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Abstract—We introduce the concept of a survivable path in an undirected graph G A survivable
path between a pair of vertices 1n G is a pair of edge-disjoint paths consisting of a working path and a
redundant protection path. Protection paths share edges n such a manner as to provide guaranteed
recovery upon the failure of any single edge Survivable paths play an important role in the design of
survivable communication networks We demonstrate several results on the properties of the optimal
set of survivable paths. © 2005 Elsevier Ltd All nights reserved
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1. INTRODUCTION

In this paper, we consider simple undirected graphs (i.e., undirected graphs without parallel
edges or loops) [1]. We introduce the concept of survivable paths that should have significant
importance in the design of survivable communication networks. In fact, this topic has been
inspired by work on real problems encountered in optical networks in the industry [2]. The
problem of finding an optimal set of survivable paths in a graph is related to the multicommodity
network flow problem that is known to be NP-complete [3,4]. More specifically, finding diverse
paths with shared back-up is NP-complete [5], finding diverse paths with complex shared risk
groups (SRGs) is NP-complete [5], and finding diverse paths with shared back-up and the shortest
primary path is NP-complete [6]. The reason for this is the sharing capability of survivable paths
that we describe and define later. Furthermore, there is not always an on-line sequence that
achieves the optimal solution [7]. In this paper, we focus on the problem of finding properties of
the given optimal set of survivable paths.

Communications networks can be modeled as an undirected simple graph G = (V, E) with V(G)
vertices and E(G) edges, where the vertices represent switching stations, and edges represent
capacitated links. Circuits are routed through the communication networks along corresponding
paths on the undirected graph model. Failures of switching stations or links on the communication
network are modeled as failures of vertices and edges on the graph model. In a survivable
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communication network, circuits can survive the failure of links or nodes. In this paper, we
consider single-link failures only, since this is the dominant failure mode in a communication
network. Upon a single-link failure, all circuits that traverse the failed link are considered to
have failed.

An approach to providing survivable communications is to provide redundant paths for each
circuit. Each circuit has a working path and a redundant protection path. The bandwidth on the
working path is used under normal operating conditions, and the bandwidth on the protection
path is idle. Further, the bandwidth on the backup paths may be shared among multiple circuits
on a per-link basis, such that the single-link failure guarantee is met. That is, if two or more
working paths don’t use any common link in the network, then we can assign shared links for the
corresponding protection paths. So, if two or more restoration paths would use the same links
then the cost of these links per path would proportionally decrease. The working path and the
protection path are edge-disjoint so that a single link failure will not affect them simultaneously.
Upon a failure of a link, failed circuits are rerouted along their protection paths.

A survwvable path, S = (W, P), m graph G is an ordered pair of working and protection paths
(W, P) between the pair of vertices, and further, W and P do not have any edges in common.
Survivable paths may be defined between arbitrary pairs of vertices and multiple survivable paths
may be defined between the same pair of vertices. Some related work has been done in the field
of survivable paths [8,9].

The cost of a survivable path, C, is expressed as the sum of the number of used but not
shared edges on the working or protection paths plus the cost of edges that are shared with other

survivable paths. If two working paths W, = w!,w?,...,wf and W, = w},w?,...,w} are diverse

S
(i.e., no edge wFw! ™ in W, equals an edge w!w!™ in W,), and their protection paths use the
same edges, then both protection paths share the cost of common edges. Similarly, if & working
paths are pair-wise diverse then the corresponding protection paths share the cost of common
edges. That is, if + protection paths share edge j, then edge 7 contributes cost ¢;, where ¢, = 1/1,
to the cost of each corresponding survivable path. Let |E/(W,)|, |E’(P,)|, represent the number
of all unshared working and protection edges in the working and protection paths, respectively,
of the +*® survivable path. Let E"(P,) represent all shared edges used by P,, and let c. be the

cost of sharable edge e for P,. Then, the cost of +t" survivable path is expressed by,

Co=|B'W)+|E' P+ ) e

e€E"(P,)

We define an optemal set of survivable paths in G to be a set of survivable paths {S1, S, ..., Sk}
that minimizes Zle C..

