 6 and 8 are devoted to the description of the paradigms mentioned earlier, deferring
the presentation of some of their instances to the Appendix. Section 7 shows that Gap also falls into the new paradigm
formalized in Section 6. Finally, given that the performance of stability-based methods is established experimentally we
offer in Section 9, for the convenience of the reader, some experimental results that represent and summarize the state of the
art. To this end, we use some well-known microarray benchmark datasets. Finally, the last section offers some conclusions
and lines of future investigation.
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2. Basics

Consider a set of n items Σ = {σ1, . . . , σn}, where σi, 1 ≤ i ≤ n, is defined by m numeric values, referred to as features
or conditions. That is, each σi is an element in a m-dimensional space. In this paper, Σ is represented as a data matrix D, of
size n×m, in which the rows correspond to the items and the columns to the condition values.

The aim of cluster analysis is to determine a partition of Σ according to a similarity/distance function S, with domain Σ

and range R+0 . Intuitively, the partition should be such that items in the same cluster are similar, while items in different
clusters are dissimilar. There are many different ways to formalize such an intuition, depending on the specific objective
function one tries to optimize [36]. In what follows, let Pk = {p1, p2, . . . , pk} denote a partition of Σ obtained via a specific
clustering algorithm. Each subset pi, 1 ≤ i ≤ k, is referred to as a cluster, and Pk is referred to as a clustering solution.

2.1. Problems formulation

Let Cj be a reference classification for Σ consisting of j classes. That is, Cj may either be a partition of Σ into j groups,
usually referred to as the gold standard, or a division of the universe generating Σ into j categories, usually referred to as
class labels. An external index E is a function that takes as input a reference classification Cj for Σ and Pk and returns a value
assessing how close the partition obtained via an algorithm is to the reference classification. It is external because the quality
assessment of the partition is established via criteria external to the data, i.e., the reference classification. Notice that it is not
required that j = k. A brief overview of external indices is provided in Section 4, for the convenience of the reader. An internal
measure I is a function defined on the set of all possible partitions of Σ and with values in R. It should measure the quality
of a partition according to some suitable criteria. It is internal because the quality of the partition is measured according to
information contained in the dataset without resorting to external knowledge. For the state of the art on internal measures,
the reader is referred to [31,36]. As pointed out in the Introduction, this paper focuses on stability-based internal measures.

The problem of assessing the ‘‘quality’’ of a clustering solution can be stated formally in three meaningful ways [41], that
are reported next.
(Q.1) Given Cj, Pk and E, measure how far Pk is from Cj, according to E.
(Q.2) Given Pk and I , establishwhether the value of I computed on Pk is unusual and therefore surprising. That is, significantly

small or significantly large.

Notice that the two questions above try to assess the quality of a clustering solution consisting of k clusters, but they give
no indication onwhat the ‘‘right number’’ of clusters is. In the specialistic literature, this problem is also referred to asmodel
selection. Technically, one is interested in the following:
(Q.3) Given: (Q.3.a) A sequence of clustering solutions P1, . . . , Ps, obtained for instance via the repeated application of a

clustering algorithm A; (Q.3.b) a function R, usually referred to as a relative index, that estimates the relative merits of
a set of clustering solutions. One is interested in identifying the partition Pk∗ among the ones given in (Q.3.a) providing
the best value of R. In what follows, the optimal number of clusters according to R is referred to as k∗.

2.2. Model selection with stability-based measures: an intuitive description

A ‘‘good’’ clustering algorithm should produce partitions that do not vary much from one sample to another, when data
points are repeatedly sampled and clustered. That is, the algorithm must be stable with respect to input randomization.
Therefore, the main idea to validate a clustering solution, based on the notion of stability, is to use a measure of the self-
consistency of the data, instead of using the classical concepts of isolation and compactness [36,41]. As itwill be clear shortly,
this framework can be applied to get procedures for both problems (Q.2) and (Q.3), since procedures addressing problem
(Q.2) are essential subroutines for those addressing problem (Q.3).

In order to obtain a stability-based internal validation method, one needs to specify the following ‘‘ingredients’’:
1. a data generation/pertubation procedure;
2. a similarity measure between partitions;
3. a statistic on clustering stability—it can be used to address problem (Q.2);
4. rules on how to select the most reliable clustering(s)—it can be used to address problem (Q.3).
Sections 3 and4 give an outline of the relevant state of the art for Points 1 and2, respectively. Sections 5 and6 are dedicated to
the presentation of algorithmic paradigms for Points 3 and 4, respectively. They also provide reductions from the paradigms
to some known procedures belonging to the ‘‘stability class’’. We anticipate that additional reductions are presented in the
Appendix.

3. Data generation/perturbation techniques

In this section we describe the most relevant data generation/pertubation methods used in the scholarly literature. Each
of them is a paradigm in itself and therefore we provide only an outline. Formally, a data generation/perturbation method
can be seen as a procedure, in what follows referred to as DGP, that takes as input a dataset D along with other parameters
and returns a new dataset D′ of size n′ ×m′, with n′ ≤ n andm′ ≤ m.
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3.1. Subsampling/Bootstrapping

The simplest way to generate a new dataset D′ from D is to take random samples from it. Although simple, this approach
critically depends on whether the sampling is performed with or without replacement. The first type of method is referred
to as subsampling. It is widely used in clustering and briefly discussed next.

Formally, a subsampling procedure takes as input a dataset D and a parameter β , 0 < β < 1, and gives as output a
percentage β of D, i.e., the dataset D′ has size n′ ×m, with n′ = ⌈βn⌉. D′ is obtained via the extraction of n′ items (i.e. rows)
from D, which are usually selected uniformly and at random.

The aim of those procedures is to generate a reduced dataset D′ that captures the structure (i.e., the right number of
clusters) in the original data. Intuitively, the chance to achieve that goal and the time required by the procedures using D′
both increase with β . In order to have a good trade-off between the representativeness of D′ and the speed of the methods
using it, a value of β ∈ [0.6, 0.9] is recommended [10,25,32,53]. Moreover, those procedures do not guarantee that each
cluster in D is represented in D′ since extracting elements at random does not guarantee that all clusters will be covered by
such a selection. Hansen et al. [37] have partially addressed this problem via proportionate stratified sampling, although no
formal guarantee is given that the entire cluster structure of D is present in D′.

The second method is the well-known bootstrap and, although fundamental and of widespread use in statistics [28], it is
rarely used in cluster validation as pointed out and discussed in [41,53]. With this technique, the new dataset D′ is obtained
by sampling, uniformly and at random and with replacement, the n rows of D. D′ is usually referred to as bootstrap sample
and it has the same size as D. For ease of notation in what follows, we indicate bootstrap as a subsampling procedure with
β = 1.

3.2. Noise injection

Noise injection is a widely applied perturbation methodology in computer science (see [11,16,46,51,58,70] and reference
therein). However, it is not widely applied in clustering. The main idea is to generate D′ by adding a random value, i.e.,
a ‘‘perturbation’’, to each of the elements of D. Perturbations are generated via some random process, i.e., a probability
distribution whose parameters can be directly estimated from D. In a study about melanoma patients, Bittner et al. [16]
propose to perturb the original dataset by adding Gaussian noise to its elements in order to assess cluster stability. Following
up, Wolfinger et al. [70] report that perturbing the data via a Gaussian distribution provides good stability results for the
important case of microarray datasets. As for parameter estimation, McShane et al. [51] propose computing the variance of
the experiments in each row of D and then using the median of the observed distribution as the variance in the Gaussian
distribution.

3.3. Dimensionality reduction methods

The methodology described in this section is, in most cases, the dual of subsampling, since the main idea is to obtain D′
by reducing the number of columns of Dwhile trying to preserve its cluster structure. Since each element, i.e. row, of D is a
point inm-dimensional space, one has a dimensionality reduction in the data.

Principal Component Analysis (PCA for short) [41] is probably the best known technique used to achieve dimensionality
reduction in data analysis. Although of standard use inmany tasks, it is not used in conjunction with stability-based internal
validation measures because PCA is deterministic in generating D′. We anticipate, however, that the main idea of principal
components is used in conjunction with null models, which are described in Section 3.4.

The following three techniques of dimensionality reduction seem to be of use in this area. The first one is rather trivial
since it consists of randomly selecting the columns of D [64]. However, the cluster structure of D is unlikely to be preserved
and this approach may introduce large distortions into gene expression data, which could result in the introduction of
biases into stability-based measures, as reported in [12]. More sensible approaches for dimensionality reduction are matrix
factorization and randomized dimensionality reduction techniques reported in the following. This is discussed next, while
the interested reader is referred to [67] for a detailed outline of the former. Indeed, non-negativematrix factorization [48,49],
which would be the most relevant for internal validation measures, is used together with them mostly as a clustering
algorithm rather than as a dimensionality reduction technique, e.g., [20,32].

3.3.1. Randomized dimensionality reduction
The technique consists of the use of a family of transformations that try to preserve the distance with an ‘‘ε distortion

level’’ between the elements of D. Intuitively, if two elements are ‘‘close’’ in D, according to some distance function d, they
should be ‘‘close’’ in D′. Let f be a transformation from D in D′, f (σi) and f (σj) be the projections of two elements σi and σj
of D into D′. Let

df (σi, σj) =
d(σi, σj)

d(f (σi), f (σj))
.

If df = 1, the distance between the two elements is preserved.When 1−ε ≤ df (σi, σj) ≤ 1+ε, one says that the function
f preserves the distance with an ‘‘ε distortion level’’. The Johnson–Lindenstrauss Lemma [42] and random projections are
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the keys to all the randomized dimensionality reduction techniques. Intuitively, for a fixed distortion level ε, the Johnson–
Lindenstrauss Lemma gives nearly optimal bounds to the value ofm′ [6]. Formally:

Lemma 1 (Johnson–Lindenstrauss [42]). For any 0 < ε < 1 and any integer n, let m′ be a positive integer such that

m′ > 4(ε2/2− ε2/3)−1 log n.

