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Abstract

In this paper, we study the Drinfeld cusp forms for Γ1(T ) and Γ (T ) using Teitelbaum’s interpretation
as harmonic cocycles. We obtain explicit eigenvalues of Hecke operators associated to degree one prime
ideals acting on the cusp forms for Γ1(T ) of small weights and conclude that these Hecke operators are
simultaneously diagonalizable. We also show that the Hecke operators are not diagonalizable in general for
Γ1(T ) of large weights, and not for Γ (T ) even of small weights. The Hecke eigenvalues on cusp forms for
Γ (T ) with small weights are determined and the eigenspaces characterized.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Hecke operators played a crucial role in the study of the arithmetic of classical modular forms.
Their actions on cusp forms are skew Hermitian with respect to the Petersson inner product, and
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hence they are diagonalizable. This property is fundamental in understanding the classical cusp
forms.

The function field analogue of the Poincaré upper half plane is the Drinfeld upper half plane.
Parallel to the classical modular forms, there are the Drinfeld modular forms introduced by Goss
in [Gos80]. He also defined the Hecke operators in a similar way. While certain arithmetic prop-
erties are alike for classical and Drinfeld modular forms, there are also sharp differences. For
instance, Böckle [Böc04] showed that the Eichler–Shimura correspondence over a function field
associates a Drinfeld (cuspidal) common eigenform of Hecke operators to a degree one, instead
of degree two as in the classical case, Galois representation, reflecting different multiplicative
relations on Hecke operators. Moreover, since the domain and image of Drinfeld modular forms
have the same positive characteristic, there is no adequate analog of the Petersson inner prod-
uct. Hence the diagonalizability of the Hecke operators on Drinfeld forms still remains an open
question.

Using the residue map, Teitelbaum [Tei91] in 1991 gave an interpretation of Drinfeld cusp
forms as harmonic cocycles on the directed edges of a regular tree T . The actions of the Hecke
operators were carried over to harmonic cocycles by Böckle [Böc04]. Since the directed edges
of T are parametrized by cosets of PGL2 over a local field F modulo its Iwahori subgroup I ,
the Drinfeld cusp forms for a congruence subgroup Γ can then be regarded as vector-valued
left Γ -equivariant functions on PGL2(F )/I , and hence they are determined by the values on
Γ \PGL2(F )/I . This viewpoint is quite helpful in computation when a fundamental domain is
easily described. Another advantage is that, by means of the strong approximation theorem, the
Drinfeld cusp forms can also be seen as equivariant functions in adelic setting. This approach
appeared in Gekeler and Reversat [GR96] and also in Böckle [Böc04].

Let K = Fq(T ) be the rational function field. The arithmetic of Drinfeld modular forms for
the full modular group GL2(Fq [T ]) was studied extensively in [Gos80] and [Gek88]. Using
geometric methods, Böckle and Pink investigated in [Böc04] the structure of double cusp forms
for Γ1(T ) with weight k � q +2. They also computed the Hecke eigenvalues for weight 4 double
cusp forms.

The purpose of this paper is to study Drinfeld cusp and double cusp forms for the congruence
subgroups Γ1(T ) and Γ (T ) of GL2(Fq [T ]), with emphasis on the behavior of the Hecke op-
erators. Working with harmonic cocycles, we determine the eigenvalues and the corresponding
eigenspaces for Hecke operators at degree one places of K . As we shall see, the diagonalizabil-
ity of the Hecke operators depends on the group and also the weight. More precisely, the Hecke
operators on the space of cusp forms of Γ1(T ) are diagonalizable for small weights k � q , but
not for large weights k > q in general. Further, as we pass from Γ1(T ) to its subgroup Γ (T ),
the distinct eigenvalues for Hecke operators on cusp forms with weights k � q remain the same
although the multiplicities may differ. We also characterize each eigenspace. Explicit computa-
tions show that the Hecke actions on the spaces of cusp forms and double cusp forms for Γ (T )

