

Journal of Pure and Applied Algebra 115 (1997) 81-85

JOURNAL OF PURE AND APPLIED ALGEBRA

Differential simplicity and the module of derivations

Alok Kumar Maloo*

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay - 400 005, India

Communicated by T. Hibi; received 30 November 1994

Abstract

Let A be a Noetherian local ring containing a field k. If $\text{Der}_k(A)$ is finite and A is differentially simple under a set of k-derivations then it is shown that $\text{Der}_k(A)$ is free.

1991 Math. Subj. Class.: 13B10, 13H99

Introduction

Let k be a field and let A be a Noetherian local ring containing k such that A is differentially simple simple under $\text{Der}_k(A)$. If $\text{Der}_k(A)$ is finitely generated as an A-module then we show that $\text{Der}_k(A)$ is free as an A-module. In fact, we prove the following result which is more general.

Theorem 5. Let A be a Noetherian local ring and let \mathfrak{D} be an A-submodule of Der(A). Let I be the maximally \mathfrak{D} -differential ideal. If \mathfrak{D} is closed under Lie operation of derivations and is finitely generated as an A-module then $\mathfrak{D}/I\mathfrak{D}$ is free as an A/I-module.

This result has the following application: Assume that characteristic of k is zero. If A is a G-ring (see [5, p. 256] for definition) then, by [2], A is regular. It was shown by an example in [3] that A, in general, is not regular. Recently in [1], a much simpler example of this fact was given. We first show that in this example $\text{Der}_k(A)$ is finitely generated. Now by our result $\text{Der}_k(A)$ is free. This gives us an example of a Noetherian local ring A containing a field k of characteristic zero such that A is

^{*} E-mail: alok@tifrvax.bitnet.

differentially simple under $\text{Der}_k(A)$, $\text{Der}_k(A)$ is finitely generated and free and A is not regular. This example is also of interest in view of Zariski Lipman conjecture (though it is not a counterexample as it does not belong to the right category).

We remark that if A is differentially simple then A contains a field k such that A is differentially simple under $\text{Der}_k(A)$.

1. The results

By a ring we mean a commutative ring with unity.

Let A be a ring. We denote by Der(A), the module of derivations of A. More specifically, if k is a ring and A is a k-algebra then we denote by $Der_k(A)$, the module of k-linear derivations of A.

Let $\mathfrak{D} \subset \text{Der}(A)$. An ideal I of A is said to be \mathfrak{D} -differential if $d(I) \subset I$ for all $d \in \mathfrak{D}$. If ideals I and J are \mathfrak{D} -differential then so are the ideals $I + J, I \cap J$ and IJ.

An ideal I is said to be a maximally \mathfrak{D} -differential ideal if it is a maximal element of the set

 $\mathfrak{F}_{\mathfrak{D}} = \{J \mid J \text{ is a proper } \mathfrak{D}\text{-differential ideal of } A\}.$

Note that by Zorn's lemma, $\mathfrak{F}_{\mathfrak{D}}$ contains maximal elements. Also note that if A is local then $\mathfrak{F}_{\mathfrak{D}}$ has a unique maximal element.

An ideal I is said to be maximally differential if it is maximally \mathfrak{D} -differential for some set $\mathfrak{D} \subset \text{Der}(A)$.

A ring is said to be differentially simple if the ideal (0) is maximally differential.

If A is differentially simple under $\mathfrak{D} \subset \text{Der}_k(A)$ then the set $\{a \in A \mid d(a) = 0 \text{ for all } d \in \mathfrak{D}\}$ is a field.

Definition 1 (cf. Maloo [4, 1.6]). Let $\mathfrak{D} \subset \text{Der}(A)$ and let $a \in A$. Let \mathfrak{D}_a denote the ideal of A generated by the set $\{d_1 \dots d_r(a) \mid r \ge 0; d_1, \dots, d_r \in \mathfrak{D}\}$. Then $a \in \mathfrak{D}_a$ and \mathfrak{D}_a is \mathfrak{D} -differential.

We recall the following lemma from [4].

Lemma 2. Let $\mathfrak{D} \subset \text{Der}(A)$ and let I be a maximally \mathfrak{D} -differential ideal. For $a \in A \setminus I$, construct \mathfrak{D}_a as in Definition 1. Then $I + \mathfrak{D}_a = A$.