For any set V of n points in Rm, there is a map function f : Rm
→ Rm′ such that for all u, v ∈ V

(1− ε)∥u− v∥2 ≤ ∥f (u)− f (v)∥2 ≤ (1+ ε)∥u− v∥2.

The interested reader will find two independent simplified versions of the proof of the above Lemma in [22,40] and
extensions to other spaces and distances in [4,14,21,43]. It is possible to determine a function f that satisfies the Lemma
with high probability, e.g., at least 2/3, in randomized polynomial time [22,40].

Since computing the projection into the new smaller space is a time-consuming task, several heuristic procedures have
been proposed in the literature. Some of them are based on sparse projection matrices [3,15], while a more innovative
and recent approach has been proposed by Ailon and Chazelle [4] with the addition of the Fast Fourier Transform to the
Johnson–Lindenstrauss Lemma.

3.4. Null models

One of the main ingredients in hypothesis testing in statistics is the generation of data based on null models, e.g., for
clustering, those models formalize the null hypothesis H0 ‘‘no cluster structure in the data’’ [38,41]. The most relevant that
have been proposed in the clustering literature [17,35,41,63] are introduced here. Moreover, we also give an indication of
which one is well suited for microarray data analysis [25,66].

Unimodality hypothesis. A new dataset D′ is generated as follows: the variables describing the items are randomly selected
from a unimodal distribution (e.g. normal). This null model typically is not applied to microarray data, since it gives a high
probability of rejection of the null hypothesis. For instance, that happens when the data are sampled from a distribution
with a lower kurtosis than the normal distribution, such as the uniform distribution [63]. Fig. 1(b) reports an example of a
dataset generated via the unimodality hypothesis.

Random graph hypothesis. The entries of the dissimilarity/distance matrix S are random. That is, one assumes that, in
terms of a linear order relation capturing proximity, all the entries of the lower triangular part of S are equally likely, i.e.,
Si,j = 1

[n(n−1)/2]! for 1 ≤ i ≤ n and 1 ≤ j ≤ i. This null model is not applied to microarray data, since it does not preserve the
distances that may be present among items.

Random label hypothesis. All permutations of the items are equally likelywith respect to some characteristic, such as a priori
class membership. In order to use this model, one needs to specify the a priori classification of the data. Each permutation
has a probability 1

n! . In particular, for microarray data, it coincides with the following:

• Permutational Model (Pr for short): a data matrix is generated by randomly permuting the elements within the rows
and/or the columns of D.

In order to properly implement Pr, care must be taken in specifying a proper permutation for the data, since some
similarity and distance functions are insensitive to permutations of coordinates. That is, althoughD′ is a randompermutation
of D, it may happen that the distance or similarity among the points in D′ is the same as in D, resulting in indistinguishable
datasets for clustering algorithms. Some variants of this model have been studied for binary pattern matrices [44,65,69].
Moreover, it may not be suitable for microarray data with very small sample sizes (conditions), since one will not obtain
enough observations (data points) to estimate the null model, even if one generates all possible permutations.

Random position hypothesis.. The items can be represented by points that are randomly drawn from a region R in m-
dimensional space. In order to use this model, one needs to specify the region within which the points have to be uniformly
distributed. Two instances applied to microarray data [25,31,66] are distinguished:

• Poisson Model (Ps for short): the region R is specified from the data. The simplest regions that have been considered are
them-dimensional hypercube and hypersphere enclosing the points specified by thematrixD [35]. Another possibility, in
order to make the model more data-dependent, is to choose the convex hull enclosing the points specified by D. Fig. 1(c)
reports an example of a datasetD′ generated by Ps, where the regionR (the box) is obtained from the datasetD reported
in Fig. 1(a).
• Poisson Model Aligned with Principal Components of the Data (Pc for short): Tibshirani et al. [66], following Sarle [63],

propose to align the region R with the principal components of the data matrix D. In detail, assuming that the columns
of D have mean zero, let D = UXV T be its singular value decomposition. Let D = DV . One uses D as in Ps to obtain a
datasetD′. Then one back transforms via D′ = D′V T to obtain the new dataset. Fig. 1(d) reports an example of a dataset
D′ generated by Pc, where the region R (the box) is obtained from the dataset D reported in Fig. 1(a).
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a b

c d

Fig. 1. (a) Dataset; (b) The unimodality hypothesis; (c) Ps; (d) Pc.

It is worth pointing out that, in a multivariate situation, one is not able to choose a generally applicable and useful
reference distribution: the geometry of the particular null distribution matters [63,66]. Therefore, in two or more
dimensions, and depending on the test statistic, the results can be very sensitive to the region of support of the reference
distribution [25,63].

4. Comparing clustering partitions

External indices can be very useful in order to assess the similarity of two different partitions of the data. They are
usually defined via a contingency table that contains all the basic information needed to quantify the similarity between
two partitions. Based on the entries of that table, it is possible to define several external indices such as the Adjusted Rand
Index [39], the F-index [59] and the Fowlkes and Mallows Index (FM-Index for short) [30]. It is worth pointing out that,
in addition to the entries of the contingency table, the F-Index uses notions from information retrieval, such as precision
and recall, in order to evaluate the level of agreement between the two given clustering solutions. The F and the FM-Index
both have values in [0, 1], while the Adjusted Rand Index has an expected value of zero, its maximum is one and it can
assume negative values [29,71]. The larger the value of each of those indices, the better agreement there is between the two
partitions.

The most widespread use of external indices is for benchmarking purposes. Indeed, in order to assess how good is the
performance of a clustering algorithm, one can proceed as follows. A dataset with a known a priori classification, usually
referred to as a gold standard solution is given as input to the clustering algorithm. Then, the partition produced by the
algorithm is compared with the gold standard solution via an external index, e.g., the Adjusted Rand Index. The higher the
value of the index, the better the performance of the algorithm. The interested reader can find a detailed description of the
use of external indices in cluster analysis in [25,31].

It is worth pointing out that many stability-based internal validation measures [10,13,18,25] use external indices to
establish the similarity between two partitions, one of which is assumed to be the gold standard solution for the dataset,
the real one being obviously unknown to the measure. Such a putative gold standard solution is obtained via the use of
a classifier/clustering algorithm. The intuition behind such a somewhat unusual approach is that the consistency of the
partitions produced by the measure with a given clustering algorithm must be assessed via a comparison with a partition
produced by another clustering procedure, i.e., a classifier that has been trained only on part of the data. The interested
reader will find a more detailed discussion about this point in [25].

5. The stability statistic paradigm

Recall from [41] that a statistic is a function of the data capturing useful information about it. In what follows, it is
represented by a set S of records. For instance, in its simplest form, a statistic consists of a single real number, while in
other cases of interest, it is a one- or two-dimensional array of real numbers.

A statistic assessing cluster stability is, intuitively, a measure of consistency of a clustering solution. The paradigm for
the collection of a statistic on cluster stability is best presented as a procedure, reported in Fig. 2. Its input parameters and
macro operations are described in abstract form in Figs. 3 and 4, respectively, while its basic steps are described below.

A single iteration of the while loop is discussed. The loop is repeated until the condition H is satisfied, i.e., until enough
information about the given statistic has been collected. In step 3, a set of perturbed datasets is generated from D0 by a DGP
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Stability_Statistic(D0,H, α, β, ⟨C1, C2, . . . , Ct⟩, k)

1 Sk = ∅;
2 while H do
3 ⟨D1,D2, . . . ,Dl⟩ ← ⟨DGP(D0, β), . . . ,DGP(D0, β)⟩;
4 ⟨DT ,0,DT ,1, . . . ,DT ,l,DL,0,DL,1, . . . ,DL,l⟩ ← Split(⟨D0,D1, . . . ,Dl⟩, α);
5 ⟨G⟩ ← Assign(⟨DT ,0,DT ,1, . . . ,DT ,l⟩, ⟨C1, C2, . . . , Ct⟩);
6 ⟨Ci1 , Ci2 , . . . , Ciq⟩ ← Train(⟨G⟩);
7 ⟨Ĝ⟩ ← Assign(⟨DL,0,DL,1, . . . ,DL,l⟩, ⟨C1, C2, . . . , Ct⟩);
8 ⟨P1, P2, . . . , Pz⟩ ← Cluster(Ĝ, k);
9 u← Collect_Statistic(⟨P1, P2, . . . , Pz⟩);

10 Sk ← Sk

{u};

11 return Sk;

Fig. 2. The Stability_Statistic procedure.

Input

– D0: the input dataset.

– H: a test on the ‘‘adequacy’’ of a statistic S, i.e., it evaluates whether S contains enough information. Note that
H could simply be a check as to whether a given number c of iterations has been reached. In what follows, this
simple test is denoted as Ĥc .

– α: a number in the range [0, 1].

– β: a sampling percentage, used by the DGP procedure (described in Section 3).

– ⟨C1, C2, . . . , Ct⟩: a set of procedures, each of which is either a classifier or a clustering algorithm.

– k: it is the number of clusters into which a dataset has to be partitioned.

Fig. 3. List of the input parameters used in the Stability_Statistic procedure.

procedure. In step 4, D0 and all the datasets generated in the previous step, are split into a learning and training datasets,
according to the input parameter α. The next two steps train a subset of the classifiers on a subset of the training sets.
Indeed, with reference to the discussion at the end of Section 4, when this step is performed, the classifiers will later be used
to generate putative gold standard solutions against which the partitions of the clustering algorithms will be evaluated. In
step 7, the bipartite graph Ĝ encodes the association between learning datasets and clustering procedures. In step 8, based
on the association encoded by Ĝ, the learning datasets are partitioned. Finally, in step 9, a statistic Sk is computed from those
partitions and is given as output.

