
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 652 (2007) 111–117

www.elsevier.com/locate/physletb

On the moduli space of non-BPS attractors for N = 2 symmetric manifolds

Sergio Ferrara a,b,c, Alessio Marrani d,b,∗

a Physics Department, Theory Unit, CERN, CH 1211, Geneva 23, Switzerland
b INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy

c Department of Physics and Astronomy, University of California, Los Angeles, CA, USA
d Museo Storico della Fisica e, Centro Studi e Ricerche “Enrico Fermi” Via Panisperna 89A, 00184 Roma, Italy

Received 30 June 2007; accepted 1 July 2007

Available online 6 July 2007

Editor: L. Alvarez-Gaumé

Abstract

We study the “flat” directions of non-BPS extremal black hole attractors for N = 2, d = 4 supergravities whose vector multiplets’ scalar mani-
fold is endowed with homogeneous symmetric special Kähler geometry. The non-BPS attractors with non-vanishing central charge have a moduli
space described by real special geometry (and thus related to the d = 5 parent theory), whereas the moduli spaces of non-BPS attractors with van-
ishing central charge are certain Kähler homogeneous symmetric manifolds. The moduli spaces of the non-BPS attractors of the corresponding
N = 2, d = 5 theories are also indicated, and shown to be rank-1 homogeneous symmetric manifolds.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

The issue of the attractor mechanism in extremal black holes
[1–5] has recently received much attention, and a number of
interesting advances has been performed [6–35]. Among the
others, we cite here the OSV conjecture [36] (see also [32] and
references therein), relating black hole (BH) entropy to topo-
logical partition functions, and the entropy function formalism
[6,8], which allows one to include the higher derivative (gravi-
tational and electromagnetic) corrections to Maxwell–Einstein
action (this is crucial specially for the so-called “small” BHs,
with vanishing classical entropy). An important step has been
the realization that the attractor mechanism allows for extremal
non-BPS BH scalar configurations of different nature [5,17,21]
(see also [18]).

The present investigation concerns the latter issue, and in
particular the study of the “flat” directions of the Hessian matrix
of the black hole potential VBH at its critical points [10,23,34,
37–40]. Beside considering the case of N = 8, d = 4,5 super-
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gravity, we will deal with N = 2, d = 4,5 Maxwell–Einstein
supergravity theories (which in the following treatment we will
simply call “supergravities”) whose vector multiplets’ scalar
manifold is homogeneous symmetric. Indeed, for such theo-
ries a rather general analysis can be performed, determining the
moduli space of the various species of non-BPS critical points
of VBH, mainly by using group theoretical methods (see e.g.
[41–43]). In fact such moduli spaces are closely related to the
nature (of the stabilizer) of the “orbits” [33,44,47] of the back-
ground dyonic BH charge vector

(1.1)Q≡ (
mΛ,eΛ

)

which supports the considered attractor, where mΛ and eΛ re-
spectively stand for the magnetic and electric BH charges, and
Λ = 0,1, . . . , nV , with nV being the complex dimension of the
special Kähler scalar manifold. In the case of the stu model
[23,50,51], our results are in agreement with the ones obtained
in [21,33,34].

The Letter is organized as follows.
In Section 2 we review the BPS and non-BPS critical points

of VBH,N=2 for extremal BHs on homogeneous symmetric
scalar manifolds, and the corresponding orbits of the supporting
BH charges [21,33]. The resulting properties are summarized,
in particular the existence of “flat” directions for the non-BPS
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case, related to the rank of the Hessian matrix of VBH,N=2 at
the corresponding critical points of VBH,N=2. Thence, in Sec-
tion 3 we deal with the N = 8 theory, and derive the moduli
spaces for non-singular1 1

8 -BPS and non-BPS critical points of
VBH,N=8. In Section 4 we do the same for the N = 2 super-
gravities considered in Section 2, by taking into account that in
general non-BPS critical points of VBH,N=2 can occur in two
different species, depending on the vanishing of the N = 2 cen-
tral charge Z. Thus, in Section 5 we consider the case d = 5,
in particular the N = 8 theory (having only an 1

8 non-singular
class of attractors) and the N = 2 homogeneous symmetric
supergravities (having an unique non-BPS class at attractors).
Finally, some outlooks are given in Section 6.