We now introduce a few additional definitions. A working path for a survivable path is called
a direct working path if 1t follows on a shortest-hop path between the end-vertices Two-edge-
connected graph G is k-optimal if for any combination of paths defined between end-vertices of
distance not less than k in G, there exists an optimal set of survivable paths defined between the
same end-vertices with all direct working paths. We also will call two survivable paths distinct
if they are not defined between the same end-vertices.

In this paper, we show several properties of the optimal set of survivable paths. We characterize
working and backup paths for optimal set of survivable paths defined for certain kinds of graphs.
First, we show that if all survivable paths are defined on k pairs of adjacent vertices, then, an
optimal set of survivable paths must include k distinct direct working paths. Then, we show
that on a certain set of survivable paths defined on a graph, an optimal set of survivable paths
includes all direct working paths, and all the protection edges lie on a spanning tree. If the
graph is Hamiltonian, then on a certain set of survivable paths, an optimal set of survivable
paths includes all direct working paths, and all the protection edges lie on the Hamiltonian cycle.
Finally, we define two conditions for a graph to be two-optimal.
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2. OPTIMAL SET OF SURVIVABLE
PATHS IN ARBITRARY GRAPHS

We first investigate the properties of survivable paths defined on an arbitrary two-edge con-
nected graph.

THEOREM 1 Let G = (V, E) be a two-edge connected graph with all m survivable paths defined
between k (m = k) pairs of adjacent vertices. Then, there exists an optimal set of survivable
paths that contains k distinct direct working paths.

ProoF. Consider an optimal set of survivable paths in G. Let {z,,z;) denote a sequence of
consecutive intermediate vertices of a path between vertices z, and z;, and assume that it
contains at least one such vertex. Suppose that an optimal set of survivable paths contains paths
W =z, (2q, ) Tp, P = 24 (2a, xb)' Zp, but doesn’t contain a working or protection path of type
x4y, for some pair of vertices z,, zp, (z, # zs). Then, we can use the following transformation
of paths that does not worsen the solution. We replace every protection path that shares an edge
with P and whose corresponding working path uses edge (z,, zp) with a direct one-hop path. If
there are m such paths then the cost of survivable paths will increase by at most m. Otherwise,
the cost will remain at most m greater from the original cost. Note that these steps do not violate
diversity of the individual paths. Now, we swap every previously replaced protection path except
for P with its corresponding working path. Thus, m new protection paths will share edge (z,, 23)
with each other and the cost will decrease to original cost plus one. Finally, we replace working
path W = z,(z,, )}z with W’ = z,1;, that will also be diverse with P. This last operation
will decrease the cost by exactly one and will not violate diversity of individual paths. Thus, our
transformation decreases the number of adjacent nodes that do not contain direct either working
or protection path and does not increase the cost of a solution. Hence, we need now to consider
only adjacent vertices z,, =, for which paths W = z, (z,, %) zp and P = z,x; exist, but path
W' = xz,x;, doesn’t exist.

If no other protection path in G shares edge (z,, z) with P, then by swapping W with P
we obtain a feasible solution that is not worse than the original solution. Consider then P
that shares (z,, zp) with at least one other protection path. In this case, we use the following
transformation. We first swap W with P that produces a feasible solution containing working
path W’ = z,z; and new protection path P’ = z, (24, 2s) z». Such a swap might worsen a
solution by at most one unit of cost. That is, path P’ in the worst case will cost exactly the same
as original path W, and path W' will add one unit of cost to the solution. Now, we substitute
every protection path of form P,, = z,...T.xp...x, that shared edge (z,, 2,) with P, with
protection path Pz’] =, .. Ta (Ta,T) Tp. .. x,. We observe that z, (za,xb)':z:b cannot violate
diversity with W,,, because otherwise P,; couldn’t be shared with P. Since we divert all such
shared paths then the cost of solution will decrease by one unit of cost. So, our transformation
doesn’t worsen the cost of a solution. Hence, for all survivable paths with direct protection paths
we can apply either direct swapping of W with P or the above transformation, producing new
survivable paths that don’t worsen a solution. Consequently, we are left with at least k distinct
direct working paths contained in an optimal set of survivable paths. 1