5.1. Instances

There are currently three incarnations of the stability statistic paradigm. The first is Replicating Analysis, a
ground-breaking method due to Breckenridge [18]. The other two are BagClust1 and BagClust2, due to Dudoit and
Fridlyand [26]. In all three cases, the procedures have been proposed to improve a clustering solution for a fixed value
of k, rather than to address the model selection problem. It is also worth mentioning that the procedures by Dudoit and
Fridlyand [26] can be seen as extensions to clustering algorithms of the technique, proposed by Breiman [19], known
in machine learning as bootstrap aggregation or bagging. Replicating Analysis and BagClust2 play a key role in
the design of stability-based measures. Therefore, we present them here, deferring the presentation of BagClust1 to
Appendix A, together with some variants of Replicating Analysis. Their presentation is organized as follows: for each
of them, the input parameters setup is described first, taking as reference the ones defined in Fig. 3. Then, two reductions are
given from the Stability_Statistic paradigm to the Replicating Analysis and BagClust2 procedures, respectively.

The relevant incarnation of Stability_Statistic characterizing the method is detailed.

• Replicating Analysis.
– The input parameters setup: β is not relevant and the simple test Ĥ1 is used to allow only one iteration of the while

loop. Moreover, the set of procedures ⟨C1, C2, . . . , Ct⟩ consists of one classifier and one clustering algorithm, referred
to as C1 and C2, respectively.
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Macro Operations

– Split: it takes as input a family of datasets F1, F2, . . . , Fw and a real number α in the range [0,1]. The procedure
splits each Fi, 1 ≤ i ≤ w, into two parts according to α, referred to as learning and training dataset and denoted
with FL,i and FT ,i, respectively. That is, from each Fi, ⌈αni⌉ and ⌊(1− α)ni⌋ rows are selected in order to obtain
the corresponding FT ,i and FL,i, respectively, where ni is the number of rows of Fi. Each FT ,i and FL,i is given as
output.

– Assign: it takes as input a family of datasets and a set of procedures, each of which is either a classifier or a
clustering algorithm. It returns a finite set of pairs in which the first element is a dataset and the second one is
either a classifier or a clustering algorithm. Such an association is encoded via a bipartite graph G, where the
nodes in one partition represent the datasets and the nodes in the other partition the procedures. Notice that
the graph is not a matching, i.e., the same dataset can be assigned to different procedures and vice versa.

– Train: it takes as input a set of pairs ⟨dataset, classifier⟩, encoded as a bipartite graph, analogous to the one just
discussed. For each pair, it gives as output the classifier trained with the corresponding dataset. Notice that the
number q of trained classifiers returned as output is equal to the number of edges in the input graph.

– Cluster: it takes as input a set of pairs ⟨dataset, classifier/clustering algorithm⟩ and a positive integer k. Again,
the set is encoded as a bipartite graph. For each pair, it gives as output a partition into k clusters obtained by
the classifier/clustering algorithm on the corresponding input dataset. Notice that the number z of partitions
returned as output is equal to the number of edges in the input graph.

– Collect_Statistic: it takes as input a set of partitions. It returns as output the statistic computed on the input
set.

Fig. 4. List of the macro operations used in the Stability_Statistic procedure.

Replicating_Analysis(D0,Hc, α, ⟨C1, C2⟩, k)
1 for h← 1 to Hc do
2 Split the input dataset D0 into DL and DT , the learning and training sets, respectively;
3 Train the classifier C1 on DT ;
4 Let P1 and P2 be the partitions of DL into k clusters, obtained with the use of C1 and C2, respectively;
5 Let e be the level of agreement between P1 and P2, as computed by an external index;
6 return e;

Fig. 5. The Replicating Analysis procedure.

– The reduction from the Stability_Statistics procedure: step 3 is not performed. In step 4, the Split procedure is applied
to D0 only and it gives as output the training and learning dataset DT ,0 and DL,0, respectively. Then, in steps 5–6, DT ,0
is used to train the classifier C1. The learning dataset is used to build a classifier for the data, then to be used to derive
‘‘gold standard’’ partitions of the training set. In steps 7 and 8, two partitions P1 and P2 of DL,0 are produced, by C1
and C2, respectively. Finally, in step 9, the Collect_Statistic procedure measures the agreement between the two
partitions P1 and P2 via an external index, in order to assess the stability structure of the dataset.

For the convenience of the reader, as well as for future reference, the Replicating Analysis procedure is given
in Fig. 5.

• BagClust2.

– The input parameters setup: Ĥc is used as a test, for a given number of iterations c , e.g., 20 [26]. The set of procedures
⟨C1, C2, . . . , Ct⟩ consists only of one clustering algorithm, α = 0 and β = 1. Moreover, each DGP is an instance of the
same subsampling method. Since α = 0, the Split procedure gives as output only the learning datasets, which are
copies of the corresponding input dataset.

– The reduction from the Stability_Statistics procedure: in step 3, a single DGP procedure is executed to generate D1.
Then, the Split procedure takes as input D0 and D1 and it gives as output DL,0 = D0 and DL,1 = D1. In step 7, the
bipartite graph Ĝ consists of only one node per partition, encoding the dataset D1 and the clustering procedure,
respectively. In step 8, a clustering partition is obtained from it. In step 9, the indicator matrix I(h) and connectivity
matrix M(h) are computed. They are defined as follows: I(h)(p, q) = 1, if items p and q are both in D1 and zero
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BagClust2(D0,Hc, β, ⟨C1⟩, k)
1 for h← 0 to Hc do
2 Generate a subsample D1 from D0;
3 Let P1 be the partition of D1 into k clusters, obtained with the use of C1;
4 Compute the indicator and connectivity matrix;
5 return MD ;

Fig. 6. The BagClust2 procedure.

Stability_Measure(D,H, α, β, ⟨C1, C2, . . . , Ct⟩, kmin, kmax)
1 for k← kmin to kmax do
2 Sk ← Stability_Statistics(D,H, α, β, ⟨C1, C2, . . . , Ct⟩, k);
3 Rk

← Synopsis(Sk);
4 k∗ ← Significance_Analysis(Rkmin , . . . , Rkmax);
5 return k∗;

Fig. 7. The Stability_Measure procedure.

Macro Operations

– Synopsis: it takes as input a statistic and returns as output a concise description of it.

– Significance_Analysis: it takes as input all the statistics/information collected, as returned by the Synopsis
procedure. It computes the significance level of each statistic. It returns as output, explicitly or implicitly, a
prediction about k∗. For instance, an implicit prediction of the value of k∗ can be the plot of a histogram or of a
curve, as in many methods described in this paper.

Fig. 8. List of the macro operations used in Stability_Measure procedure.

otherwise; M(h)(p, q) = 1, if items p and q are in the same cluster and zero otherwise. Let 1 be a matrix of size
n× n in which each entry is 1. Finally, in step 10, a dissimilarity matrix MD defined as:

MD = 1−


h
M(h)

h
I(h)

(1)

is computed. The dissimilaritymatrixMD is then used as input to a clustering procedure in order to obtain a partition.
For future use, it is worth pointing out that in an analogous way it is possible to compute a similarity matrix, which
we refer to as a consensus matrix:

MS =


h
M(h)

h
I(h)

. (2)

For the convenience of the reader, as well as for future reference, the BagClust2 procedure is given in Fig. 6.

6. The stability measure paradigm

In this section, the main paradigm of internal stability methods is described. It is best presented as a procedure, reported
in Fig. 7. Its macro operations are described in abstract form in Fig. 8, while its basic steps are described below.

For each k in the range [kmin, kmax], the paradigm collects the statistics Sk computed by the Stability_Statistic procedure.
Then a concise description of Sk, denotedRk, is computed via the Synopsisprocedure. Finally, an explicit or implicit prediction
of the value of k∗ is computed by the Significance_Analysis procedure and is given as output. For the convenience of the
reader, it is useful to recall that, in order to predict k∗, many internal validation methods provide only a curve, i.e., implicit
information about k∗. Then, via its visual inspection, the user makes a prediction. A compendium of measures that resort to
thiswell-knownheuristic is given in [31,38]. On the other hand, for a fewmeasures, e.g.,Clest [25] andGap [66], there exist
theoretically sound automatic methods that identify k∗, i.e., the prediction is explicit. In addition, for some other measures,
the prediction is automatic, but based on heuristic geometric observations [31,62]. For most of the stability-based methods,
the identification of a theoretically sound automatic method for the explicit prediction of k∗ is open and it is not clear that
heuristic geometric approaches will yield appreciable results.
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CLEST_Significance_Analysis(Rkmin , . . . , Rkmax )
1 for i← 0 to B0 do
2 Di

← DGP(D);
3 Sh ← Replicating_Analysis(Di,Hc, α, ⟨C1, C2⟩, k);
4 Q k

i ← median(S1, . . . , SB0);
5 for k← kmin to kmax do
6 t0k ← Compute the average of the Q k

i values;
7 pk ← Compute the p-value of Rk;
8 dk ← Rk

− t0k ;
9 Define a set K = {kmin ≤ k ≤ kmax : pk ≤ pmax and dk ≥ dmin};

10 if K = ∅
11 then k∗ ← 1
12 else k∗ ← argmax

k∈K
dk

13 return k∗;

Fig. 9. Implementation of the Significance_Analysis procedure proposed by Dudoit and Fridlyand for Clest.

Clest(D,Hc, α, ⟨C1, C2⟩, kmin, kmax)
1 for k← kmin to kmax do
2 Sk = Replicating_Analysis(D,Hc, α, ⟨C1, C2⟩, k);
3 Rk ← median(Sk);
4 k∗ ← CLEST_Significance_Analysis(Rkmin , . . . , Rkmax);
5 return k∗;

Fig. 10. The Clest procedure.

