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Abstract We show that a glycerophosphodiester phosphodies-
terase homolog, GDE2, is widely expressed in brain tissues
including primary neurons, and that the expression of GDE2 in
neuroblastoma Neuro2A cells is significantly upregulated during
neuronal differentiation by retinoic acid (RA) treatment. Stable
expression of GDE2 resulted in neurite formation in the absence
of RA, and GDE2 accumulated at the regions of perinuclear and
growth cones in Neuro2A cells. Furthermore, a loss-of-function
of GDE2 in Neuro2A cells by RNAi blocked RA-induced neurite
formation. These results demonstrate that GDE2 expression
during neuronal differentiation plays an important role for grow-
ing neurites.
� 2007 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Escherichia coli (E. coli) glycerophosphodiester phosphodies-

terases (GP-PDEs), GlpQ and UgpQ, are periplasmic and cyto-

solic proteins, which play an important role in the hydrolysis of

deacylated glycerophospholipids to glycerol phosphate and

alcohol, which are utilized as a major source of carbon and phos-

phate in E. coli [1,2]. In contrast, two novel mammalian GP-

PDEs, GDE1/MIR16 and GDE3, were recently identified, and

considered to be involved in several physiological functions

[3,4]. GDE1/MIR16 was identified by yeast two-hybrid screen-

ing as a protein interacting with RGS16, a regulator of G protein

signaling [3]. A recent study has shown that GDE1 is an integral

membrane-bound glycoprotein that selectively hydrolyzes glyc-

erophosphoinositol (GroPIns) [5]. In addition, Zheng et al. dem-

onstrated that GroPIns phosphodiesterase activity in HEK293T

cells can be regulated by stimulation of G protein-coupled a/b-

adrenergic and lysophospholipid receptors [5]. Also, GDE3 was

recently identified to be differentially expressed during specific

stages of differentiation in mouse osteoblast-like MC3T3-E1

cells using a differential display method [4]. GDE3 encodes a
Abbreviations: GP-PDE, glycerophosphodiester phosphodiesterase;
RA, retinoic acid; GFP, green fluorescent protein; DMEM, Dulbecco’s
modified Eagle’s medium; FCS, fetal calf serum
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protein with seven putative transmembrane regions and an

extracellular loop containing a GP-PDE domain. We demon-

strated that GDE3 protein accumulates at the cell periphery,

and that overexpression of GDE3 changes transfected cells from

a spread to a rounded form [4]. Moreover, endogenous GDE3

was co-localized with actin filament in MC3T3-E1 cells, suggest-

ing that GDE3 is involved in the morphological change of cells

accompanying modification of the cytoskeleton. Thus, mamma-

lian GP-PDEs are considered to be involved in numerous

physiological functions including signal transduction and cyto-

skeletal regulation.

Very recently, six mammalian GP-PDEs have been virtually

cloned by an approach using bioinformatics [5,6]. In particular,

we showed that GDE2 contained 607 amino acids with seven

putative transmembrane regions, and that it was 43.7% identi-

cal to GDE3 at the amino acid level. Although GDE3 mRNA is

restrictedly expressed in bone tissue and in the spleen, GDE2

mRNA was highly expressed in mouse brain, suggesting that

GDE2 might have distinct roles in the nervous system. The

physiological function of the nervous system is tightly associ-

ated with the highly specific pattern of connections formed be-

tween neurons. The specificity of these connections requires

neurite extension toward their targets guided by the growth

cone [7–9]. Ever since we showed that GDE3 protein was local-

ized at the cell periphery and played a critical role for morpho-

logical change of cells, we have been particularly interested in

the biological functions of mammalian GP-PDEs in neurons.

These observations led us to hypothesize that GDE2 might play

critical roles for neurite formation and/or neurite retraction.