COROLLARY 2. Let G = (V, E) be a two-edge-connected graph with all survivable paths defined
between adjacent vertices and at most one survivable path defined for any pair of adjacent vertices.
Then, there exists an optimal set of survivable paths that contains all direct working paths.

Proor. Follows directly from Theorem 1 by letting m = k. [ ]

Let Hg = (V, E) be a graph derived from G as follows. Graph Hg consists of the same set
of vertices as graph G, and in addition it consists of every edge (v,, v,), where v;, v, are the
end-vertices of a survivable path in G. Define S(G) to be a subgraph of G, consisting only of
all edges and corresponding vertices of working paths in an optimal set of survivable paths of G.
Let S'(G) be a complement of S(G) in respect to G, (i.e., V(5'(G)) = V(S(G)), each edge e in
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E(S'(G)) is such that e is not in E(S(G)), and e € E(G)). If S'(G) is connected let T'(G) be a
spanning tree of S/(G).

THEOREM 3. Let G = (V, E) be a two-edge-connected graph having all mutually diverse direct
working paths 1 an optimal set of survivable paths. Let S'(G) be a connected spanning subgraph
of G corresponding to the mutually diverse direct working paths and let Hg be a connected
graph. Then, there exists an optimal set of survivable paths consisting of all mutually diverse
direct working paths and all protection paths lying on a single spanning tree T'(G).

Proor. All mutually diverse direct working paths in G define S(G). Since Hg is connected,
therefore, there must be at least |V| — 1 protection edges in G. Since S'(G) is connected spanning
subgraph it contains a spanning tree T'(G). Furthermore, if 77(G) consists of all protection
edges then, for every working path in §(G), there corresponds a diverse protection path in T'(G).
Since T'(G) consists of |V| — 1 edges, therefore, all protection edges lie on 77(G) and the proof
is complete. ]

If G is Hamiltonian let C(G@) be a Hamiltonian cycle in G.

THEOREM 4. Let G = (V, E) be a Hamiltonian graph with at most one survivable path defined
over any pair of adjacent vertices. Let S'(G) be a disconnected graph, and let Hg be a connected
graph. Then, there exists an optimal set of survivable paths consisting of all direct working paths
and all protection paths lying on a single Hamiltonian cycle C(G).

PROOF. Since G is Hamiltonian, then 1t’s two-edge-connected. By Theorem 1, consider all
working paths as direct one-hop paths. So, all working paths in G are mutually diverse. All
edges in S(G) correspond to direct working paths. Since Hg is a connected then protection
edges must contain a spanning tree. Because S/(G) is not connected then at least one edge in
S{G) must be used by a protection path, and consequently there must be a cycle formed by
protection edges. Hence, there must be at least |V| protection edges. Since G is Hamiltonian,
protection edges belonging to C(G) are feasible protection edges. 1

Based on Theorems 3 and 4 we have the following result.

COROLLARY 5. Let G = (V, E) be a Hamiltonian graph with at most one survivable path defined
over adjacent pairs of vertices , and let Hg be a connected graph. Then, there exists an optimal
set of survivable paths consisting of all mutually diverse direct working paths and all protection
paths lying either on a single spanning tree T'(G) or on a single Hamiltonian cycle C(G). 1

We are now extending the results to the case of paths between vertices of distance < 2.