of small weights change from diagonalizable to not diagonalizable as the weight increases.
This paper is organized as follows. The Drinfeld cusp forms and properties of the tree are

reviewed in Sections 2 and 3, respectively. Harmonic cocycles are recalled in Section 4. In Sec-
tion 5 we summarize Teitelbaum’s isomorphism between Drinfeld cusp forms and harmonic
cocycles and describe Böckle’s criterion of double cusp forms as harmonic cocycles. The actions
of the Hecke operators on harmonic cocycles are introduced in Section 6. The body of this paper
is Sections 7 and 8, dealing with cusp forms for Γ1(T ) and Γ (T ), respectively. The final section
gives examples of the Hecke actions on the cusp forms for Γ (T ) for weights k = 3,4 and 5,
making explicit the main results of the paper.
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2. Drinfeld cusp forms

Let K = F(T ) be the rational function field over the finite field F with q elements. Write
∞ for the place of K with 1/T as a uniformizer. Then A = F[T ] is the ring of functions in K

regular outside ∞. Denote by K∞ the completion of K at ∞, O∞ its ring of integers, and P∞
the maximal ideal in O∞. Let C = ̂̄K∞ be the completion of an algebraic closure of K∞.

The Drinfeld upper half plane Ω = C � K∞ is endowed with a rigid analytic structure, on
which GL2(K∞) acts by fractional linear transformations. For γ = (

a b
c d

) ∈ GL2(K∞), m,k ∈ Z

and f :Ω → C, define

(f |
k,m

γ )(z) := f (γ z)(detγ )m(cz + d)−k.

Let Γ be a congruence subgroup of the modular group GL2(A). It has finitely many cusps,
represented by Γ \P

1(K). A rigid analytic function f :Ω → C is called a Drinfeld cusp form for
Γ of weight k and type m for Γ if it satisfies

(i) f |
k,m

γ = f for all γ ∈ Γ ;

(ii) f is holomorphic at all cusps;
(iii) f vanishes at all cusps.

The cusp forms for Γ of weight k and type m form a vector space Sk,m(Γ ) over C. It contains a
subspace S2

k,m(Γ ) of double cusp forms, which vanish at all cusps at least twice.

Remark. While the weight can be any integer, the possible type is an element in Z/(mΓ ), where
mΓ is the order of det(Γ ), a subgroup of F

×
q . Thus Sk,m(Γ ) �= 0 implies k ≡ 2m mod (mΓ ).

In particular, if mΓ = 1, which is the case to be considered in this paper, then for fixed k, all
Sk,m(Γ ) are identical, and the same holds for S2

k,m(Γ ).

The following dimension formula for cusp forms was computed by Teitelbaum.

Proposition 1. (See [Tei91].) Let gΓ be the genus of Γ \Ω̄ and hΓ the number of cusps of Γ \Ω .
If Γ is p′-torsion free and mΓ = 1, then

dimC Sk,m(Γ ) = (k − 1)(gΓ + hΓ − 1).

3. The tree T

The coset space PGL2(K∞)/PGL2(O∞) =: T may be interpreted as a (q + 1)-regular
tree on which the group GL2(K∞) acts by left translations. The vertices of T are the cosets
PGL2(K∞)/PGL2(O∞), while the directed edges of T are parametrized by PGL2(K∞)/I∞,
where

I∞ =
{(

a b

c d

)
∈ GL2(O∞): c ∈P∞

}/{(
a 0
0 a

)
∈ GL2(O∞)

}
is the Iwahori subgroup of PGL2(O∞). The edge represented by g ∈ GL2(K∞) will be abbrevi-
ated as 〈g〉.
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As in Serre [Ser80], a vertex or edge of T is called Γ -stable if its stabilizer in Γ is trivial; oth-
erwise it is Γ -unstable. Let T∞ be the subgraph of T consisting of unstable vertices and edges.
Then S0 = Vert(T ) � Vert(T∞) is the set of stable vertices and S1 = [Edge(T ) � Edge(T∞)]/±
is the set of non-oriented stable edges.