In the remaining part of this section, only two incarnations of the stability measure paradigm are detailed. The other
ones proposed in the literature are discussed in Appendix B. For each method, the input parameters setup is described first,
again taking as reference the ones defined in Fig. 3. Then, the Stability_Statistic and the Stability_Measure procedures are
detailed.

6.1. Clest

This method, proposed by Dudoit and Fridlyand [25], generalizes in many aspects Replicating Analysis and can be
regarded as a clever combination of hypothesis testing and resampling techniques. It estimates k∗ by iterating the following:
randomly partition the original dataset in a learning and training set, respectively. The learning set is used to build a classifier
C for the data, which is then used to derive ‘‘gold standard’’ partitions of the training set. That is, the classifier is assumed
to be a reliable model for the data. The ‘‘gold standard’’ is then used to assess the quality of the partitions of the training set
obtained by a given clustering algorithm.

– The input parameters setup: it uses the same input parameters of Replicating Analysis, except for the test condition
H where, in this case, c iterations of thewhile loop are allowed, for a given integer c > 1.

– The Stability_Statistics procedure: it corresponds to the one given for Replicating Analysis. Therefore, the set Sk
of records is a one-dimensional array, in which each entry stores the value of the external index for the corresponding
iteration.

– The Synopsis procedure: it computes Rk as the median of the values stored in Sk.
– The Significance_Analysis procedure: it takes as input the collected statistics Rk, k ∈ [kmin, kmax]. With reference to Fig. 9,

the procedure starts collecting B0 statistics on data generated by the DGP procedure. Indeed, in step 1, a new dataset is
generated via a null model. The remaining part of the procedure computes the significance level for each k. The variable
pmax is a ‘‘significance level’’ threshold and dmin is a minimum allowed difference between ‘‘computed’’ and ‘‘expected’’
values. It is worth pointing out that the Significance_Analysis procedure provides an explicit prediction of k∗.

For the convenience of the reader, the Clest procedure is given in Fig. 10.

6.2. Consensus clustering

Consensus, byMonti et al. [53], is a referencemethod in internal validationmeasures, with a prediction power far better
than other established methods [31,53].
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Consensus(D,Hc, β, ⟨C1⟩, kmin, kmax)
1 for k← kmin to kmax do
2 MS

k
= 1− BagClust2(D,Hc, β, ⟨C1⟩, k);

3 Based on the kmax − 1 consensus matrices, return a prediction for k∗;

Fig. 11. The Consensus procedure.

– The input parameters setup: Ĥc is used as a test, for a given number of iterations c > 1, α is not relevant, β ∈ [0.6, 0.9]
and the set of procedures ⟨C1, C2, . . . , Ct⟩ consists only of one clustering algorithm C1.

– The Stability_Statistics procedure: for a given number of clusters k, a consensus matrix MS
(k) (defined as in Eq. (2)) can

be computed based on BagClust2. However, the DGP procedure is a full instance of subsampling, since β < 1.
– The Synopsis procedure: it performs a copy of the collected statistic.
– The Significance_Analysis procedure: it provides an implicit estimation of k∗, as detailed below.

Based on experimental observations and sound arguments, Monti et al. [53] derive a ‘‘rule of thumb’’ in order to estimate
the real number k∗ of clusters present in D. Here we limit ourselves to present the key points, since the interested reader can
find a full discussion inMonti et al. [53]. Let m̂ = n(n−1)/2,where n is the number of items to cluster, and let {x1, x2, . . . , xm̂}
be the list obtained by sorting the entries of the consensus matrix. Moreover, let the empirical cumulative distribution CDF ,
defined over the range [0, 1], be:

CDF(f ) =


p<q

l{MS(p, q) ≤ f }

m̂
where f is a chosen constant in [0, 1] and l equals one if the condition is true and is zero otherwise.

For a given value of k, i.e., number of clusters, consider the CDF curve obtained by plotting the values of CDF(xi),
1 ≤ i ≤ m̂, with the use of the corresponding consensus matrix. In an ideal situation in which there are k clusters and
the clustering algorithm is so good it can provide a perfect classification, such a curve is bimodal, with peaks at zero and
one. Monti et al. [53] observe and validate experimentally that the area under the CDF curves is an increasing function of k.
That result has also been confirmed by the experiments in Giancarlo et al. [31]. In particular, for values of k ≤ k∗, that area
has a significant increase, while its growth flattens out for k > k∗. For instance, with reference to Fig. 12, one sees an increase
in the area under the CDFs, for k = 2, . . . , 13. The growth rate of the area is decreasing as a function of k and it flattens out
for k ≥ k∗ = 3. The point in which such a growth flattens out can be taken as an indication of k∗. However, operationally,
Monti et al. [53] propose a closely associated method, described next. For a given k, the area of the corresponding CDF curve
is estimated as follows:

A(k) =
m
i=2

[xi − xi−1]CDF(xi).

Again, A(k) is observed to be an increasing function of k, with the same growth rate as the CDF curves. Now, let

∆(k) =

A(k) k = 2,
A(k+1)−A(k)

A(k) k > 2

be the proportion increase of the CDF area as a function of k and as estimated by A(k). Again, Monti et al. [53] observe
experimentally that:

(i) For each k ≤ k∗, the area A(k) markedly increases. This results in an analogous pronounced decrease of the ∆ curve.
(ii) For k > k∗, the area A(k) has no meaningful increases. This results in a stable plot of the ∆ curve.

For the convenience of the reader, the Consensus procedure is given in Fig. 11.

7. A special case: the gap statistics

Although Gap [66] is not a stability-based internal validation measure, it can also be derived from the stability measure
paradigm introduced in the previous section, as we now show. To this end, we need some definitions. Let Pk = {p1, . . . , pk}
be a clustering solution with k clusters. Let

Fr =

j∈pr

∥σj − σr∥
2 (3)

where σr is the centroid of cluster pr . Then, Within Cluster Sum of Squares (WCSS, for short) is defined as:

WCSS(k) =
k

r=1

Fr . (4)
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Fig. 12. The experiment is derived with the Leukemia dataset as input, a benchmark dataset for model selection [31], which is known to have a partition in
three classes. We have used the well-known K-means clustering algorithmwith Average Link initialization [41]. (i) The plot of the CDF curves as a function
of k, obtained by ConsensuswithH = 250 and p = 80%. For clarity, only the curves for k in [2, 13] are shown. It is evident that there are increasing values
of the area under the CDF for increasing values of k. The flattening effect in the growth rate of the area is evident for k ≥ k∗ = 3. Therefore, the method
estimates the correct number of clusters in the dataset. (ii) The plot of the corresponding ∆ curve for k in [2, 30], where the flattening effect indicating k∗
is evident for k ≥ k∗ = 3. (iii) The plot of the CDF curves, obtained by FC (described in Section 8) with H = 250 and p = 80%, in analogy with (i). (iv) The
plot of the ∆ curve, obtained by FCwith H = 250 and p = 80%, in analogy with (ii).

It is a measure of cluster compactness and, among its many uses [45], there is also the one of internal validation
measure [66]. In particular, Gap has been introduced in order to derive from WCSS an automatic prediction of k∗ that is
based on solid statistical ground. The intuition behind the method is brilliantly elegant. Consider the curves in Fig. 13.
Curve at the bottom of the figure is the WCSS computed with the well known K-means with random initialization [41]
on the dataset D with 2 clusters of Fig. 1(a). The curve at the top of the figure is the average WCSS, computed on ten
datasets generated from the original data via the Ps null model, again using K-means with random initialization. As is
evident from the figure, the curve on the top has a nearly constant slope: an expected behavior on datasets with no
cluster structure in them. The vertical lines indicate the gap between the curve obtained from the null model and the
one obtained from the input dataset, which supposedly has ‘‘cluster structure’’ in it. Since WCSS is expected to decrease
sharply up to k∗, on the input dataset, and has a nearly constant slope on the null model datasets, the length of the vertical
segments is expected to increase up to k∗ and then to decrease. In fact, in the figure, if one takes as the prediction for
k∗ the first local maximum of the gap values (data not shown), one has k∗ = 2, the correct number of classes in the
dataset.

Normalizing the WCSS curves via logs and accounting also for the simulation error, such an intuition can be formalized
as follows.

Let log(WCSS(k)) be the statistic Sk used to assess how reliable is a clustering solution with k clusters. The value of that
statistic is computed on both the observed data and on data generated by a suitably chosen null model. Then, rather than
returning a p-value, the procedure returns the first k for which ‘‘the gap’’ between the observed and the expected statistic
is at a local maximum.

• Gap.
– The input parameters setup: Ĥ1, α = 0, β is not relevant and the set of clustering procedures ⟨C1, C2, . . . , Ct⟩ consists

of only one clustering algorithm C1.
– The Stability_Statistics procedure: it gives as output the log WCSS(k) value, for k in [kmin, kmax], computed by

partitioning D into k clusters, with the use of C1.
– The Synopsis procedure: it return a copy of log WCSS(k).
– The Significance_Analysis procedure: it is a Monte Carlo simulation. Indeed, for a given value of k in [kmin, kmax],

log WCSS(k) for D is compared to B0 values of log WCSS(k), computed by clustering B0 artificial datasets. In turn,
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Fig. 13. A geometric interpretation of Gap.

Gap_Significance_Analysis(Rkmin , . . . , Rkmax )
1 for k← kmin to kmax do
2 for i← 1 to B0 do
3 Compute a new data matrix Di, using the chosen null model;
4 Compute a clustering solution Pk,i on Di using algorithm C1;
5 Q k

i ←Compute log(WCSS(k)) on Pk,i;

6 Compute Gap(k) = 1
B0

B0
i=1 Q

k
i − Rk;

7 Compute the standard deviation sd(k) of the set of numbers {Rk
1, . . . , R

k
B0
};

8 s(k) =


1+ 1
B0


sd(k);

9 k∗ is the first value of k such that Gap(k) ≥ Gap(k+ 1)− s(k+ 1);
10 return k∗;

Fig. 14. Implementation of the Significance_Analysis procedure for Gap.