2. N = 2, d = 4 homogeneous symmetric supergravities:
Attractors and critical Hessian

The symmetric special Kähler manifolds GV

H0⊗U(1)
of N = 2,

d = 4 supergravities have been classified in the literature [45,
46]. With the exception of the family whose prepotential is
quadratic, all such theories can be obtained by dimensional
reduction of the N = 2, d = 5 supergravities that were con-
structed in [52–54] (they will be treated in Section 5). The
supergravities with symmetric manifolds that originate from
5 dimensions all have cubic prepotentials determined by the
norm form of the Jordan algebra of degree 3 that defines them
[52–54].

The vector multiplets’ scalar manifolds of homogeneous
symmetric N = 2, d = 4 supergravities are given in Table 1.

The irreducible sequence in the second row of Table 1 has
quadratic prepotentials (and thus Cijk = 0). On the other hand,
the reducible sequence in the third row, usually referred to as the
generic Jordan family, has a 5-dim. origin, and it is related tot
the sequence R ⊕ Γn of reducible Euclidean Jordan algebras of
degree 3. Here R denotes the 1-dim. Jordan algebra and Γn de-
notes the Jordan algebra of degree 2 associated with a quadratic
form of Lorentzian signature (see2 e.g. Table 4 of [21], and ref-
erences therein).

Beside the generic Jordan family, there exist four other su-
pergravities defined by simple Jordan algebras of degree 3.
They are called magic, since their symmetry groups are the
groups of the famous Magic Square of Freudenthal, Rozen-
feld and Tits associated with some remarkable geometries [60,
61]. J

O

3 , JH

3 , JC

3 and JR

3 denote the four simple Jordan al-
gebras of degree 3 with irreducible norm forms, namely by
the Jordan algebras of Hermitian 3 × 3 matrices over the four
division algebras, i.e. respectively over A = O (octonions),
A = H (quaternions), A = C (complex numbers) and A = R

(real numbers) [52–59]. By defining A ≡ dimR A (= 8,4,2,1
for A = O,H,C,R, respectively), Table 1 yields that the com-

1 We will consider only non-singular critical points of VBH, i.e. solutions of
the criticality conditions ∂iVBH = 0 ∀i, such that VBH|∂VBH=0 �= 0.

2 In order to make contact with the notation used in the present Letter, with
respect to the notation used in [21] one has to shift n + 1 → n (and thus n ∈ N)
for the quadratic sequence, and n + 2 → n (and thus n ∈ N) for the cubic se-
quence.
plex dimension of the scalar manifolds of the magic N = 2,
d = 4 supergravities is 3(A+1). Beside the analysis performed
in [21], Jordan algebras have been recently studied (and related
to extremal BHs) also in [62] and [63].

As found in [47], the 1
2 -BPS supporting charge orbit is GV

H0
.

By denoting by H̃ and Ĥ two non-compact forms of H0, in
[21] it was found that the non-BPS Z = 0 and non-BPS Z �= 0
supporting BH charge orbits respectively are the cosets GV

H̃
and

GV

Ĥ
. Due to the compact nature of H0, the symmetry group of

the 1
2 -BPS critical points is the whole H0, whereas the symme-

try group of the non-BPS Z = 0 and non-BPS Z �= 0 critical
points respectively is the maximal compact subgroup (m.c.s.)
of H̃ and Ĥ , in turn denoted by h̃ and ĥ (actually, in the non-

BPS Z = 0 case, the symmetry is h̃′ ≡ h̃
U(1)

; see [21] for further
details).

The data of all the N = 2, d = 4 homogeneous symmetric
supergravities are given in Tables 3 and 8 of [21].

In the following treatment we will denote by r the rank of the
2nV × 2nV Hessian matrix H of VBH. Since in N = 2, d = 4
supergravity the 1

2 -BPS critical points of VBH are stable, and
H 1

2 -BPS has no massless modes [5], it holds that the rank is
maximal: r 1

2 -BPS = 2nV . On the other hand, from the analysis

performed in [21] for homogeneous symmetric N = 2, d = 4
supergravities, it follows that rnon-BPS is model-dependent, and
it also depends on the vanishing of the N = 2 central charge Z.