THEOREM 6. Let G = (V, E) be a Hamiltonian graph having all mutually diverse optimal paths
of distance < 2 corresponding to survivable paths defined in G, and let Hg be a connected
graph. Then, there exists an optimal set of survivable paths consisting of all mutually diverse
direct working paths and all protection paths lying either on a single spanning tree of G or on a
single Hamiltonian cycle C(G)

ProoF. Since G is Hamiltonian, then it’s two-edge-connected. Thus, for every working path of
length < 2, there exists a corresponding protection path. Consider all diverse working paths that
correspond to the optimal paths. The cost of these working paths is the least possible. Further-
more, if there exist the corresponding protection paths all lying on a spanning tree of G than
together their constitute an optimal set of survivable paths. Suppose now that they cannot lie on
a single spanning tree of G. So, they must form at least one cycle. Let C,(G) = ©1,23,...,2, bea
Hamiltonian cycle in G. We show that for every type of working path W there corresponds a pro-
tection path P lying completely on C,. For W = z,x,11, there corresponds P = .41, Lo42, . -+, Zs.
For W = z,z, (where 7 # i+ 1), there corresponds P = x,,%,41,...,%:,. For W = 2,2,11%,49,
there corresponds P = T,42,%.43,...,%, For W =z,z,41x, (where 7 £ 1 +2) there corresponds
P=z,,z,41,.. ,z, Finally, for W = z,2,zr (where j # i4-1 and k # 7+ 1), there corresponds
P=a:k,:rk+1,...,ac1. | |
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Finally, we introduce Lemma 7 pertaining to an arbitrary two-edge-connected graph that will
be useful to prove Theorem 10 in the next section.

LEMMA 7. Let G = (V, E) be a two-connected graph with k survivable paths. If a set of k + 1
survivable paths that contains an optimal set of k survivable paths defined on the same pairs of
vertices as before is more expensive by 1 then this set is an optimal set of k + 1 survivable paths.

ProoF. By adding a survivable path to an optimal set of k survivable paths, we add at least
one unit of cost corresponding to at least one additional working hop. Furthermore, if so con-
structed k+ 1 survivable paths of cost increased by 1 could be transformed in such a way that the
cost of solution would decrease, then the cost of original &k survivable paths could be decreased
without need of an addition survivable path—a contradiction. 1

3. OPTIMAL SET OT SURVIVABLE
PATHS IN COMPLETE GRAPHS

In this section, we investigate the properties of survivable paths defined on complete graphs.
Let Cy,Cs,...,C, be connected components of Hg. Let R, be a spanning tree of C), if C] is
connected, or a Hamiltonian cycle on vertices V(GC,), if C} is disconnected..

THEOREM 8. Let K, be a complete graph of order n > 2, with k survivable paths defined
between k distinct pairs of vertices Let Cy,Ca,...,C, be connected components of Hg. Then,

an optimal set of survivable paths consists of all direct working paths and protection paths lying
on Ri,Rs,...,R,.

PRrRoOOF. Since K, is a complete graph of order n > 2 then, it satisfies the survivable paths. By
Theorem 2 all working paths must be direct one-hop paths. Let V1, Va,.. ,V, be subsets of vertices
of G corresponding to Cy, Cs, ..., C,. The protection paths must span vertices Vy UVaU- - .UV, that
requires 11,7, ..., T, to be covered by protection paths. In addition, for every component C,,
whose complement is disconnected graph, there must correspond (by Theorem 4) at least one
more cycle spanned by protection edges. Let there be m such components. Then there must be
at least (|V1| — 1) + (|Va] = 1)+ --- + ({Vi| — 1) + m edges covered by protection paths which is
satisfied by Ry, Ry, ..., R,. ]

As the direct consequence of Theorem 7, we have the following result.

COROLLARY 9. Let K be a complete graph of order > 2, with at most one survivable path
defined for any pair of adjacent vertices, and let Hx be a graph consisting of components that
are either triangles, or squares, or a combination of both. Then, there exists an optimal set of
survivable paths in which the protection paths cover exactly the same set of edges as do the
working paths. 1

It’s easy to observe that the above condition (i.e., Hx being a graph consisting of either
triangles or squares) is also necessary condition for this interesting property. The cost of solution
for m survivable paths in this case equals 2m.