Definition 3 (cf. Maloo [4, 1.8]). Let $\mathfrak{D} \subset \text{Der}(A)$ and let I be a maximally \mathfrak{D} differential ideal. Let Q be a (prime) ideal of A containing I. To every $a \in A$ we associate a nonnegative integer n := n(a,Q) as follows: If $a \in I$, put $n(a,Q) = \infty$. If $a \notin I$, construct \mathfrak{D}_a as in Definition 1. Then by Lemma 2, $I + \mathfrak{D}_a = A$. Therefore, there exist $d_1, \ldots, d_r \in \mathfrak{D}$ (for some $r \ge 0$) such that $d_1 \ldots d_r(a) \notin Q$. Let n(a,Q)denote the least nonnegative integer r with this property. Clearly, n(a,Q) is uniquely determined. **Lemma 4.** Let \mathfrak{D} , I and Q be as in Definition 3. Then:

(a) For $a, b \in A$, $n(a+b,Q) \ge \min\{n(a,Q), n(b,Q)\}$ and equality holds if $n(a,Q) \ne n(b,Q)$. Also $n(ab,Q) \ge n(a,Q) + n(b,Q)$.

(b) Let $J = (a_1, ..., a_m)$ be an ideal of A. Then for all $a \in J$, $n(a, Q) \ge \min\{n(a_i, Q) \mid 1 \le i \le m\}$.

Proof. Immediate from the definition. \Box

Theorem 5. Let A be a Noetherian local ring and let \mathfrak{D} be an A-submodule of Der(A). Let I be the maximally \mathfrak{D} -differential ideal. If \mathfrak{D} is closed under Lie operation of derivations and is finitely generated as an A-module then $\mathfrak{D}/I\mathfrak{D}$ is free as an A/I-module.

Proof. Let m denote the maximal ideal of A. Let d_1, \ldots, d_m be a minimal set of generators for \mathfrak{D} . We have to show that if $a_1, \ldots, a_m \in A$ such that $\sum_{i=1}^m a_i d_i = 0$ then $a_i \in I$ for all $i = 1, \ldots, m$. Assume the contrary. For $i = 1, \ldots, m$, let $n_i = n(a_i, m)$, as defined in Definition 3. Let $n = \min\{n_1, \ldots, n_m\}$. Then $n < \infty$. Choose a_1, \ldots, a_m such that n is the least. We show that n = 0. Suppose n > 0. We may assume that $n = n_1$. Then there exist $\delta_1, \ldots, \delta_n \in \mathfrak{D}$ such that $\delta_1 \ldots \delta_n(a_1) \notin m$. Put $\delta = \delta_n$. Then

$$0 = \left[\delta, \sum_{i=1}^{m} a_i d_i\right]$$
$$= \sum_{i=1}^{m} \{\delta(a_i)d_i + a_i[\delta, d_i]\}$$
$$= \sum_{i=1}^{m} (\delta(a_i) + b_i)d_i,$$

for some $b_i \in J = (a_1, ..., a_m)$, i = 1, ..., m. Then by Lemma 4 $n(\delta(a_1) + b_1, \mathfrak{m}) = n-1$ and $n(\delta(a_i) + b_i, \mathfrak{m}) \ge n-1$ for i = 2, ..., m. This contradicts the minimality of n. Therefore n = 0. This is impossible as $a_i \in \mathfrak{m}$ and therefore $n_i \ge 1$ for all i = 1, ..., m.

Corollary 6. Let A and \mathfrak{D} be as in Theorem 5. Suppose A is differentially simple under \mathfrak{D} . Then \mathfrak{D} is free as an A-module.

Proof. Immediate from Theorem 5. \Box

Corollary 7. Let A be a Noetherian local ring containing a field k such that $\text{Der}_k(A)$ is finitely generated as an A-module. If A is differentially simple under $\text{Der}_k(A)$ then $\text{Der}_k(A)$ is free as an A-module.

Proof. Follows from Corollary 6 as $\text{Der}_k(A)$ is closed under the Lie operation of derivations. \Box

Remark 8. We apply Corollary 7 to show that there exists a Noetherian local ring A containing a field k of characteristic zero such that $\text{Der}_k(A)$ is finitely generated and free as an A-module and A is not regular. To show that we need the following lemma:

Lemma 9. Let A be a Noetherian domain containing a field k and let K be the quotient field of A. If $\text{Der}_k(K)$ is finitely generated as a K-vector space then $\text{Der}_k(A)$ is finitely generated as an A-module.

Proof. Let $n = \dim_K \operatorname{Der}_k(K)$. Let d_1, \ldots, d_n be a basis of $\operatorname{Der}_k(K)$. First we show that there exist $\delta_1, \ldots, \delta_n \in \operatorname{Der}_k(K)$ and $x_1, \ldots, x_n \in A$ such that $\delta_r(x_i) = 0$ for $1 \le i < r$, $\delta_r(x_r) = 1$ and $\delta_1, \ldots, \delta_r, d_{r+1}, \ldots, d_n$ is a basis of $\operatorname{Der}_k(K)$, for all $1 \le r \le n$. This we do by induction on r.