In the quadratic sequence SU(1,n)
U(1)⊗SU(n)

(n ∈ N), only non-BPS
critical points with Z = 0 exist. In this case, rnon-BPS,Z=0 = 2,
and Hnon-BPS,Z=0 has 2n − 2 = 2nV − 2 massless modes.

For the generic Jordan family SU(1,1)
U(1)

⊗ SO(2,n)
SO(2)⊗SO(n)

(n ∈ N),
it holds that rnon-BPS,Z �=0 = n + 2 = nV + 1 (Hnon-BPS,Z �=0
has n = nV − 1 massless modes), whereas rnon-BPS,Z=0 = 6
(Hnon-BPS,Z=0 has 2n − 4 = 2nV − 6 massless modes).

Concerning the magic models, it holds that rnon-BPS,Z �=0 =
3A+ 4 = nV + 1 (Hnon-BPS,Z �=0 has 3A+ 2 = nV − 1 massless
modes), whereas rnon-BPS,Z=0 = 2A + 6 (Hnon-BPS,Z=0 has 4A

massless modes).
Thus, the above findings match the result found by Tri-

pathy and Trivedi in [10] for a generic special Kähler d-
geometry3 of complex dimension nV : rnon-BPS,Z �=0 = nV + 1,
i.e. Hnon-BPS,Z �=0 has nV − 1 massless modes.

3. N = 8, d = 4 supergravity: Attractors and their moduli
spaces

In order to understand the moduli spaces of the two classes
(Z �= 0 and Z = 0) of non-BPS attractors of homogeneous sym-
metric N = 2, d = 4 supergravities, it is instructive to consider
N = 8, d = 4 supergravity, based on the real 70-dim. homoge-
neous symmetric manifold G8

H8
= E7(7)

SU(8)
.

From the analysis performed in [19,47,49] it holds that only
two non-singular classes of critical points of VBH,N=8 exist (see

3 Following the notation of [46], by d-geometry we mean a special Kähler
geometry based on an holomorphic prepotential function of the cubic form

F(X) = dABC
XAXBXC

0 (A, B , C = 0,1, . . . , nV ).

X
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Table 1
N = 2, d = 4 homogeneous symmetric special Kähler manifolds

GV
HV

r dimC ≡ nV

Quadratic sequence

n ∈ N
SU(1,n)

U(1)⊗SU(n)
1 n

R ⊕ Γn,n ∈ N
SU(1,1)
U(1)

⊗ SO(2,n)
SO(2)⊗SO(n)

2 (n = 1)

3 (n � 2)

n + 1

J
O

3
E7(−25)

E6(−78)⊗U(1)
3 27

JH
3

SO∗(12)
U(6)

3 15

JC
3

SU(3,3)
S(U(3)⊗U(3))

= SU(3,3)
SU(3)⊗SU(3)⊗U(1)

3 9

JR
3

Sp(6,R)
U(3)

3 6
also [33]): the 1
8 -BPS class, supported by the BH charge orbit

O 1
8 -BPS,N=8 ≡ G8

H0
= E7(7)

E6(2)
, and the non-BPS class, supported

by the BH charge orbit Onon-BPS,N=8 ≡ G8

Ĥ0
= E7(7)

E6(6)
. Thus, the

1
8 -BPS and non-BPS orbits respectively correspond to the max-
imal (non-compact) subgroup of E7(7) to be E6(2) ⊗ U(1) and
E6(6) ⊗ SO(1,1), where E6(2) and E6(6) are two non-compact
forms of the exceptional group E6 ≡ E6(−78) [42]. The 70 × 70
1
8 -BPS Hessian H 1

8 -BPS,N=8 has rank 30, with 40 massless

modes [39] sitting in the representation (20,2) of the enhanced
1
8 -BPS symmetry group SU(6) ⊗ SU(2) = m.c.s.(H0) [33]. On
the other hand, the 70 × 70 non-BPS Hessian Hnon-BPS,N=8
has rank 28, with 42 massless modes sitting in the representa-
tion 42 of the enhanced non-BPS symmetry group USp(8) =
m.c.s.(Ĥ0) [33].