Neuro2A cells are neuroblastoma established from the mouse

spinal cord, and are widely used for studies on neurite growth

that is induced by retinoic acid (RA) treatment. Although sev-

eral molecules have been reported to be involved in retinoid-in-

duced neuronal differentiation of Neuro2A cells [10–12], our

understanding of the mechanisms involved in the control of

neuronal differentiation of Neuro2A cells remains limited. In

this study, we demonstrated that the expression of GDE2 was

dramatically upregulated during neuronal differentiation in re-

sponse to RA, and that GDE2 played a critical role for neurite

outgrowth of Neuro2A cells.
2. Materials and methods

2.1. Materials
Restriction endonucleases and DNA-modifying enzymes were pur-

chased from Takara Shuzo (Kyoto, Japan). Murine neuroblastoma
Neuro2A cells were obtained from Health Science Research Resources
ation of European Biochemical Societies.
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Bank (Japan). Dulbecco’s modified Eagle’s medium (DMEM) and fetal
calf serum (FCS) were purchased from Invitrogen. Antibodies specific
for ERK1 and ERK2 were products of Santa Cruz Biotechnology.
Anti-phospho-ERK1/2 antibody was obtained from Cell Signaling.
Anti-GDE2 antibody was generated as we previously described [6].

2.2. Cell culture and transfection
Neuro2A cells were cultured in DMEM supplemented with 10%

FCS, 100 units/ml penicillin, and 100 lg/ml streptomycin under a
humidified atmosphere of 5% CO2 in air at 37 �C. The cells were
seeded at 3.0 · 104 and incubated for 24 h in a 90 mm-diameter plastic
Petri dishes. Then induction of neuritogenesis was performed as previ-
ously described [13,14]. Briefly, differentiation was initiated by admin-
istration of 20 lM RA (Nacalai Tesque, Japan) in DMEM
supplemented with 2% FCS. The open reading frame of GDE2 was
digested with BamHI, followed by blunting with T4 DNA polymerase.
pEGFP-N1 (Clontech) was digested with XhoI, followed by blunting
with T4 DNA polymerase. The resultant two DNA fragments were
digested with KpnI and ligated, generating pEGFP-GDE2. Neuro2A
cells were transiently transfected with pEGFP-GDE2 using Lipofect-
AMINE 2000 (Invitrogen), according to the manufacturer’s instruc-
tions. After transfection into Neuro2A cells, the cells were treated
with 500 lg/ml of G418 for 14 days. After G418-resistant colonies were
isolated, independent colonies were re-seeded in the growth medium,
respectively. The morphology of each cell line was observed under a
microscope, and photographs were taken at 100· magnification. To
quantitatively evaluate neuritogenesis, the 80 differentiated cells were
counted in five randomly chosen fields of each dish. Cells bearing neu-
rites at least 1.5-fold longer than the soma diameter were regarded as
being differentiated. pGFP-GDE2 was digested with both EcoRI and
NotI, and insert fragment was ligated to EcoRI and NotI sites of the
pMX retrovirus vector. High titer retroviruses harboring GDE2-
GFP were produced in Phoenix 293 cells, and used to infect Neuro2A
cells, as reported previously [15]. After Neuro2A cells were grown on
glass slides with chamber polystyrene vessels in DMEM containing
10% FCS, they were directly fixed with 4% paraformaldehyde in phos-
phate-buffered saline (PBS) for 30 min. Subsequently, the cells were
washed for 10 min in PBS with 0.1% Tween 20, treated with rhodamine
phalloidin (Molecular Probes) for 1 h, and visualized by fluorescence
microscopy.

Primary cortical neurons and primary glial cells from mouse fetuses
were isolated as we described previously [16]. Expression of GDE2
Fig. 1. Expression of GDE2 mRNA in a variety of brain regions and neuron
Northern blot analysis. Expression of GDE2 mRNA was observed in ad
hippocampus, and hypothalamus. (B) Expression of GDE2 mRNA in p
particularly abundant in primary neuronal cells. (C) Neuronal differentiation o
total RNA from Neuro2A cells cultured at the indicated time was subjected to
were normalized by that of the b-actin. Results are expressed as the fold-incr
(D) GDE2 protein is upregulated during differentiation of Neuro2A cells. Me
gels were analyzed by Western blot with anti-GDE2 antibody. Expression of
mRNA in these cultures was examined using RT-PCR with primers
5 0-CCGCCATGCTGGCGCTCATCTC-3 0 and 5 0-AGGTCTCAGC-
TTCTCCGGGATT-3 0.