Gap(D, C1, kmin, kmax)
1 for k← kmin to kmax do
2 Compute a clustering solution Pk on D using algorithm C1;
3 Rk

←Compute log(WCSS(k)) on Pk;
4 k∗ ← Gap_Significance_Analysis(Rkmin , . . . , Rkmax);
5 return k∗;

Fig. 15. The Gap procedure.

each artificial dataset is generated via the DGP procedure which, in this case, is an instance of null models. For the
convenience of the reader, the pseudo-code of the procedure is given in Fig. 14. With reference to step 9 of that
procedure, it is worth pointing out that the term s(k+ 1) is a heuristic adjustment that takes into account the Monte
Carlo simulation error in the estimation of the expected value of log(WCSS(k)) [66].

For the convenience of the reader, the Gap procedure is given in Fig. 15.

8. Approximations

In this section,wepresent heuristic speed-ups of the stability-basedmeasures considered in this paper. Theneed for those
speed-ups is evident, as pointed out in [32,47]. The idea is to use algorithms that ‘‘approximate’’ the computations involved
in the stability-based measures, in the hope that this will grant a speed-up with no substantial loss in predictive accuracy.
It is worth pointing out that the idea of using approximation algorithms in order to speed-up internal validation measures
has been introduced in [31,32] and is presented in a homogeneous way in [67]. Although theoretic results assessing the
performance guarantee of the heuristic algorithmswould be highly desirable, they are not available in the current literature.
Such a lack, together with the difficulty of fulfilling it, grants that experimental validation of the heuristics is a good way
of assessing their predictive performance. In what follows, we provide a general approximation paradigm of the stability-
based internal validation measures. For the convenience of the reader, we describe this general approximation paradigm
by first providing a speed-up (denoted FC) of one of the internal validation measure detailed in Section 6, i.e., Consensus,
which will allow us to give an intuitive description of the inefficiencies of stability-based methods and of ways to eliminate
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FC(D,Hc, β, ⟨C1⟩, kmin, kmax)
1 for i← 1 to Hc do
2 Generate, via subsampling, a data matrix Di;
3 Compute the indicator matrix I(i);
4 for k← kmin to kmax do
5 Let P1 be the partition of Di into k clusters, obtained with the use of C1;
6 Based on P1, compute the connectivity matrixM(i)

k ;

7 for k← kmin to kmax do
8 Compute the consensus matrix MS

k;
9 Based on the kmax − 1 consensus matrices, return a prediction for k∗;

Fig. 16. The FC procedure.

at least some of them. Then, based on that intuition, we outline how to derive the approximation paradigm from the general
stability paradigm.

We start from a simple observation about the data generation in Consensus. Intuitively, a large number of clustering
solutions, each obtained via a sample of the original dataset, seem to be required in order to identify the correct number
of clusters. Indeed, each of the (kmax − kmin + 1) × H clustering solutions needed is computed from a different sample of
the input dataset. However, there is no theoretic reason indicating that those clustering solutions must each be generated
from distinct samples. It has been also observed that such an approach leads to costly duplications of computations [32],
in particular when Consensus is used in conjunction with Hierarchical clustering algorithms [41]. Indeed, the ability
to quickly compute a clustering solution with k clusters from one with k + 1, typical of these agglomerative clustering
methods, cannot be used within Consensus because, for each k, the dataset changes. The same holds true for divisive
methods.

FC has been proposedwith the goal of avoiding those computational duplications. To this end, it performs first a sampling
step to generate a new dataset D1, which is then used to generate all clustering solutions, for k in the range [kmin, kmax]. In
terms of code and with reference to Fig. 6, that implies a modification of BagClust2 as follows. The subsampling step is
no longer performed and the procedure must now generate kmax − kmin + 1 connectivity matrices from a single dataset
it receives as input. When C1 is an agglomerative Hierarchical algorithm, the computation of the connectivity matrices
can be done incrementally following the same order of generation as the clustering solutions produced by the Hierarchical
algorithm. That is, once BagClust2 has been somodified, it becomes possible to interleave the computation of the required
connectivity matrices with the level bottom-up construction of the hierarchical tree underlying the clustering algorithms.
Specifically, only one dendogram construction is required rather than the repeated and partial construction of dendograms
as in the Consensus procedure. Therefore, one uses, in full, the main characteristic of agglomerative clustering algorithms.
Again, analogous considerations hold for divisive methods. For the convenience of the reader, the pseudo-code for FC is
provided in Fig. 16. It is worth mentioning that the rule of thumb for the determination of k∗, with the use of FC, is identical
to the one described for Consensus.

In general, such an interleaving can be accomplished for the Stability_Measure procedure via a simple switch of two
main loops, i.e., step 1 in Fig. 7 with step 2 in Fig. 2. The resulting approximation paradigm, formalized by the procedure
Fast_Stability_Measure, is given in Fig. 17. The macro operations and inputs are the same used for the Stability_Measure
procedure.

9. Experiments

For completeness, we provide here an experimental analysis of the internal stability measures by assessing, for each,
their ability to estimate the correct number of clusters in a dataset and their computational time. In particular, we focus
our analysis on the following measures: ME (described in Appendix B), Gap, CLEST, Consensus and FC based on the
ValWorkBench software library [2] andMOSRAM (also described inAppendix B) based on themosclust software library [68].
It is worth pointing out that the results reported here are a synopsis of much more extensive benchmarkings that the
interested reader can find in [31,32,67]. The experimental setup is described in Section 9.1, while Section 9.2 provides the
corresponding results.

9.1. Experimental setup: datasets and parameters

9.1.1. Datasets
We use three datasets, each being a matrix in which each row corresponds to an element to be clustered and each

column to an experimental condition. They have been widely used for validation studies [24,25,31,32,67]. For conciseness,
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Fast_Stability_Measure(D0,H, α, β, ⟨C1, C2, . . . , Ct⟩, kmin, kmax)
1 while H do
2 ⟨D1,D2, . . . ,Dl⟩ ← ⟨DGP(D0, β),DGP(D0, β), . . . ,DGP(D0, β)⟩;
3 for k← kmin to kmax do
4 ⟨DT ,0,DT ,1, . . . ,DT ,l,DL,0,DL,1, . . . ,DL,l⟩ ← Split(⟨D0,D1, . . . ,Dl⟩, α);
5 ⟨G⟩ ← Assign(⟨DT ,0,DT ,1, . . . ,DT ,l⟩, ⟨C1, C2, . . . , Ct⟩);
6 ⟨Ci1 , Ci2 , . . . , Ciq⟩ ← Train(⟨G⟩);
7 ⟨Ĝ⟩ ← Assign(⟨DL,0,DL,1, . . . ,DL,l⟩, ⟨C1, C2, . . . , Ct⟩);
8 ⟨P1, P2, . . . , Pz⟩ ← Cluster(Ĝ, k);
9 u← Collect_Statistic(⟨P1, P2, . . . , Pz⟩);

10 Sk ← Sk

{u};

11 for k← kmin to kmax do
12 Rk

← Synopsis(Sk);
13 k∗ ← Significance_Analysis(Rkmin , . . . , Rkmax)
14 return k∗;

Fig. 17. The Fast_Stability_Measure procedure.

we mention only some relevant facts about them. It is worth recalling from Section 2 that a gold standard for a dataset
is a partition of the data into a number of classes known a priori. Membership in a class is established by assigning the
appropriate class label to each element.

Leukemia: It is a 38 × 100 data matrix, where each row corresponds to a patient with acute leukemia and each column
to a gene. For this dataset, there is a partition into three classes and we take that as the gold standard. The dataset comes
from [36] and it has been obtained from the original microarray experiments described in [33].

Lymphoma: It is an 80 × 100 data matrix, where each row corresponds to a tissue sample and each column to a gene.
The dataset comes from the study of Alizadeh et al. [5] on the three most common adult lymphoma tumors. There is a
partition into three classes andwe take that as the gold standard. The dataset has been obtained from the originalmicroarray
experiments as described by Dudoit and Fridlyand [25].

NCI60: It is a 57 × 200 data matrix, where each row corresponds to a cell line and each column to a gene. This dataset
originates from a microarray study in gene expression variation among the sixty cell lines of the National Cancer Institute
anti-cancer drug screen [1]. There is a partition of the dataset into eight classes and we take that as the gold standard. The
dataset has been obtained from the original microarray experiments as described by Dudoit and Fridlyand [25].

9.1.2. Input parameters of internal stability measures
In this section, we describe the input parameters setup, used in our experiments, andwith reference to the the ones listed

in Fig. 3, with the addition of kmin:

– kmin = 2.
– kmax = 30 for all methods, except for Clest, where kmax = 15 is used due to the relatively small size of the datasets in

relation with the sampling technique of the method.
– α = 66%, where it needs to be used.
– β = 80%, where it needs to be used.
– ⟨C1, C2, . . . , Ct⟩: we use the Hierarchical Average Link clustering algorithm [41] (Hier-A for short) and diagonal linear

discriminant analysis as a classifier [27].
– The test used to assess if enough information about the given statistic has been collected, is Hc for all the measures. In

particular, Hc = 250 is for Consensus and FC, Hc = 100 is used for ME and MOSRAM, and Hc = 20 is used for CLEST.
Finally, in the Significance_Analysis procedures of CLEST and Gap a Ps null model is used as instances of the DGP
procedures and B0 = 20.