Two infinite paths in T are considered equivalent if they differ at only finitely many edges.
An end of T is an equivalence class of infinite paths {e1, e2, . . .}. There is a canonical bijection
between the set of ends and P

1(K∞), the boundary of Ω ; the rational ends are P
1(K), corre-

sponding to the cusps. The stabilizer of an unstable vertex v fixes a unique rational end, and
similarly for an unstable edge e; denote them by b(v) and b(e), respectively. An edge w of T
is a source of an unstable edge e if w has the same orientation as e and there exists an unstable
boundary vertex v of w such that the path from v to its end b(v) passes through e. If e is stable,
then it is its own source. Denote by src(e) the set of all sources of e. There are certain inac-
curacies in [Tei91] concerning the sources of an edge. We thank the referee for pointing them
out.

4. Harmonic cocycles

For k � 0 and m ∈ Z, let V (k,m) be the (k − 1)-dimensional vector space over C with a basis
{XjY k−2−j : 0 � j � k − 2} endowed with the action of GL2(K∞) given by

γ =
(

a b

c d

)
:XjY k−2−j �→ (detγ )m−1(dX − bY )j (−cX + aY )k−2−j

for all 0 � j � k − 2. This then induces the action of γ = (
a b
c d

) ∈ GL2(K∞) on the dual space
Hom(V (k,m),C) by sending w ∈ Hom(V (k,m),C) to

(γw)
(
XjY k−2−j

) = (detγ )1−mw
(
(aX + bY )j (cX + dY )k−2−j

)
for 0 � j � k − 2.

A harmonic cocycle of weight k and type m for Γ is a function c from the set of directed
edges of T to Hom(V (k,m),C) satisfying

(a) for all vertices v of T , ∑
e �→v

c(e) = 0,

where e runs through all edges in T with terminal vertex v;
(b) for all edges e of T , c(ē) = −c(e), where ē denotes e with reversed orientation;
(c) it is Γ -equivariant, namely, for all edges e and elements γ ∈ Γ ,

c(γ e) = γ
(
c(e)

)
.

The last condition means

c(γ e)
(
XjY k−2−j

) = (
γ c(e)

)(
XjY k−2−j

) = (detγ )1−mc(e)
(
(aX + bY )j (cX + dY )k−2−j

)



W.-C.W. Li, Y. Meemark / Journal of Number Theory 128 (2008) 1941–1965 1945
for all
(

a b
c d

) ∈ Γ and 0 � j � k − 2. Let Hk,m(Γ ) denote the space of harmonic cocycles of
weight k and type m for Γ .

As observed by Teitelbaum [Tei91], the value of a cocycle c ∈ Hk,m(Γ ) at a directed edge e

is the sum of c evaluated at the source of e. Consequently, cocycles in Hk,m(Γ ) are determined
by their values on Γ \S1.

5. Cusp forms and harmonic cocycles

There is a building map from Ω to T commuting with the action of GL2(K∞) (cf. [Fv04]
and [Tei91]). Using it one can define, for any C-valued holomorphic 1-form f (z) dz on Ω , the
residue Rese f (z) dz at any directed edge e of T . This in turn gives a way to associate harmonic
cocycles to cusp forms. More precisely, for each cusp form f ∈ Sk,m(Γ ), define the function
Res(f ) from the directed edges of T to Hom(V (k,m),C) by assigning, for any directed edge e,
the values of Res(f )(e) at the basis elements XjY k−2−j to be

Res(f )(e)
(
XjY k−2−j

) = Rese zjf (z) dz (5.1)

for all 0 � j � k − 2. Then properties (a) and (b) follow from the rigid analytic residue theorem,
and (c) from the modularity of f . Therefore Res(f ) lies in Hk,m(Γ ).

Theorem 2. (See Teitelbaum [Tei91].) The residue map Res :Sk,m(Γ ) → Hk,m(Γ ) is an isomor-
phism.