As it will be evident from the reasoning performed below,
the massless modes of the Hessian of VBH,N=8 at its non-
singular 1

8 -BPS and non-BPS critical points actually are “flat”
directions of VBH,N=8 at the corresponding critical points.
Such “flat” directions span the following real homogeneous
symmetric sub-manifolds of E7(7)

SU(8)
:

1

8
-BPS moduli space:

H0

m.c.s.(H0)
= E6(2)

SU(6) ⊗ SU(2)
, dimR = 40;

non-BPS moduli space:

(3.1)
Ĥ0

m.c.s.(Ĥ0)
= E6(6)

USp(8)
, dimR = 42.

Both moduli spaces E6(2)

SU(6)⊗SU(2)
and E6(6)

USp(8)
share the same

structure: they are the coset of the (non-compact) stabilizer of
the corresponding supporting BH charge orbit and of its m.c.s.
As yielded by the analysis performed in Section 4, this is also
the structure of the moduli spaces of the two classes of non-
BPS attractors of the homogeneous symmetric N = 2, d = 4
supergravities.

Remarkably, E6(6)

USp(8)
is the real manifold on which N = 8,

d = 5 supergravity is based. Such a relation with the d = 5 par-
ent theory is exhibited also by non-BPS Z �= 0 moduli spaces
of the homogeneous symmetric N = 2, d = 4 supergravities;
see Section 4.

In order to understand that the “flat” directions of the
Hessian of

(3.2)VBH,N=8 ≡ 1

2
ZAB(φ,Q)Z̄AB(φ,Q)

at its critical points actually span a moduli space, it is useful to
recall that the N = 8 central charge matrix ZAB(φ,Q) can be
rewritten as [48]

(3.3)ZAB(φ,Q) = (
QT L(φ)

)
AB

= (
QT

)
Λ
LΛ

AB(φ),

where φ denote the 70 real scalar fields parameterizing the coset
G8
H8

= E7(7)

SU(8)
, Q is the N = 8 charge vector, and LΛ

AB(φ) ∈ G8
is the field-dependent coset representative, i.e. a local section of
the principal bundle G8 over G8

H8
with structure group H8. Thus,

it follows that

VBH,N=8(φ,Q) = VBH,N=8
(
φg,Q

g
)

(3.4)= VBH,N=8
(
φg,

(
g−1)T

Q
)
,

which shows that VBH,N=8 is not G8-invariant, because its co-
efficients (given by the components of Q) do not in general
remain the same.

Now, if we take g ≡ gQ ∈ HQ, where HQ is the stabilizer
of one of the orbits G8

HQ
spanned by the charge vector Q, then

QgQ = Q, and thus:

(3.5)VBH,N=8(φ,Q) = VBH,N=8(φgQ
,Q).

Let us now split the fields φ into φQ ∈ HQ

hQ
(where hQ ≡

m.c.s.(HQ)) and into the remaining φ̂Q, paremeterizing the

complement of HQ

hQ
in G8

HQ
. By defining

(3.6)VBH,N=8,crit(φQ,Q) ≡ VBH,N=8(φ,Q)
∣∣

∂VBH,N=8
∂φ̂Q

=0
,

Eq. (3.5) yields the invariance of VBH,N=8,crit(φQ,Q) under
HQ:

(3.7)VBH,N=8,crit
(
(φQ)gQ

,Q
) = VBH,N=8,crit(φQ,Q).

Since HQ is a non-compact group, this implies VBH,N=8 to be
independent at its critical points on the fields φQ parameter-

izing the coset HQ . In other words, the (covariant) derivatives

hQ
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of VBH,N=8, when evaluated at its critical points and with all

indices spanning the coset HQ

hQ
, vanish at all orders.

It is easy to realize that such a reasoning can be performed
for all supergravities with N � 1 based on homogeneous (not
necessarily symmetric) manifolds4 GN

HN
, also in presence of

matter multiplets (and thus of matter charges). Indeed, such
arguments also apply to a generic, not necessarily supersym-
metric, Maxwell–Einstein system with an homogeneous (not
necessarily symmetric) scalar manifold.

By choosing Q belonging to an orbit of the representation
RV of GN which supports critical points of VBH,N , the pre-
vious reasoning yields the interesting result that, up to “flat”
directions (at all orders in covariant differentiation of VBH,N ),
all critical points of VBH,N in all N � 0 Maxwell–Einstein (su-
per)gravities with an homogeneous (not necessarily symmetric)
scalar manifold (also in presence of matter multiplets) are sta-
ble, and thus they are attractors in a generalized sense.