Let’s call a survivable path to be incident to o vertez if that vertex is one of the end-vertices
of that path.

THEOREM 10. Let K, be a complete graph of order n{n > 2) with at most two survivable
paths defined for any pair of vertices, and at most n — 1 survivable paths incident to any vertex.
Let §'(K) be a disconuected graph, and let Hg be a connected graph. Then, there exists an
optimal set of survivable paths consisting of all direct working paths and all protection paths
lying on a single Hamiltonian cycle C(K).

Proor. Since K, is a complete graph of order n > 2, then it satisfies the survivable paths.
Consider first a subset of m survivable paths that does not contain two survivable paths defined

for the same pair of vertices. Since S'(K) is disconnected and Hg 1s connected, then by Theo-
rem 4 there exists an optimal set of survivable paths consisting of all direct working paths, and
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all protection paths lying on a single Hamiltonian cycle C(K). Furthermore, since there are at
most n — 1 survivable paths incident to any vertex in K, then there exists a Hamiltonian cy-
cle C'(K), in which every edge corresponds to a pair of vertices for which there is defined at most
one survivable path. Thus, for m survivable paths under consideration there exists an optimal
set of survivable paths i which all protection paths lie on a single Hamiltonian cycle C'(K). Let
C'(K) =11,...,Zn,21. Each edge in C’'(K) is contained in at least one protection path We now
add the remaining survivable paths, one at a time, to the current optimal set of survivable paths.
That is, we add direct working path of form x,xz, (where j #i+1if ) <n and j # 1 otherwise)
that adds one unit of cost to the current solution. In addition, if there existed protection path
Tyy Tytl, - - -1 Ty, that corresponded to already established working path x,z,, then every edge on
new protection path x,,z,_;,...,z, will be shared with other protection paths. So, protection
path of a new survivable path will not add any additional cost to the current solution. Hence,
every time we add a survivable path the cost of solution increases by exactly one. Then, by
Lemma 7 adding survivable paths in the manner described above, one at a time, to the current
optimal set of survivable paths results in the new optimal sets of survivable paths. This in turn
umplies that there exists an optimal set of all survivable paths consisting of all direct working
paths and all protection paths lying on a single Hamiltonian cycle C'(K). ]

4. OPTIMAL GRAPHS

As we defined in the introduction, G is two-optimal, if for any combination of survivable paths
defined between end-vertices of distance not less than two, there exists a corresponding optimal
set of survivable paths defined between the same end-vertices with all direct working paths. We
now give two conditions for a graph to be two-optimal.

THEOREM 11. Let G = (Vi, V3, E) be a complete bipartite graph and let |V1|, |Va| > 2. Then G
15 two-optimal.

ProoF. Since |Vi|, |V2| > 2 then G is two-edge-connected and satisfies the survivable paths.
Suppose that there exists an optimal set of survivable paths that contains some indirect working
paths. An indirect working path W for non-adjacent vertices in G must be of length at least
four. So, a survivable path with indirect working path must cost at least four. Hence, we can
preserve optimality of survivable paths by substituting any such survivable path (W, P) defined
for non-adjacent vertices a,b with a new survivable path (W', P') of form (2,z,2s, .%,2s) that
would have to cost exactly four. Furthermore, W’ would be a direct working path in G. ]

THEOREM 12. Let G = (V, E) be a two-connected graph of order at least seven. Then, G is
two-optimal only 1If it contains a square.