Thus we identify cusp forms with harmonic cocycles. This allows us to view cusp forms for
Γ as vector valued left Γ -equivariant functions on PGL2(K∞)/I∞, or left GL2(K)-equivariant
functions on the adelic group GL2(AK) by applying the strong approximation theorem (cf.
[GR96] and [Rev00]). When k = 2, such functions are C-valued and Γ -equivariance be-
comes Γ -invariance. Indeed, some harmonic cocycles can be lifted to Z-valued functions on
GL2(K)\GL2(AK), as remarked in [GR96,Rev00] and [Böc04].

Denote by H 2
k,m(Γ ) the image of S2

k,m(Γ ) under the Res map. To describe double cusp forms
as cocycles, we define the source of an end [s] to be

src
([s]) := {

e: e is stable, t (e) is unstable and b
(
t (e)

) = [s]},
where t (e) denotes the terminal vertex of e. The following result of Böckle characterizes the
image of double cusp forms under the residue map.

Theorem 3. (See Böckle [Böc04].) Let Γ[s] denote the Γ -stabilizer of an end [s] representing a
cusp of Γ . Then:

(a) The subspace of V (k,m) stabilized by Γ[s], denoted V (k,m)Γ[s] , is one-dimensional.
(b) Γ[s] acts freely on src([s]) with finitely many orbits, represented by edges e

[s]
1 , . . . , e

[s]
ls

.
(c) Let f ∈ Sk,m(Γ ) and c = Res(f ). Then f is a double cusp form if and only if for any

cusp [s], ∑ls
i=1 c(e[s]

i )(gs) = 0 for any generator gs of V (k,m)Γ[s] .

Combined with Proposition 1, one obtains the dimension formula for the space of double cusp
forms:
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Proposition 4. (See Böckle [Böc04].) Let gΓ be the genus of Γ \Ω̄ and hΓ the number of cusps
of Γ \Ω . If Γ is p′-torsion free and mΓ = 1, then

dimC S2
k,m(Γ ) =

{
gΓ if k = 2;
(k − 2)(gΓ + hΓ − 1) + gΓ − 1 if k > 2.

6. Hecke operators

We shall focus on the congruence groups Γ = Γ1(T ) and Γ (T ) defined as

Γ1(T ) =
{(

a b

c d

)
∈ GL2(A): a ≡ d ≡ 1 and c ≡ 0 mod T

}
and

Γ (T ) =
{(

a b

c d

)
∈ GL2(A): a ≡ d ≡ 1 and b ≡ c ≡ 0 mod T

}
.

They are p′-torsion free. Let P �= (T ) be a maximal ideal of A; choose the generator P to be the
irreducible polynomial in P satisfying P(0) = 1. Suppose degP = d . Then

Γ (T )

(
P 0
0 1

)
Γ (T ) = Γ (T )

(
P 0
0 1

)
�

⊔
b∈A,degb<d

Γ (T )

(
1 b(1 − P)

0 P

)
.

The Hecke operator at P is defined using the coset representatives of this double coset:

TP = P k−m−1
[(

P 0
0 1

)
+

∑
b∈A,degb<d

(
1 b(1 − P)

0 P

)]
,

which acts on a holomorphic function f on Ω via |
k,m

TP. That is,

TPf (z) = (f |
k,m

TP)(z)

= P k−m−1
[
f |

k,m

(
P 0
0 1

)
(z) +

∑
b∈A,degb<d

f |
k,m

(
1 b(1 − P)

0 P

)
(z)

]
.

The generator P is chosen in order to avoid the use of characters. Here we have followed the
normalization in Böckle [Böc04], which is a constant multiple of that defined by Goss [Gos80].
It is easy to check that TP sends Sk,m(Γ ) to itself and preserves the double cusp forms. For two
prime ideals P and Q not equal to (T ), TP commutes with TQ.