4. N = 2, d = 4 symmetric supergravities: Attractors and
their moduli spaces

By using the arguments of the previous section, we now
determine the moduli spaces of non-BPS critical points of
VBH,N=2 (with Z �= 0 and Z = 0) for all N = 2, d = 4 ho-
mogeneous symmetric supergravities.

As previously noticed, N = 2 1
2 -BPS critical points are sta-

ble, and at such points all the scalars are stabilized by the
classical attractor mechanism, because H 1

2 -BPS has no massless

modes at all [5]; thus, there is no 1
2 -BPS moduli space for all

N = 2, d = 4 supergravities (as far as the metric of the scalar
manifold is non-singular and positive-definite). This is qualita-
tively different from the previously considered case of N = 8
1
8 -BPS critical points.

In the framework of N = 2, d = 4 homogeneous symmetric
supergravities, such a difference can be traced back to the fact
that the stabilizer of the N = 2 charge orbit O 1

2 -BPS,N=2 is
compact (see Tables 3 and 8 of [21]).

In general, such a difference can be explained by noticing
that for N = 2 the 1

N = 1
2 -BPS configurations are the max-

imally supersymmetric ones, i.e. they preserve the maximum
number of supersymmetries out of the ones related to the as-
ymptotically flat BH background. For 2 < N � 8 the 1

N -BPS
configurations are not maximally supersymmetric, and the con-
figurations preserving the maximum number of supersymme-
tries have vanishing classical BH entropy.

It is now possible to determine the moduli spaces of non-
BPS critical points of VBH,N=2 (with Z �= 0 and Z = 0) for all
N = 2, d = 4 homogeneous symmetric supergravities (which
match the results about the rank of the Hessian reported in
Section 2). Consistently with the notation introduced in Sec-

tion 2, the N = 2 non-BPS Z �= 0 moduli space is the coset Ĥ

ĥ
,

whereas the N = 2 non-BPS Z = 0 moduli space is the coset

4 This is actually always the case for N � 3 (see e.g. [37]).
Table 2
Moduli spaces of non-BPS Z �= 0 critical points of VBH,N=2 in N = 2, d = 4
homogeneous symmetric supergravities. They are the N = 2, d = 5 homoge-
neous symmetric real special manifolds

Ĥ

ĥ
r dimR

R ⊕ Γn, n ∈ N SO(1,1) ⊗ SO(1,n−1)
SO(n−1)

1 (n = 1)

2 (n � 2)

n

J
O

3
E6(−26)

F4(−52)
2 26

JH
3

SU∗(6)
USp(6)

2 14

JC
3

SL(3,C)
SU(3)

2 8

JR
3

SL(3,R)
SO(3)

2 5

Table 3
Moduli spaces of non-BPS Z = 0 critical points of VBH,N=2 in N = 2, d = 4
homogeneous symmetric supergravities. They are (non-special) homogeneous
symmetric Kähler manifolds

H̃

h̃
= H̃

h̃′⊗U(1)
r dimC

Quadratic sequence

n ∈ N
SU(1,n−1)

U(1)⊗SU(n−1)
1 n − 1

R ⊕ Γn,n ∈ N
SO(2,n−2)

SO(2)⊗SO(n−2)
, n � 3 1 (n = 3)

2 (n � 4)

n − 2

J
O

3
E6(−14)

SO(10)⊗U(1)
2 16

JH
3

SU(4,2)
SU(4)⊗SU(2)⊗U(1)

2 8

JC
3

SU(2,1)
SU(2)⊗U(1)

⊗ SU(1,2)
SU(2)⊗U(1)

2 4

JR
3

SU(2,1)
SU(2)⊗U(1)

1 2

H̃

h̃
= H̃

h̃′⊗U(1)
(see [21] for further details on notation). They are

respectively given by Tables 2 and 3.
Remarkably, the moduli spaces of non-BPS Z �= 0 critical

points are nothing but the N = 2, d = 5 homogeneous symmet-
ric real special manifolds, i.e. the scalar manifolds of the d = 5
parents of the considered theories. Their real dimension dimR

(rank r) is the complex dimension dimC (rank r) of the N = 2,
d = 4 symmetric special Kähler manifolds listed in Table 1,
minus one. With the exception of the st2 model (n = 1 ele-

ment of the generic Jordan family) having Ĥ

ĥ
= SO(1,1) with

rank r = 1, all such moduli spaces have rank r = 2. The re-
sults of Table 2 are consistent with the non-BPS Z �= 0 “nV + 1
/ nV − 1” mass degeneracy splitting found by Tripathy and
Trivedi in [10] (and confirmed in [21,33,34]) for a generic spe-
cial Kähler d-geometry of complex dimension nV .