9.1.3. Hardware
All experiments for the assessment of the precision of each measure were performed in part on a 64-bit AMD Athlon

2.2 GHz bi-processor with 1 GB of main memory running Windows Server 2003 and in part on state-of-the-art PCs. All the
timing experiments refer to the bi-processor, where one processor per run has been used. We also point out that all the
Operating Systems supervising the computations have a 32 bits precision.
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Table 1
A summary of the results for eachmeasure on all datasets, with the use of Hier-A as a clustering algorithm.
Each cell in the table displays a precision result. That is, the prediction of the number of clusters in a dataset
given by a measure. A number in a circle with a black background indicates a prediction in agreement
with the number of classes in the dataset; while a number in a circle with a white background indicates a
prediction that differs, in absolute value, by 1 from the number of classes in the dataset; a number not in
a circle indicates the remaining predictions.

Precision
Leukemia NCI60 Lymphoma

FC ➌ ➑ ➌

ME 1 4 1
MOSRAM ② 2 ②

Gap ④ 1 6
Clest ❸ 3 ②

Consensus ❸ ❽ ❸

Gold standard 3 8 3

Table 2
A summary of the timing results, in milliseconds, for each measure on all
datasets, with the use of Hier-A as a clustering algorithm.

Timing
Leukemia NCI60 Lymphoma

FC 2.7× 104 7.0× 104 6.8× 104

ME 2.3× 105 7.6× 105 6.4× 105

Gap 1.4× 105 6.1× 105 6.4× 105

Consensus 7.9× 105 2.0× 106 1.9× 106

9.2. Precision results

The results are reported in Table 1. It is worth pointing out that given the ability of MOSRAM to detect multi-level
structures possibly present in the dataset, only the estimated number of clusters with highest p-value are reported in
that table. Although synoptic, those results represent quite well the advantages and shortcomings of the mentioned
stability-based measures that have been established by much broader benchmarking experiments [31,32]: Consensus
and FC are the measures providing the most reliable predictions, while the prediction rules of ME and Gap are really
weak.

9.3. Timing Results

The results are reported in Table 2. We do not report the times of MOSRAM and LD01 since they are comparable to those
obtained for ME and Consensus, respectively. Moreover, the time of CLEST is not provided since a smaller range has been
used to produce clustering solutions for all datasets, due to their size. Again, those results are quite representative of the
state-of-the-art [31,32]. Consensus is the slowestmeasure. Although there is a significant difference in terms of prediction,
the time performance is practically the same for ME, Gap and CLEST. Moreover, it is worth pointing out that there is at least
one order of magnitude difference between FC and the other measures.

Accounting also for the precision results, FC seems to be the measure of choice, as indicated in [32].

10. Conclusions

A general algorithmic paradigm for stability-based internal validation measures has been introduced and can be seen as
a generalization of earlier work by Breckenridge [18], Breiman [19] and Valentini [68]. Moreover, it is also shown that each
of the known stability-based measures is an instance of such a novel paradigm. Surprisingly, Gap also falls within the new
paradigm. Moreover, from this general algorithmic paradigm, it is simple to design new stability-based internal measures
combining the building blocks of the measures detailed. Finally, a general algorithmic paradigm is proposed that describes
heuristic and very effective speed-ups known in the literature for stability-based model selection methods.
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BagClust1(D0,Hc, β, ⟨C1⟩, k)
1 for i← 1 to Hc do
2 Generate a bootstrap sample D1 from D0;
3 Let P1 and P2 be the corresponding partitions of D0 and D1 into k clusters, obtained with the use of C1;
4 Permute the elements assigned to the partition P2 so that there is maximum overlap with P1;
5 Let Oc be the number of overlapping elements;
6 return Oc ;

Fig. A.18. The BagClust1 procedure.

Appendix A. Additional instances of the stability statistic paradigm

A.1. BagClust1

– The input parameters setup: as in BagClust2.
– The reduction from the Stability_Statistics procedure: in step 3, a single DGP procedure is executed to generate D1. Then,

the Split procedure takes as input D0 and D1 and it gives as output DL,0 = D0 and DL,1 = D1. The learning dataset is
used to build a classifier for the data, then to be used to derive ‘‘gold standard’’ partitions of the training set. In steps 7
and 8, the clustering procedure is applied to both D0 and D1, in order to obtain the partitions P1 and P2, respectively. The
Collect_Statistic procedure permutes the elements assigned to the partition P2 so that there is the maximum overlap
with P1. Based on observations by Roth et al. (see Appendix A.2.2), a maximum overlap between two partitions can
be found by solving a dual optimization problem corresponding to the computation of a minimum weighted perfect
matching in bipartite graphs [54]. For each iteration of thewhile loop, the number of overlapping elements are counted
and given as output of the method. From that statistic, a new partition is obtained by assigning each element of D0 to a
cluster via amajority vote system. That is, each element is assigned to the cluster forwhich it has expressed themaximum
of number of preferences.

For the convenience of the reader, the BagClust1 procedure is given in Fig. A.18.

A.2. Variants of Replicating Analysis

Variants ofReplicating Analysishave been proposedwithin procedures formodel selection. However, theymay be
of independent interest as cluster validity procedures, although their performance has not been evaluated for that particular
application. Therefore, we single them out here. The first one is due to Ben-Hur et al. [10], while the second one is due to
Roth et al. [61].

A.2.1. Replicating_ME
– The input parameters setup: Ĥc is used as a test, for a given number of iterations c , e.g., 20 [26]. The set of procedures
⟨C1, C2, . . . , Ct⟩ consists of one clustering algorithm, α = 0 and β = 1. Moreover, each DGP is an instance of the same
subsampling method.

– The reduction from the Stability_Statistics procedure: in step 3, D1 and D2 are generated by two DGP procedures,
where each procedure is an instance of subsampling. Since α = 0, the Split procedure copies those datasets into the
corresponding learning datasets, while steps 5 and 6 are not performed. In step 7, the graph Ĝ, obtained as output of
the Assign procedure, encodes two relations: ⟨DL,1, C1⟩ and ⟨DL,2, C1⟩. In step 8, two clustering solutions P1 and P2 are
obtained from ⟨DL,1, C1⟩ and ⟨DL,2, C1⟩, respectively. The Collect_Statistic procedure computes the level of agreement
between the two partitions via an external index, but restricted to the common elements of D1 and D2. In step 10, this
level of agreement is stored into a one dimensional array Sk. That is, for each iteration of thewhile loop, the value returned
by the external index is stored in the corresponding entry of Sk.

For the convenience of the reader, the Replicating_ME procedure is given in Fig. A.19.

A.2.2. Replicating_RLBB02.
– The input parameters setup: Ĥc is used as a test, for a given number of iterations c > 1, α = 0.5, β = 0 and the set

of procedures ⟨C1, C2, . . . , Ct⟩ consists of three clustering algorithms C1, C2 and C3. In particular, C3 produces a random
partition of D by first placing k randomly selected items into separate clusters and then by placing the remaining items
into the same clusters uniformly and at random.



R. Giancarlo, F. Utro / Theoretical Computer Science 428 (2012) 58–79 75

Replicating_ ME(D0,Hc, α, β, ⟨C1⟩, k)
1 for i← 1 to Hc do
2 Generate, via subsampling, two data matrices D1 and D2;
3 Let P1 and P2 be the corresponding partitions of D1 and D2 into k clusters, obtained with the use of C1,

respectively;
4 Let Sk(i) be the level of agreement between P1 and P2, computed by an external index but restricted to the

common elements of D1 and D2;
5 return Sk;

Fig. A.19. The Replicating_ME procedure.

Replicating_RLBB02(D,Hc, α, β, ⟨C1, C2, C3⟩, k)
1 for i← 1 to Hc do
2 Split the input dataset D into DL and DT , the learning and training sets, respectively;
3 Partition DT into k clusters, with the use of C3, in order to obtain PT ,i;
4 Partition DL into k clusters, with the use of C1 and C2, in order to obtain P1 and P2, respectively;
5 Find the correct permutation with the use of the minimum weighted perfect bipartite matching;
6 u←Compute the number of misclassified elements and normalize it with reference to the random case;
7 Sk ← Sk


{u};

8 return Sk;

Fig. A.20. The Replicating_RLBB02 procedure.

– The reduction from the Stability_Statistics procedure: step 3 is not performed. In step 4, the Split procedure is applied
to D0 only, and it gives as output two datasets DT ,0 and DL,0 of equal size. In step 6, DT ,0 is partitioned by C3 in order
to obtain a partition PT ,i which, as mentioned later, is used for normalization purposes. In steps 7 and 8, two partitions
P1 and P2 of DL,0 are produced, by C1 and C2, respectively. The Collect_Statistic procedure is the same proposed for
BagClust1, where, in this case, it minimizes the number of misclassified elements. Indeed, assuming P1 as the gold
standard, Collect_Statistic gives as output the number of misclassified elements in P2 computing a minimumweighted
perfect bipartite matching [54]. Finally, the number of misclassified elements is normalized with respect to the random
case, i.e., PT ,i.

For the convenience of the reader, the Replicating_RLBB02 procedure is given in Fig. A.20.

Appendix B. Additional instances of the stability measure paradigm

B.1. Model explorer

This method (ME for short), by Ben-Hur et al. [10], is the simplest incarnation of the stability measure paradigm. It can be
derived as follows.

– Input parameters setup: as in Consensus.
– The Stability_Statistics procedure: as in Replicating_Analysis_ME.
– The Synopsis procedure: it performs a copy of the collected statistic.
– The Significance_Analysis procedure: it provides an implicit estimation of k∗, as we detail next.

For each k ∈ [kmin, kmax], the values stored in Rk are histogrammed. Then, the optimal number of clusters k∗ is predicted
to be the lowest value of k such that the Rk values distribution is close to one and the Rk+1 value distribution is in a wider
range of values. An example of the number of clusters prediction is given in Fig. B.22, where ME is computed on the dataset
of Fig. 1(a) with the K-means clustering algorithm with a random initialization, for k ∈ [2, 5].