The action of the Hecke operator TP can be transported to harmonic cocycles by means of the
residue map. This was carried out in [Böc04]. Precisely, TP sends c ∈ Hk,m(Γ ) to a harmonic
cocycle whose value at a directed edge e of T is
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TPc(e) = P k−m−1
((

P 0
0 1

)−1

c
((

P 0
0 1

)
e

)

+
∑

b∈A,degb<d

(
1 b(1 − P)

0 P

)−1

c
((

1 b(1 − P)

0 P

)
e

))
. (6.1)

This formula will be used to compute the eigenvalues and eigenfunctions of Hecke operators. As
we shall see from the cases Γ = Γ1(T ) and Γ (T ), the Hecke operators are sometimes diagonal-
izable and sometimes not, depending on the group and the weight.

7. Cusp forms for Γ1(T )

In this section we consider cusp forms and double cusp forms for Γ1(T ). We may choose as
a fundamental domain of Γ1(T )\T the path connecting the cusp [∞] = (1

0

)
and cusp [0] = (0

1

)
,

as shown below. Recall from Section 3 that 〈g〉 denotes the directed edge represented by g.

[∞] · · · �

〈(
0 1
T 0

)〉
←−

γ0 = 〈(
0 1
1 0

)〉
←−

〈(
0 T
1 0

)〉
←−( 1 0

0 T 2

) (
1 0
0 T

) (
1 0
0 1

) (
T 0
0 1

)
−→〈( 1 0
0 T 2

)〉
γ̄0 =

−→〈(
1 0
0 T

)〉 −→〈(
1 0
0 1

)〉 � · · · [0]

It contains no stable vertices and one stable edge
〈(

0 1
1 0

)〉
, denoted by γ0. Then gΓ1(T ) = 0

so that dimC Sk,m(Γ1(T )) = k − 1 by Proposition 1, and dimC S2
2,m(Γ1(T )) = 0 and

dimC S2
k,m(Γ1(T )) = k − 3 for k � 3 by Proposition 4. Theorem 3 of [Tei91] implies that any

harmonic cocycle c for Γ1(T ) automatically vanishes on all edges of the fundamental domain
except γ0 and its two neighboring edges up to orientation. Further, the value of c at γ0 determines
its values at the two neighboring edges by harmonicity. Therefore to determine a harmonic co-
cycle for Γ1(T ), it suffices to first know its value in Hom(V (k,m),C) at γ0, and then extend to
other edges by Γ1(T )-equivariancy and harmonicity. This is the strategy we shall use to compute
the action of the Hecke operators.

The stabilizers of the cusps [∞] and [0] are (Γ1(T ))[∞] = {( 1 c
0 1

)
: c ≡ 0 mod T } and

(Γ1(T ))[0] = {( 1 0
c 1

)
: c ≡ 0 mod T }, respectively. Thus V (k,m)(Γ1(T ))[∞] and V (k,m)(Γ1(T ))[0]

are generated by Y k−2 and Xk−2, respectively. Also, (Γ1(T ))[∞]\ src([∞]) = {γ̄0 = 〈(
1 0
0 T

)〉} and
(Γ1(T ))[0]\ src([0]) = {γ0}. Recall that γ̄0 is the opposite of γ0. Hence by Theorem 3, we have

Proposition 5. S2
k,m(Γ1(T )) = {c ∈ Sk,m(Γ1(T )): c(γ0)(Y

k−2) = c(γ0)(X
k−2) = 0}.

Now we study the action of the Hecke operators TP on Sk,m(Γ1(T )), where P is generated
by P = 1 + αT . Using Eq. (6.1), harmonicity and Γ1(T )-equivariancy, and noting q is the car-
dinality of the field F, we get, for 0 � j � k − 2,

TPc(γ0)
(
XjY k−2−j

)
= c(γ0)

(
Xj(PY )k−2−j +

� j
q−1 �∑ (

j−m(q−1)∑ (
j

l + m(q − 1)

)(
k − 2 − j

l

)
(1 − P)l
m=0 l=0
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− P k−2−j

(
j

m(q − 1)

))
Xj−m(q−1)Y (k−2−j)+m(q−1)

+
� k−2−j

q−1 �∑
n=1

(
k−2−j∑

l=n(q−1)

(
j

l − n(q − 1)