2.3. Small Interfering RNAs (siRNAs)
Duplex siRNAs with a two nucleotide overhang at the 3 0-end of the

sequence were designed at iGENE Therapeutics and synthesized at
Hokkaido System Science Co., Ltd. The target sequence was as
follows: GDE2, CCUGCAUCAUGGAGAAAAAAGACCU. Neu-
ro2A cells were transfected with siRNAs in a final concentration of
20 nM and pEGFP-N1 using LipofectAMINE 2000. At 8 h post-trans-
fection, differentiation was initiated by administration of 20 lM of
RA. The morphology of the cells was observed under a microscope,
and photographs were taken at 100· magnification. To quantitatively
evaluate neuritogenesis, neurite lengths of eighty GFP-positive cells in
five randomly chosen fields of each dish were measured.

2.4. Western blot analysis
Neuro2A cells were washed with ice-cold PBS, and scraped in ice-

cold RIPA buffer (10 mM Tris–HCl, pH 7.4, 1% NP-40, 0.1% sodium
deoxycholate, 0.1% SDS, 0.15 M NaCl, 1 mM EDTA). The homoge-
nates were centrifuged at 10000 · g for 10 min. Protein concentration
of the supernatant was determined using the Bio-Rad protein assay kit
(Bio-Rad) with BSA as a standard. Ten micrograms (protein equiva-
lents) of the supernatant were subjected to SDS–PAGE and trans-
ferred to an Immobilon P filter (Millipore). The filter was blocked
for 18 h at 4 �C by soaking in 4% non-fat dried milk (Nacalai Tesque,)
in PBS and was incubated for 18 h at 4 �C with anti-GDE2 antibody
(diluted 1:1000). Signals were detected using horseradish peroxidase-
conjugated anti-rabbit IgG and the enhanced chemiluminescence sys-
tem (Amersham Bioscience).

2.5. Northern blot analysis
Total RNAs were isolated using ISOGEN (Nippon gene, Toyama,

Japan), and fractionated in a 1% agarose gel containing 0.66 M form-
aldehyde and 0.02 M MOPS (pH 7.0). Fractionated RNAs were
transferred onto a nylon filter by capillary blotting and then cross-
linked by ultraviolet irradiation. 32P-labeled cDNA fragments encod-
ing mouse GDE2, human glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and human b-actin were used as probes for Northern blot-
ting hybridization. Hybridization was performed in 6· SSC, 0.5% SDS,
al cells. (A) Ten lg of total RNAs from brain regions were subjected to
ult mouse brain regions, including the cerebral cortex, cerebellum,

rimary neurons (Neuron) and glia cells (Glia). GDE2 mRNA was
f Neuro2A cells was initiated by administration of 20 lM RA. 10 lg of
Northern blot analysis. The total densities of the GDE2 mRNA bands

ease in GDE2 mRNA relative to Neuro2A cells in the absence of RA.
mbrane fraction of Neuro2A cells were subjected to SDS–PAGE. The
GDE2 protein is upregulated during differentiation of Neuro2A cells.
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5· Denhardt’s solution, and 100 lg/ml salmon sperm DNA at 65 �C
for 16 h with the probe. The membrane was washed with 0.1· SSC
and 0.5% SDS at 65 �C for 1 h and exposed to an imaging plate.
Fig. 2. Expression of GDE2 mRNA in Neuro2A cells. Differentiation
and neuritogenesis of Neuro2A cells were induced by administration of
20 lM of RA (A), 10 lM of ganglioside GM1 (B), or 10 lM of
cytosine arabinoside (C). 10 lg of total RNA from Neuro2A cells
cultured at the indicated time was subjected to Northern blot analysis.
3. Results

3.1. Expression of GDE2 mRNA in mouse brain and

Neuro2A cells

Northern blot analyses were performed using total RNAs

from mouse brain and Neuro2A cells, and the GDE2 cDNA

fragments as probes. A 3.7 kb GDE2 mRNA was widely

expressed in the adult mouse brain, including the hippocampus,

cerebellum, cerebral cortex, and hypothalamus (Fig. 1A). Fur-

thermore, to identify the cell types in which GDE2 mRNA is ex-

pressed, we isolated primary cortical neurons and primary glial

cells from mouse fetuses. The expression of GDE2 mRNA in

these cultures was examined using RT-PCR with primers spe-

cific to GDE2 cDNA, showing that GDE2 mRNA was particu-

larly abundant in primary neuronal cells (Fig. 1B). Mouse

neuroblastoma Neuro2A cells have served as a useful model sys-

tem for the study of neuronal differentiation and morphology.