For the convenience of the reader, the ME procedure is given in Fig. B.21.

B.2. MOSRAM

This method, by Bertoni and Valentini [13], is strongly related to ME, where the most significant change is in the
Significance_Analysis procedure. Indeed, it estimates automatically k∗ and, in addition, it detects multi-level structures
possibly present in D, i.e., hierarchical structure - see Fig. B.24 for an example. It can be derived from the stability measure
paradigm as follows.
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ME(D,Hc, ⟨C1⟩, kmin, kmax)
1 for k← kmin to kmax do
2 Sk ← Replicating_ ME(D,Hc, 0, 1, ⟨C1⟩, k);
3 Rk

← Sk;
4 Plot separately the histogram of the values in Rk and return a prediction for k∗;

Fig. B.21. The ME procedure .
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Fig. B.22. The histograms plotting the Rk values distribution for increasing values of k. The prediction of k∗ corresponds to the correct number of cluster,
i.e., k∗ = 2.

– The input parameters setup: as in Consensus.
– The Stability_Statistics procedure: it is the same proposed in ME, except that the two DGP procedures performed in step

1 are both an instance of randomized dimensionality reduction methods. Once we have accounted for that difference,
we still use the notation ME to refer to this procedure.

– The Synopsis procedure: it gives as output Rk, the average of the statistics Sk.
– The Significance_Analysis procedure: intuitively, if the value of Rk is close to 1, then the clustering solution is stable.

Moreover, in order to detect significant and possibly multi-level structures that are simultaneously present in D, a
statistical hypothesis test is applied. In particular, a χ2-based test is used in order to estimate k∗, as follows.

Let R = {Rkmin , . . . , Rkmax} and let τ be a significance level. The null hypothesis H0 considers the set of k-clusterings as
equally reliable, while the alternative hypothesis H1 considers the set of k-clusterings as not equally reliable. When H0 is
rejected at τ significance level, it means that at least one k-clustering significantly differs from the others. The procedure
sorts the values in R, and a χ2-based test is repeated until no significant difference is detected or the only remaining
clustering is the top-ranked in R. At each iteration, if a significant difference is detected, the bottom-ranked value is removed
from the set R. Therefore, the Significance_Analysis procedure gives as output the set of the remaining (top sorted) k-
clusterings that correspond to the set of estimates of the ‘‘true’’ number of clusters (at τ significance level).

For the convenience of the reader, theMOSRAM procedure is given in Fig. B.23.

B.3. Levine and Domany

This method, due to Levine and Domany [50], is strongly related to BagClust2.
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MOSRAM(D,Hc, ⟨C1⟩, kmin, kmax)
1 ME(D,Hc, ⟨C1⟩, kmin, kmax);
2 Perform an average of the statistcs collected byME;
3 Perform a χ2-based test in order to estimate k∗;

Fig. B.23. The MOSRAM procedure.
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Fig. B.24. An example of hierarchical structures in a dataset.

LD01(D,H, ⟨C1⟩, kmin, kmax)
1 for k← kmin to kmax do
2 Let P1 be the partition of D into k clusters, obtained with the use of C1;
3 Based on P1, compute the connectivity matrix Sk0;
4 for i← 1 to Hc do
5 Generate, via subsampling, a data matrix D1;
6 Let P1 be the partition of D1 into k clusters, obtained with the use of C1;
7 Based on P1, compute the connectivity matrix Ski ;

8 Compute Rk, as defined in (B.1);

Fig. B.25. The Levine and Domany procedure.

– The input parameters setup: as in Consensus.
– The Stability_Statistics procedure: for each iteration, the method computes, as statistic, a connectivity matrix in which

each entry is 1, if the two elements are in the same cluster and 0 otherwise. Moreover, the collected statistic Sk is a set
of matrices, Sk = {Sk0, . . . , S

k
c }. Matrix Sk0 corresponds to the connectivity matrix for D0, and matrix Ski , for 1 ≤ i ≤ c ,

corresponds to the connectivity matrix for the dataset D1, which is generated by the DGP subsampling procedure at the
corresponding iteration.

– The Synopsis procedure: it compares the collected statistic, via the following formula:

Rk
= ⟨⟨δSk0,Ski

⟩⟩ (B.1)

where ⟨⟨·⟩⟩ is a twofold averaging. That is, for each Ski , an average is computed over all pairs which are in the same cluster
in the original dataset and which have both been selected in the same resampling step. Then, an average for all Ski is
computed.

– The Significance_Analysis procedure: it selects as k∗ the value of kwith the local maximum of Rk, for k ∈ [kmin, kmax].

For the convenience of the reader, the procedure proposed by Levine and Domany is given in Fig. B.25.

B.4. Roth et al.

In analogy with Clest, this method, by Roth et al. [61], also generalizes Replicating Analysis.
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RLBB02(Hc, ⟨C1, C2, C3⟩,D, kmin, kmax)
1 for k← kmin to kmax do
2 Sk ← Replicating_Analysis_RLBB02(D,Hc, 0.5, 0, ⟨C1, C2, C3⟩, k);
3 Compute the average of Sk and compute the expected (in)-stability value;
4 k∗ ← the value of k with the minimum ‘‘expected (in)-stability’’ value;
5 return k∗;

Fig. B.26. The Roth et al. procedure.

– The input parameters setup: Ĥc is used as a test, for a given number of iterations c , α = 0.5, β is not relevant and the set
of clustering procedures ⟨C1, C2, . . . , Ct⟩ consists of three clustering algorithms C1, C2 and C3 .

– The Stability_Statistics procedure: as in Replicating_Analysis_RLBB02.
– The Synopsis procedure: it computes the average over the assignment cost and it computes the ‘‘expected (in)-stability’’

value defined as the expectation with respect to the two different datasets.
– The Significance_Analysis procedure: it gives as k∗ the value of k with the minimum ‘‘expected (in)-stability’’ value.

For the convenience of the reader, the procedure proposed by Roth et al. is given in Fig. B.26.

References

[1] NCI 60 Cancer Microarray Project. http://genome-www.stanford.edu/NCI60.
[2] Validation Work Bench: Valworkbench web page. http://www.math.unipa.it/~raffaele/valworkbench/.
[3] D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss with binary coins, Journal of Computer and System Sciences 66 (2003)

671–687.
[4] N. Ailon, B. Chazelle, Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform, in: STOC ’06: Proceedings of the 38th Annual ACM

Symposium on Theory of Computing, ACM, 2006, pp. 557–563.
[5] A.A. Alizadeh, M.B. Eisen, R.E. Davis, C. Ma, I.S. Lossos, A. Rosenwald, J.C Boldrick, H. Sabet, T. Tran, X. Yu, J.I Powell, L. Yang, G.E. Marti, T. Moore, J.

Hudson Jr, L. Lu, D.B. Lewis, R. Tibshirani, G. Sherlock, W.C. Chan, T.C. Greiner, D.D. Weisenburger, J.O. Armitage, R. Warnke, R. Levy, W. Wilson, M.R.
Grever, J.C Byrd, D. Botstein, P.O. Brown, L.M. Staudt, Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling, Nature
403 (2000) 503–511.

[6] N. Alon, Problems and results in extremal combinatorics—II, Discrete Mathematics 308 (2008) 4460–4472.
[7] U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, A.J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor

and normal colon tissues probed by oligonucleotide arrays, Proceedings of the National Academy of Sciences of the United States of America 96 (1999)
6745–6750.

[8] B. Andreopoulos, A. An, X. Wang, M. Schroeder, A roadmap of clustering algorithms: finding a match for a biomedical application, Briefings in
Bioinformatics 10 (3) (2009) 297–314.

[9] S. Ben-David, U. von Luxburg, D. Pál, A sober look at clustering stability, in: Lecture Notes in Computer Science, vol. 4005, 2006, p. 5.
[10] A. Ben-Hur, A. Elisseeff, I. Guyon, A stability basedmethod for discovering structure in clustering data, in: Seventh Pacific SymposiumonBiocomputing,

ISCB, 2002, pp. 6–17.
[11] J. Benesty, D. Morgan, M. Sondhi, A better understanding and an improved solution to the problems of stereophonic acoustic echo cancellation,

in: ICASSP ’97: Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP ’97, vol. 1, IEEE Computer
Society, 1997, p. 303.

[12] A. Bertoni, G. Valentini, Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses, Artificial Intelligence in
Medicine 37 (2006) 85–109.

[13] A. Bertoni, G. Valentini, Model order selection for bio-molecular data clustering, BMC Bioinformatics 8 (2007).
[14] A. Bhattacharya, P. Kar, M. Pal, On low distortion embeddings of statistical distance measures into low dimensional spaces, in: DEXA, 2009,

pp. 164–172.
[15] E. Bingham, H. Mannila, Random projection in dimensionality reduction: applications to image and text data, in: KDD ’01: Proceedings of the Seventh

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2001, pp. 245–250.
[16] M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, M. Radmacher, R. Simon, Z. Yakhini, A. Ben-Dor, N. Sampas, E. Dougherty, E. Wang, F.

Marincola, F, C. Gooden, J. Lueders, A. Glatfelter, P. Pollock, J. Carpten, E. Gillanders, D. Leja, K. Dietrich, C. Beaudry, M. Berens, D. Alberts, V. Sondak,
Molecular classification of cutaneous malignant melanoma by gene expression profiling, Nature 406 (2000) 536–540.