)(
k − 2 − j

l

)
(1 − P)l

− P j

(
k − 2 − j

n(q − 1)

)
T n(q−1)

)
Xj+n(q−1)Y (k−2−j)−n(q−1)

)
. (7.1)

For each 0 � j � k − 2, define the harmonic cocycle cj by specifying its value at γ0 by

cj (γ0)
(
XjY k−2−j

) = 1 and cj (γ0)
(
XlY k−2−l

) = 0 for l �= j. (7.2)

Further, put, for 0 � j � k − 2 and a degree one polynomial Q = 1 + βT , the polynomial

λj (Q) =
j∑

l=0

(
j

l

)(
k − 2 − j

l

)
(1 − Q)l =

min{j,k−2−j}∑
l=0

(
j

l

)(
k − 2 − j

l

)
(−βT )l. (7.3)

Then λj (Q) has degree at most min{j, k − 2 − j}. Note that λ0(Q) = λk−2(Q) = 1 and λj (Q) =
λk−2−j (Q) for all 0 � j � k − 2.

To see the behavior of the Hecke operators, we distinguish two cases, according to the weight
being small or large. First assume q � k � 2. In this case (7.1) is reduced to

TPc(γ0)
(
XjY k−2−j

) = λj (P )c(γ0)
(
XjY k−2−j

)
. (7.4)

Therefore each cj is an eigenfunction of TP with eigenvalue λj (P ). We have shown

Theorem 6. Let P be a prime ideal of A generated by P with P(0) = 1 and degP = 1. Suppose
q � k � 2. Then

(1) each cj , 0 � j � k−2, is an eigenfunction of the Hecke operator TP with eigenvalue λj (P );
and

(2) the Hecke operators at the ideals of degree one are simultaneously diagonalized on
Hk,m(Γ1(T )) with respect to the basis cj , 0 � j � k − 2.

It is natural to ask if the cj , 0 � j � k − 2, are also common eigenfunctions of the Hecke op-
erators TP for prime ideals P of degree d > 1; and if so, find the eigenvalues. Our computations
lead to the following

Conjecture. Let P be a prime ideal of A generated by P with P(0) = 1 and degP = d � 1.
Suppose q � k � 2. Let θ be a root of P . Then each cj , 0 � j � k − 2, is an eigenfunction of the

Hecke operator TP with eigenvalue λj (P ) := ∏d−1
i=0 λj (1 − θ−qi

T ). Consequently, the Hecke
operators are simultaneously diagonalized on Sk,m(Γ1(T )).



W.-C.W. Li, Y. Meemark / Journal of Number Theory 128 (2008) 1941–1965 1949
This conjecture is verified for d � 2. Another evidence is for the case k = 4 and all d , provided
by Proposition 15.6 in [Böc04]. It would be nice if the method there could be extended to settle
the conjecture.

Remark. If we factor the polynomial λj (1 + T ) = ∏degλj (1+T )

s=1 (1 + δsT ), then the eigenvalue

λj (P ) above can also be expressed as
∏degλj (1+T )

s=1 P(δsT ).

It is worth pointing out that the degree of λj (P ) above is at most d(k − 2)/2. This may be
regarded as the Ramanujan conjecture on Drinfeld cusp forms. A similar observation on weights
can be found in [Böc04], above Corollary 15.5.

Notice that for k � q + 2 and 1 � j � q − 2, Eq. (7.1) is easily reduced to (7.4) as well.
Therefore for P of degree 1, k = q + 1 and 1 � j � k − 3, one gets

TPcj = λj (P )cj .

Recall that a double cusp form c for Γ1(T ) satisfies c(γ0)(Y
k−2) = c(γ0)(X

k−2) = 0. Therefore
c1, . . . , ck−3 form a basis of the subspace of double cusp forms, on which a similar result holds
but with a slightly extended range for k.

Proposition 7. Let P be a prime ideal of A generated by the polynomial P of degree 1 with
P(0) = 1. If q + 2 � k � 4, then for all c ∈ S2

k,m(Γ1(T )) and 1 � j � k − 3, one has

TPc(γ0)
(
XjY k−2−j

) = λj (P )c(γ0)
(
XjY k−2−j

)
.