When Neuro2A cells are exposed to RA for 1–2 days, they ac-

quire many features of sympathetic neurons, such as an

outgrowth of neurites. To investigate the role of GDE2 in

neuronal cell morphology, we examined whether RA influ-

ences the GDE2 mRNA expression in Neuro2A cells. Total

RNA was extracted from Neuro2A cells cultured in the

presence of 20 lM of RA for 0, 1, 2, 6, 14, and 26 h. Fig. 1C

showed that treatment of Neuro2A cells with RA resulted in a

significant increase in the GDE2 mRNA level, and that GDE2

mRNA level peaked at 3–6 h and decreased thereafter. Two dis-

crete GDE2 mRNA species (3.7 and 2.9 kb) were observed in

Northern blot analyses. We have previously isolated two differ-

ent sized cDNAs corresponding to mouse GDE2 mRNA (data

not shown), revealing the presence of two different species of

mouse GDE2 mRNA. The long transcript of GDE2 was dom-

inant in mouse brain tissues. When using GDE3 cDNA as a

probe, no hybridization signal was observed with and without

RA treatment (data not shown). Western blot analysis showed

that the GDE2 protein level was upregulated at 24 h in the mem-

brane fraction of Neuro2A cells (Fig. 1D).

Next, we were interested in the mechanism underlying the

upregulation of GDE2 mRNA expression in Neuro2A cells. A
Fig. 3. Intracellular localization of GDE2 protein in Neuro2A cells. Retrov
terminus (GDE2-GFP) were used to infect Neuro2A cells (A). Actin filaments
fluorescence microscopy. GDE2-GFP accumulated at the regions of perinuc
previous report showed that differentiation and neuritogenesis

of Neuro2A cells were induced by exogenously added

ganglioside GM1 [17]. A previous report by Prinetti et al. [18]

demonstrated that c-src protein was accumulated in a

glycosphingolipid-enriched microdomain of Neuro2A cells by

GM1 treatment, suggesting that the molecular mechanism of

neuronal outgrowth is different for treatment with RA vs.

GM1. To determine whether the upregulation of GDE2 mRNA

expression is dependent on neuronal differentiation per se, we

examined the effect of exogenously added GM1 on GDE2

mRNA expression. In this experiment, GM1 was shown to be

able to induce neurite formation (data not shown), but showed
iruses harboring GDE2 with green fluorescent protein fused to the C
were stained with rhodamine phalloidin (B), followed by analysis using
lear and growth cones (arrows) in Neuro2A cells.
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no effect on GDE2 expression in Neuro2A cells (Fig. 2B). GDE2

was again induced as expected in the control experiment with

RA (Fig. 2A). Moreover, because RA-primed neural differenti-

ation of Neuro2A cells was performed in a medium with low ser-

um, we could not exclude the possibility that GDE2 mRNA

expression is upregulated by growth arrest of Neuro2A cells.

However, arabinosylcytosine (Fig. 2C) or cultivation without

serum (data not shown) did not influence GDE2 mRNA expres-

sion, indicating that the increased expression of GDE2 mRNA

in Neuro2A cells was dependent not on growth inhibition but on

RA. In order to address the intracellular localization of GDE2

protein, we infected Neuro2A cells with retroviruses harboring
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GFP-fused GDE2. Analysis using fluorescence microscopy

after visualization of actin filaments with rhodamine phalloidin

demonstrated that GDE2-fused GFP was concentrated at the

perinuclear region and also observed at growth cones (Fig. 3).

Wild-type GFP was distributed evenly over the entire cytoplasm

in Neuro2A cells when transfected with plasmid DNA encoding

the wild-type GFP (data not shown).