Since $d_1 \neq 0$, $d_1(A) \neq 0$. Therefore there exists $x_1 \in A$ such that $d_1(x_1) \neq 0$. Put $\delta_1 = (d_1(x_1))^{-1}d_1$. Suppose r > 1 and $\delta_1, \ldots, \delta_{r-1}$ and x_1, \ldots, x_{r-1} have already been constructed. Then there exist (unique) elements $a_1, \ldots, a_{r-1} \in K$ such that $\delta(x_i) = 0$ for $1 \leq i < r$, where $\delta = d_r - \sum_{i=1}^{r-1} a_i \delta_i$. Since $\delta \neq 0$, there exists $x_r \in A$ such that $\delta(x_r) \neq 0$. Put $\delta_r = (\delta(x_r))^{-1}\delta$.

Since det $(\delta_i(x_i)) \neq 0$, we may assume that $(\delta_i(x_i))$ is an $n \times n$ identity matrix.

Now we show that $\text{Der}_k(A) \subset \sum_{i=1}^n A\delta_i$. Let $d \in \text{Der}_k(A)$. Extend d to K. Then $d = \sum_{i=1}^n b_i \delta_i$, for some $b_i \in K$, i = 1, ..., n. Then $b_i = d(x_i) \in A$ for all i = 1, ..., n. Since A is Noetherian we are through. \Box

Example. Now we give an example of a non-regular local ring A containing a field k of characteristic zero such that $\text{Der}_k(A)$ is finitely generated and free as an A-module (and A is differentially simple under $\text{Der}_k(A)$). In fact, we take A to be the ring R constructed in [1, Example B]. For the sake of completeness, we give an alternative construction of A. Let X, Y be indeterminates over k and let d and δ be the k derivations of k[X, Y] such that d(X) = 0, d(Y) = 1 and $\delta(X) = 1, \delta(Y) = 1 + Y$. Put $R = k[X, Y]_{(X,Y)}$. Then R is differentially simple under δ (see [6, Example 2.10]). For $a \in R$, let n(a) denote the integer n(a, XR + YR) as defined in Definition 3. Then by [3], $a \mapsto n(a)$ extends to a discrete valuation of K = k(X, Y). Let B denote the valuation ring of this valuation. Then $R \subset B$. By [3], δ extends to B. Let

 $A = \{b \in B \mid d(b) \in B\}.$

Then, A has the following properties:

- (a) $R \subset A \subseteq B$ and B is integral over A.
- (b) $\delta(A) \subset A$ and A is differentially simple under δ .
- (c) A is a Noetherian local ring of dimension 1.
- (d) A is not regular and $\text{Der}_k(A)$ is finitely generated and free.

Proof. (a) Since $d(R) \subset R$, $R \subset A$. Suppose B = A. Then d is a derivation of B. Since the maximal ideal of B is XB, and d(X) = 0, XB is d-differential. On the other hand, $Y \in XB$ and $d(Y) = 1 \notin XB$.

Now we show that B is integral over A. Let $b \in B$. By [4, Lemma 2.5], the natural map $R \to B/XB$ is surjective and hence b = a + Xb' for some $a \in R$ and $b' \in B$. Therefore, we may assume that b = Xb'. Since $d(b') = c/X^n$ for some $c \in B$ and $n \ge 0$, hence $d(b^n) \in B$ i.e. $b^n \in A$.

(b) Since $[d, \delta] = d$ and $\delta(B) \subset B$, it follows that $\delta(A) \subset A$. Now, by [4, Lemma 2.5] A is differentially simple under δ .

(c) By (a), A is a local ring of dimension 1. By [4, Lemma 2.5], the maximal ideal of A is XA + YA. Hence A is Noetherian.

(d) Since $B \neq A$, A is not normal and hence not regular. Since the quotient field of A is K = k(X, Y) and $\text{Der}_k(K)$ is finitely generated as a K-vector space, by Lemma 9, $\text{Der}_k(A)$ is finitely generated and hence by Corollary 7 free as an A-module. \Box

Remark 10. The above example is of interest in view of Zariski Lipman conjecture.

Acknowledgements

I would like to thank Prof. Balwant Singh for his constant help and encouragement. I would also like to thank Dr. Ravi Rao for the interest he has shown in this work.

References

- K.R. Goodearl and T.H. Leganan, Constructing bad Noetherian domains using derivations, J. Algebra 123 (1989) 478-495.
- [2] R. Hart, Derivations on commutative rings, J. London Math. Soc. (2) 8 (1974) 171-175.
- [3] Y. Lequain, Differential simplicity and complete integral closure, Pacific J. Math. 36 (1971) 741-751.
- [4] A.K. Maloo, Maximally differential ideals, J. Algebra 176 (1995) 806-823.
- [5] H. Matsumura, Commutative Ring Theory (Cambridge Univ. Press, Cambridge, 1986).
- [6] B. Singh, Maximally differential prime ideals in a complete local ring, J. Algebra 82 (1983) 331-339.
- [7] O. Zariski, Studies in equi-singularity I, Amer. J. Math. 87 (1965) 507-536.