[17] H.H. Bock, On some significance tests in cluster analysis, Journal of Classification 2 (1985) 77–108.
[18] J.N. Breckenridge, Replicating cluster analysis: method, consistency, and validity, Multivariate Behavioral Research 24 (2) (1989) 147–161.
[19] L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123–140.
[20] J.-P. Brunet, P. Tamayo, T.R. Golub, J.P. Mesirov, Metagenes and molecular pattern discovery using matrix factorization, Proceedings of the National

Academy of Sciences of the United States of America 101 (2004) 4164–4169.
[21] G. Cormode, M. Datar, P. Indyk, S. Muthukrishnan, Comparing data streams using Hamming norms (how to zero in), IEEE Transactions on Knowledge

and Data Engineering 15 (2003) 529–540.
[22] S. Dasgupta, A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss, Random Structures & Algorithms 22 (2003) 60–65.
[23] P. D’haeseleer, How does gene expression cluster work? Nature Biotechnology 23 (2006) 1499–1501.
[24] V. Di Gesú, R. Giancarlo, G. Lo Bosco, A. Raimondi, D. Scaturro, Genclust: a genetic algorithm for clustering gene expression data, BMC Bioinformatics

6 (2005) 289.
[25] S. Dudoit, J. Fridlyand, A prediction-based resampling method for estimating the number of clusters in a dataset, Genome Biology 3 (2002).
[26] S. Dudoit, J. Fridlyand, Bagging to improve the accuracy of a clustering procedure, Bioinformatics 19 (9) (2003) 1090–1099.
[27] S. Dudoit, J. Fridlyand, T.P. Speed, Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the

American Statistical Association 97 (457) (2002) 77–87.
[28] B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, London, 1993.
[29] D. Fisher, P. Hoffman, The adjusted rand statistic: a SAS macro, Psychometrika 53 (1988) 417–423.
[30] E.B. Fowlkes, C.L. Mallows, A method for comparing two hierarchical clusterings, Journal of the American Statistical Association 78 (1983) 553–584.
[31] R. Giancarlo, D. Scaturro, F. Utro, Computational cluster validation formicroarray data analysis: experimental assessment of clest, consensus clustering,

figure of merit, gap statistics and model explorer, BMC Bioinformatics 9 (2008) 462.
[32] R. Giancarlo, F. Utro, Speeding up the Consensus Clustering methodology for microarray data analysis, Algorithms for Molecular Biology 6 (2011) 1.

http://genome-www.stanford.edu/NCI60
http://www.math.unipa.it/~raffaele/valworkbench/


R. Giancarlo, F. Utro / Theoretical Computer Science 428 (2012) 58–79 79

[33] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeeck, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, E.S. Lander,
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science 286 (531) (1999) 531–537, 5439.

[34] A.D. Gordon, Clustering algorithms and cluster validation, in: P. Dirschedl, R. Ostermann (Eds.), Computational Statistics, Physica-Verlag, Heidelberg,
Germany, 1994, pp. 503–518.

[35] A.D. Gordon, Null models in cluster validation, in: From Data to Knowledge: Theoretical and Practical Aspects of Classification, Springer-Verlag, 1996,
pp. 32–44.

[36] J. Handl, J. Knowles, D.B. Kell, Computational cluster validation in post-genomic data analysis, Bioinformatics 21 (15) (2005) 3201–3212.
[37] M.H. Hansen, W.N. Hurwitz, W.G. Madow, Sample Survey Methods and Theory Methods and Applications, vol. 1, Wiley, 1993.
[38] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer, 2003.
[39] L. Hubert, P. Arabie, Comparing partitions, Journal of Classification 2 (1985) 193–218.
[40] P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the curse of dimensionality, in: STOC ’98: Proceedings of the 30th Annual

ACM Symposium on Theory of Computing, ACM, 1998, pp. 604–613.
[41] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs, 1988.
[42] W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Contemporary Mathematics 26 (1984) 189–206.
[43] W.B. Johnson, A. Naor, The Johnson-Lindenstrauss lemma almost characterizes Hilbert space, but not quite, in: SODA, 2009, pp. 885–891.
[44] C.W. Harper Jr., Groupings by locality in community ecology and paleoecology: tests of significance, Lethaia 11 (1978) 251–257.
[45] L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York, 1990.
[46] M.K. Kerr, G.A. Churchill, Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments, PNAS 98 (2000)

8961–8965.
[47] J. Kraus, H. Kestler, A highly efficient multi-core algorithm for clustering extremely large datasets, BMC Bioinformatics 11 (2010).
[48] D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401 (1999) 788–791.
[49] D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: NIPS, 2000, pp. 556–562.
[50] E. Levine, E. Domany, Resampling method for unsupervised estimation of cluster validity, Neural Computation 13 (2001) 2573–2593.
[51] L.M. McShane, M.D. Radmacher, B. Freidlin, R. Yu, M.-C. Li, R. Simon, Methods for assessing reproducibility of clustering patterns observed in analyses

of microarray data, Bioinformatics 18 (2002) 1462–1469.
[52] T. Mehta, M. Tanik, D.B. Allison, Towards sound epistemological foundations of statistical methods for high-dimensional biology, Nature Genetics 36

(2004) 943–947.
[53] S. Monti, P. Tamayo, J. Mesirov, T. Golub, Consensus clustering: A resampling-based method for class discovery and visualization of gene expression

microarray data, Machine Learning 52 (2003) 91–118.
[54] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, 1982.
[55] C.M. Perou, S.S. Jeffrey, M. van de Rijn, C.A. Rees, M.B. Eisen, D.T. Ross, A. Pergamenschikov, C.F. Williams, S.X. Zhu, J.C.F. Lee, D. Lashkari, D. Shalon, P.O.

Brown, D. Botstein, Distinctive gene expression patterns in humanmammary epithelial cells and breast cancers, Proceedings of the National Academy
of Sciences of the United States of America 96 (1999) 9212–9217.

[56] J.R. Pollack, C.M. Perou, A.A. Alizadeh, M.B. Eisen, A. Pergamenschikov, C.F. Williams, S.S. Jeffrey, D. Botstein, P.O. Brown, Genome-wide analysis of
DNA copy-number changes using cDNA microarrays, Nature Genetics 23 (1999) 41–46.

[57] R. Giancarlo, D. Scaturro, F. Utro, Statistical indices for computational and data driven class discovery inmicroarray data, in: J.Y. Chen, S. Lonardi (Eds.),
Biological Data Mining, CRC Press, San Francisco, USA, 2009, pp. 295–335.

[58] Y. Raviv, N. Intrator, Bootstrapping with noise: An effective regularization technique, Connection Science 8 (1996) 355–372.
[59] C. Van Rijsbergen, Information Retrieval, 2nd edition, Butterworths, London, 1979.
[60] D.T. Ross, U. Scherf, M.B. Eisen, C.M. Perou, P. Spellman, V. Iyer, S.S. Jeffrey, M. van de Rijn, M. Walthama, A. Pergamenschikov, J.C.F. Lee, D. Lashkari, D.

Shalon, T.G. Myers, J.N.Weistein, D. Botstein, P.O. Brown, Systematic variation in gene expression patterns in human cancer cell lines, Nature Genetics
24 (2000) 227–235.

[61] V. Roth, T. Lange, M. Braun, J. Buhmann, A resampling approach to cluster validation, in: Proceedings 15th Symposium in Computational Statistics,
2002, pp. 123–128.

[62] S. Salvador, P. Chan, Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms, in: 16th IEEE International
Conference on Tools with Artificial Intelligence, 2004, ICTAI 2004, 2004, pp. 576–584.

[63] W.S. Sarle, Cubic clustering criterion, Technical report, SAS, 1983.
[64] M. Smolkin, D. Ghosh, Cluster stability scores for microarray data in cancer studies, BMC Bioinformatics 4 (2003).
[65] R.E. Strauss, Statistical significance of species clusters in association analysis, Ecology 63 (1978) 634–639.
[66] R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a dataset via the gap statistics, Journal Royal Statistical Society B. 2 (2001)

411–423.
[67] F. Utro, Algorithms for internal validation clustering measures in the Post-genomic era, Doctoral Dissertation, University of Palermo.

http://arxiv.org/abs/1102.2915v1, 2011.
[68] G. Valentini, Mosclust: a software library for discovering significant structures in bio-molecular data, Bioinformatics 23 (2007) 387–389.
[69] A. Vassiliou, L. Ignatiades, M. Karydis, Clustering of transect phytoplankton collections with a quick randomization algorithm, Journal of Experimental

Marine Biology and Ecology 130 (1989) 135–145.
[70] R.D.Wolfinger, G. Gibson, E.D.Wolfinger, L. Bennet, H. Hamadeh, C.A. Bushel, R.S. Paules, Assessing gene significance from cDNAmicroarray expression

data via mixed models, Journal of Computational Biology (2001) 625–637.
[71] K.Y. Yeung, Cluster analysis of gene expression data, Ph.D. Thesis, University of Washington, 2001.

http://arxiv.org/1102.2915

	Algorithmic paradigms for stability-based cluster validity and model selection statistical methods, with applications to microarray data analysis
	Introduction
	Basics
	Problems formulation
	Model selection with stability-based measures: an intuitive description

	Data generation/perturbation techniques
	Subsampling/Bootstrapping
	Noise injection
	Dimensionality reduction methods
	Randomized dimensionality reduction

	Null models

	Comparing clustering partitions
	The stability statistic paradigm
	Instances

	The stability measure paradigm
	Clest
	Consensus clustering

	A special case: the gap statistics
	Approximations
	Experiments
	Experimental setup: datasets and parameters
	Datasets
	Input parameters of internal stability measures
	Hardware

	Precision results
	Timing Results

	Conclusions
	Acknowledgements
	Additional instances of the stability statistic paradigm
	BagClust1
	Variants of Replicating Analysis
	Replicating_ME
	Replicating_RLBB02.


	Additional instances of the stability measure paradigm
	Model explorer
	MOSRAM
	Levine and Domany
	Roth et al.

	References