3.2. Constitutive expression of GDE2 dramatically promotes

neuronal outgrowth of Neuro2A cells

Because both GDE2 mRNA and protein were expressed

during RA-induced differentiation of Neuro2A cells, we
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orthern blot analysis. (B) The morphology of each cell line cultured in

taken at 100· magnification. (C) Cells bearing neurites at least 1.5-fold
described in Section 2. *P < 0.05, **P < 0.01 compared with mock cells
of each dish. In this experiment, neurite lengths were measured in each
hose of mock cells. Values are expressed as means ± S.E. Statistical
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investigated whether Neuro2A gene expression could alter the

program of neuronal differentiation. These cells were stably

transfected with the full-length coding region of GDE2 or with

the mock vector. As shown in Fig. 4A, a significant elevation

of GDE2 mRNA was observed in two stably transfected

clones, G5 and G8, in the absence of retinoic acid, but not

in the mock clone M. After neurite lengths were measured in

each cell in randomly chosen fields of each clone, cell number

bearing neurites at least 1.5-fold longer than the soma diame-

ter was counted. Constitutive expression of GDE2 increased

the number of cells bearing neurites in the absence of RA (with

1.8- and 2.8-fold increases, respectively) and also increased

neurite lengths (with 1.9- and 2.4-fold increases, respectively),

compared with the mock M clone (Fig. 4B–D). These results

were consistent with the expression level of GDE2.
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Fig. 5. Effects of GDE2 siRNA on neurite formation of Neuro2A
cells. Neuro2A cells were transfected with scrambled siRNA (scram-
ble) or GDE2 siRNA (GDE2 siRNA) with pEGFP and then
stimulated with 20 lM of RA. After treatment with RA for 24 h,
10 lg of total RNA was subjected to Northern blot analysis. (B) The
morphology of these cells cultured in the presence of RA for 48 h was
observed under a microscope, and photographs were taken at 100·
magnification. (C) After treatment with RA for 24 or 48 h, neurite
lengths were measured in each GFP-positive cell in randomly chosen
fields of each dish. *P < 0.05 compared with those of cells transfected
with scramble siRNA. Values are expressed as means ± S.E. Statistical
significance was determined by unpaired Student’s t test.
3.3. Effects of GDE2 siRNA on neurite formation of Neuro2A

cells

To investigate roles of GDE2 in neurite formation, we finally

tried to examine the effects of GDE2 siRNA on RA-induced

neuronal outgrowth of Neuro2A cells. These cells were trans-

fected with GDE2 siRNA or scrambled siRNA (scramble)

together with a plasmid carrying GFP cDNA and then stimu-

lated with RA. After treatment with 20 lM of RA for 24 h or

48 h, neurite lengths were measured in each GFP-positive cell

in randomly chosen fields of each dish. GDE2 RNAi gene

silencing, which resulted in a strong reduction of mRNA

expression (Fig. 5A), significantly reduced the extent of neurite

outgrowth in Neuro2A cells after RA treatment for 24 h and

48 h (by 50.4% and 34.2%, respectively) (Fig. 5B and C). Pre-

vious work by Singh et al. has shown that a MAP kinase path-

way including ERK1/2 was activated during RA-induced

neuronal differentiation of neuroblastoma SH-SY5Y cells

[19]. Although the current study showed that RA could pro-

mote ERK1/2 activation in Neuro2A cells (Fig. 6A), knock-

down of GDE2 in Neuro2A cells by RNAi did not influence

ERK1/2 activation by RA, as shown in Fig. 6B.
4. Discussion

RA is well known to play critical roles in nervous system

development, including neuronal patterning and neurite out-

growth [20]. In particular, RA is demonstrated to induce neu-

rite outgrowth from spinal cord, dorsal root ganglia neurons,

and neuroblastoma cells [13,21,22]. One mechanism whereby

RA affects neurite extension was previously shown to be by

regulating the expression of neurotrophin receptors including
Fig. 6. Effect of GDE2 siRNA on the activation of ERK induced by
RA in Neuro2A cells. (A) Total lysates from Neuro2A cells were
prepared after stimulation with RA for the indicated time, and
subjected to Western blot analyses using antibody specific for
phosphorylated form of ERK1/2 (upper panel). The same membrane
was re-blotted with anti-ERK1/2 antibody (lower panel). (B) Neuro2A
cells were transfected with scrambled siRNA (scramble) or GDE2
siRNA (GDE2 siRNA), and then stimulated with 20 lM of RA. Cell
lysates from Neuro2A cells were prepared after stimulation with RA
for the indicated time, and subjected to Western blot analyses as
described above.
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TrkA and p75NTR [22,23], whereas recent works have shown

that a number of mRNAs are identified to be rapidly induced

by RA in SH-SY5Y and Neuro2A cells [24,25]. Merrill et al.