Concerning the moduli spaces of non-BPS Z = 0 critical
points, they are homogeneous symmetric (not special) Kähler
manifolds. In the models st2 and stu (n = 1 and n = 2 elements
of the generic Jordan family) there are no non-BPS Z = 0 “flat”
directions at all (see Appendix II of [21]). By recalling that
A ≡ dimR A, Table 3 yields that the moduli spaces of non-BPS
Z = 0 critical points of VBH,N=2 in magic N = 2, d = 4 su-
pergravities have complex dimension 2A. Interestingly, for the
N = 2, d = 4 magic supergravity associated to J

O

3 , the non-

BPS Z = 0 moduli space is the manifold E6(−14) , which
SO(10)⊗U(1)
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is related to another exceptional Jordan triple system over O,
as found long time ago by Günaydin, Sierra and Townsend
[52,53].

As mentioned in the Introduction, all this is consistent with
the results about the stu model [23,50,51] obtained in [21,33,
34]: for such a model (n = 2 element of the generic Jordan fam-
ily) there are 2 non-BPS Z �= 0 “flat” directions (spanning the
manifold (SO(1,1))2, as yielded by Table 2) and no non-BPS
Z = 0 “flat” directions.

5. d = 5, N = 8 and N = 2 symmetric supergravities:
attractors and their moduli spaces

N = 8, d = 5 supergravity, based on the homogeneous sym-
metric real manifold E6(6)

USp(8)
(dimR = 42), has only one non-

singular (i.e. with non-vanishing cubic invariant I3) charge or-
bit, namely the 1

8 -BPS one [44,47,49]:

(5.1)
E6(6)

F4(4)

.

The d = 5 supersymmetry reduction N = 8 → N = 2 gives
14 vector multiplets and 7 hypermultiplets [64] corresponding
to the two “extremal” (in the sense of having the maximum
number of vector multiplets or hypermultiplets) truncations
[64]:

(nV ,nH ) = (14,0):
SU∗(6)

USp(6)
real special;

(5.2)

(nV ,nH ) = (0,7):
F4(4)

USp(6) ⊗ USp(2)
quaternionic Kähler,

yielding 14 massive and 28 massless modes of H 1
8 -BPS,N=8,d=5.

Thus, the moduli space of the non-singular 1
8 -BPS critical

points of VBH,N=8 in N = 8, d = 5 supergravity is given by
the quaternionic Kähler manifold

(5.3)
F4(4)

USp(6) ⊗ USp(2)
.

Considering now the case N = 2, the manifolds of the ho-
mogeneous symmetric N = 2, d = 5 supergravities are given
by Table 2. As shown in [44], the 1

2 -BPS critical points are sta-
ble already at the Hessian level, as in the d = 4 case. There is an
unique class of non-singular non-BPS critical points; by slightly
modifying the notation introduced in [44], we denote by H̃5 and
K̃5 the (non-compact) stabilizer of the corresponding non-BPS
charge orbits and its m.c.s., respectively. It then follows that
the moduli space of the unique class of non-singular non-BPS
critical points of VBH,N=2 in homogeneous symmetric N = 2,
d = 5 supergravities is given by the homogeneous symmetric
manifold

(5.4)
H̃5

K̃5
.