Proor. First, suppose that G is of girth at least seven. Let z1, 25,23, Z4,25,%6,Z7,. .., Tk, T1
be a cycle of minimum length &k (k > 7) in G. Then, it’s easy to see that G is not two-optimal
for two survivable paths defined for pairs =1, 3, and 21, z4. In particular, for two direct working

paths the cost would be 2k. But, for combination (W', P’} = (x1, 22,23, %1, Tk, - - - , L5, L4, Ta),
and (W', P") = (z1,zk, . .., %6, L5, L4, 21, T2, T3, 2Z4) the cost would be 2k — 1, since edge (z9, x3)
could now be shared.

Now, suppose that G is of girth either five or six Let C = z1,%2,23,24,25,...,21 be a

cycle of minimum length in G (1., a cycle of length either five or six). Since |V| > 6, then
at least one vertex in C must be of degree at least three. Without loss of generality as-
sume that z; is such a vertex. Because G is two-connected then there must be another cycle
T1, Y1, Y2 -+ 1Ty - - T1, (T, # 21) in G, such that z, is one of the vertices in C. Let C’ be a cycle
of minimum length that is of this form. Vertices y1,y2 cannot be part of C because it would
imply a cycle of length less then length of C. Denote by |C|, |C’] the lengths of two cycles. With-
out loss of generality cycles C' and C' can be represented as C = z7, 3,23, %4,%s5,...,21 and
C' = z1,Y1,Ya,---,T3,Z2, ;. Consider two survivable paths defined for pairs of vertices y; 2,
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Figure 1 Graph without a direct working path for an optimal set of two survivable
paths defined between X1, X2 and X3, X3.

and z1,z3 in G. In this case, two survivable paths (W, P), (W', P/) would have to cost at least
|C| + |C"| 1f the working paths were direct This would happen because the working paths would
have to be y1,z1,2z2 and z1,z9,x3 (otherwise a cycle of length four would exist) not allowing
sharing any edges by protection paths. Survivable path (W’ P') = (21, z2, T3, 21, Ts, L5, T4, T3)
satisfies the minimum cost in such a case. Then, by swapping W’ with P’ we would reduce
cost by at least one since edge (z2,x3) could now be shared. So, G is not two-optimal for two
survivable paths defined for pairs y;, x5 and zy, z3.

Finally, suppose that G is of girth three but doesn’t contain a square. Then, G must contain
an edge shared by cycles of lengths three and at least five. Let C = x1, 79,73, 24, T5, . .., Tk, T1,
be a cycle of shortest length k (k > 5) that shares edge (z2,23) with a cycle C’ of length three.
Without loss of generality assume that C' = zg,z3y,z2. If y could be a part of C, then it
would imply that C is not a shortest length cycle—a contradiction. So, y is not a part of C.
Consider two survivable paths defined between x1, x3, and between x3,z4 If the working paths
are direct then they are z1, o, x3, and z2, 23y, T4, and the corresponding protection paths cannot
share the cost of other edges. Then each protection path would have to be of length at least
k — 2 and they would cost 2k — 4. So, the total cost of these two survivable paths would be at
least 2k. But, for working paths x1,z3,y, 23, and z9, 3,24, there would correspond protection
paths 1, zx, Zx—1,..., 23, and T2, 1, Tk, Ti_1,..., L4 for a total cost of k + 4. This would mean
that for £ > 5 an optimal set of two survivable paths defined between these vertices wouldn’t
contain direct working paths, i.e., 2k > k+4. So, G would not be two-optimal. Since by Theorem
11 there exist bipartite graphs of order at least seven that are two-connected and two-optimal,
then G is two-optimal only if it contains a cycle of length four. ]

Figure 1 illustrates that there are graphs, and survivable paths defined on those graphs, in
which any optimal set of survivable paths does not include even a single direct working path.

Finally, we emphasize that the results of Theorem 1 and Corollary 2 have practical implications
on the real networks analysis. These two results allow the 1dentification of the shortest primary
paths in network design scenarios. Hence, the extensions to Theorem 1 would be of great interest
to real network design issues, and would be worthwhile to pursue. In particular, relaxing the
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constramt on the adjacency of survivable path definition in Theorem 1 would have a significant
impact in that regard.
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