have reported that expression of 14 genes is rapidly upregu-

lated by RA treatment in SH-SY5Y cells, and that mRNAs

encoding candidate neurite regulating factors including ephrin

B2 and a novel Rho GTPase-activating protein family member

are induced by RA [24]. An interesting recent report has

revealed that 38 genes change their expression rapidly after

RA treatment in Neuro2A cells [25]. Among them, the expres-

sion pattern of 6 genes, including Gse1 and Garn14, is similar

to that of GDE2, suggesting that they might collaborate with

GDE2 to trigger neurite outgrowth.

GDE2 has been virtually cloned by an approach using bioin-

formatics as a membrane protein with an extracellular loop

containing a GP-PDE domain [5,6]. A recent work by Zheng

et al. demonstrated that GDE1 could selectively hydrolyze

GroPIns, indicating that GDE1 might play physiological roles

through the hydrolysis of GroPIns and/or some of its phospho-

lyrated derivatives such as glycerophosphoinositol 4-phosphate

(GroPIns4P) [5]. GroPIns and GroPIns4P are water-soluble

phosphoinositide metabolites and were originally reported to

be associated with the expression of oncogenic Ras [26]. Man-

cini et al. showed the remarkable effects of GroPIns4P on the

reorganization of actin cytoskeleton in Swiss 3T3 cells, demon-

strating that exogenously added GroPIns4P potently induces

the formation of membrane ruffles and stress fibers via the acti-

vation of two small G-proteins, Rac and Rho [27]. Addition-

ally, we previously demonstrated that GDE3 was co-localized

with actin filaments and that GDE3 induced morphological

change in cells when overexpressed [4]. Following the proposal

that a rearrangement of actin filaments in growth cones is

essential for neuronal outgrowth and polarity [28,29], it was

further suggested that GP-PDEs are involved in the morpho-

logical change of neuronal cells through actin remodeling by

regulation of GroPIns and/or GroPIns4P levels. Previous re-

ports have implicated the Rho family of small G-proteins,

Rho, Rac and Cdc42 in the regulation of neurite outgrowth

and patterning. Importantly, several studies have shown that

Rac1 and Cdc42 have a significant role in neuronal differentia-

tion and neurite outgrowth [30,31]. These observations suggest

that a mechanism whereby GDE2 plays a role for neurite exten-

sion might be by regulating the Rac1 and/or Cdc42 signaling

via the regulation of GroPIns/GroPIns4P level.

On the other hand, non-genomic actions of RA have been

recently proposed. RA has been shown, in some cases, to rap-

idly activate kinase signaling cascades. Singh et al. have shown

that tissue transglutaminase mediates activation of the MAP

kinase pathway including ERK1/2, JNK1 and p38 kinases dur-

ing RA-induced neuronal differentiation of SH-SY5Y cells

[19]. Additionally, a recent work by Evangelopoulos et al.

has demonstrated that ERK1/2 is activated in Neuro2A cells

in response to serum withdrawal [32]. In our study, RA was

shown to promote ERK1/2 activation in Neuro2A cells.

Knockdown of GDE2 in Neuro2A cells by RNAi did not

influence ERK1/2 activation by RA, indicating that the phy-

siological action of GDE2 is not dependent on ERK1/2 signal-

ing.

During the course of the current study, Rao et al. have dem-

onstrated that GDE2 is necessary to drive spinal motor neuron

differentiation in vivo [33]. Although information about the

control of neurite extension of Neuro2A cells remains unclear
at the molecular level, the current study demonstrated a critical

role of GDE2 for retinoid-induced neuronal outgrowth. Fur-

ther investigations are needed to resolve the molecular mecha-

nism of GDE2-mediated neuronal outgrowth.
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