The explicit form of H̃5

K̃5
and its data for all homogeneous sym-

metric N = 2, d = 5 supergravities is given in Table 4. Such
a table yields that the moduli spaces of non-singular non-BPS
Table 4
Moduli spaces of non-BPS critical points of VBH,N=2 in N = 2, d = 5 homo-
geneous symmetric supergravities

H̃5
K̃5

r dimR

R ⊕ Γn,n ∈ N
SO(1,n−2)
SO(n−2)

, n � 3 1 (n � 3) n − 2

J
O

3
F4(−20)

SO(9)
1 16

JH
3

USp(4,2)
USp(4)⊗USp(2)

1 8

JC
3

SU(2,1)
SU(2)⊗U(1)

1 4

JR
3

SL(2,R)
SO(2)

1 2

critical points of VBH,N=2 in magic N = 2, d = 5 supergravi-
ties have real dimension 2A. Their stabilizer contains the group
spin(1 + A). Here we just point out that, unlike the case d = 4
[10,34], an explicit calculation of the “flat” directions of non-
BPS critical points of VBH,N=2 in d = 5, despite some recent
works on attractor mechanism and entropy function formal-
ism in d = 5 supergravities (see e.g. [66–68], and references
therein), is missing at the present time.

6. Conclusion

In the present investigation we have extended the analysis
performed in [21] and [33] about the spectrum of non-BPS
critical points of VBH,N=2, their degeneracy and stability. For
the case of d-geometries [10,34], and in particular for ho-
mogeneous symmetric special Kähler geometries [21,33], the
Hessian matrix of VBH,N=2 at its non-BPS critical points gener-
ally has some strictly positive eigenvalues and some vanishing
eigenvalues, corresponding to “flat” directions. For the non-
BPS Z �= 0 case, our analysis generalizes the findings of [34].

One should not be surprised by our result, because the ex-
istence of “flat” directions in the Hessian of VBH was pointed
out also at BPS critical points (preserving 4 supersymmetries)
in the framework of N > 2, d = 4 extended supergravities
[33,39], the “flat” directions being associated to hypermulti-
plets’ scalar degrees of freedom in the supersymmetry reduc-
tion N > 2 → N = 2 of the considered theory [33,38–40] (see
[37] for an introduction to the attractor mechanism in N � 2-
extended supergravities).

We have shown that the geometrical structure of the non-
BPS moduli spaces depends on the vanishing of the N = 2
central charge Z. As previously mentioned, for Z �= 0 our re-
sults are in agreement with the ones of [10] and [34].

It is easy to realize that our results extend also to the case
of homogeneous non-symmetric special Kähler geometries.
Clearly, in such a framework the classification of the charge
orbits supporting non-singular critical points might be different
from the symmetric case. Actually, as mentioned above, our re-
sults also hold for a generic, not necessarily supersymmetric,
Maxwell–Einstein system with an homogeneous (not necessar-
ily symmetric) scalar manifold.

For generic, non-homogeneous special Kähler d-geometries,
the U -duality group has no longer a transitive action on the rep-
resentation space of the BH charges, and the analysis is more
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complicated, and it might yield different results about stability.
However, the non-BPS moduli spaces are still present at least
in some particular cases, e.g. in the model called Kaluza–Klein
BH (in M-theory language) [49] or D0–D6 system (in type IIA
Calabi–Yau compactifications in the language of superstring
theory) [10,34], in which the only non-vanishing charges are
p0 and q0. In this case, the moduli space is the corresponding
real special manifold.

The existence of moduli spaces clarifies the issue of clas-
sical stability of non-BPS critical points of VBH,N=2, at least
for the analyzed case of homogeneous symmetric vector mul-
tiplets’ scalar manifolds. All such non-BPS critical points are
stable, with a certain number of “flat” directions, which how-
ever do not enter into the classical Bekenstein–Hawking [65]
BH entropy SBH, whose U -invariant expression in the consid-
ered framework in d = 4 reads [39]

SBH(Q) = π
∣∣I2(Q)

∣∣ for quadratic models;
(6.1)SBH(Q) = π

√∣∣I4(Q)
∣∣ for cubic models,

I2(Q) and I4(Q) being the unique invariant (quadratic and
quartic in the BH charges, respectively) of the representation
RV of the U -duality group in which the charge vector sits.

It is conceivable that most of the “flat” directions will be re-
moved by quantum effects, i.e. by higher-derivative corrections
to the classical BH potential VBH. However, this might not be
the case for N = 8 BHs.

We conclude by saying that for the cases considered in the
present investigation the existence of “flat” directions is closely
related to the Lorentzian signature of the BH charge orbits sup-
porting non-BPS critical points of VBH,N=2, i.e. to the fact that
the corresponding stabilizer is a non-compact group. The same
phenomenon already happened for N > 2 also at non-singular
BPS critical points [38–40].
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