Proof. It remains to prove the proposition for the case k = q + 2, and j = 1 or k − 3. In this
case, Eq. (7.1) gives, for c ∈ S2

k,m(Γ1(T )),

TPc(γ0)
(
XYk−3) = λ1(P )c(γ0)

(
XYk−3)

and

TPc(γ0)
(
Xk−3Y

) = λk−3(P )c(γ0)
(
Xk−3Y

)
since c(γ0)(Y

k−2) = c(γ0)(X
k−2) = 0. �

Corollary 8. Let P be a degree one prime ideal of A generated by the polynomial P with
P(0) = 1. If q + 2 � k � 4, then cj , 1 � j � k − 3, are eigenfunctions of the Hecke opera-
tor TP with eigenvalue λj (P ). Further, the Hecke operators for degree one prime ideals are
simultaneously diagonalized on S2

k,m(Γ1(T )) with respect to the basis cj , 1 � j � k − 3.

Note that there are no nonzero double cusp forms for weight k < 4. The above result for k = 4
is Proposition 15.6 of [Böc04], proved by Böckle and Pink.

We now consider the case of general weight k. Assume P = (P ), where degP = 1 and
P(0) = 1. Again, we appeal to (7.1). For i = 0,1, . . . , q − 2 and mi = 0,1, . . . , � k−2−i

q−1 �, we
have
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TPc(γ0)
(
Xi+mi(q−1)Y k−2−(i+mi(q−1))

)
= c(γ0)

(
Xi+mi(q−1)(PY )k−2−(i+mi(q−1))

+
mi∑

m=0

(
i+(mi−m)(q−1)∑

l=0

(
i + mi(q − 1)

l + m(q − 1)

)(
k − 2 − (i + mi(q − 1))

l

)
(1 − P)l

− P k−2−(i+mi(q−1))

(
i + mi(q − 1)

m(q − 1)

))
Xi+(mi−m)(q−1)Y k−2−(i+(mi−m)(q−1))

+
� k−2−i

q−1 �−mi∑
n=1

(
k−2−(i+mi(q−1))∑

l=n(q−1)

(
i + mi(q − 1)

l − n(q − 1)

)(
k − 2 − (i + mi(q − 1))

l

)
(1 − P)l

− P i+mi(q−1)

(
k − 2 − (i + mi(q − 1))

n(q − 1)

)
T n(q−1)

)
Xi+(mi+n)(q−1)Y k−2−(i+(mi+n)(q−1))

)
.

Recall the function cj defined by (7.2). For i = 0,1, . . . , q − 2, denote by Sk,m(Γ1(T ))i the
subspace of Sk,m(Γ1(T )) generated by {ci , ci+(q−1), . . . , c

i+� k−2−i
q−1 �(q−1)

} so that Sk,m(Γ1(T )) =⊕q−2
i=0 Sk,m(Γ1(T ))i . The above calculation proves the following

Theorem 9. Let P = (P ), where degP = 1 and P(0) = 1. Then for each i = 0,1, . . . , q − 2,
Sk,m(Γ1(T ))i is invariant under TP. The action of TP restricted to Sk,m(Γ1(T ))i with respect to
the basis {ci , ci+(q−1), . . . , c

i+� k−2−i
q−1 �(q−1)

} is represented by the matrix [TP]i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α
(i)
0,0 + Pk−2−i β

(i)
0,1 β

(i)
0,2 . . . β

(i)

0,� k−2−i
q−1 �

α
(i)
1,1 α

(i)
1,0 + Pk−2−(i+(q−1)) β

(i)
1,1 . . . β

(i)

1,� k−2−i
q−1 �−1

α
(i)
2,2 α

(i)
2,1 α

(i)
2,0 + Pk−2−(i+2(q−1)) . . . β

(i)

2,� k−2−i
q−1 �−2

.

.

.

.

.

.

.

.

.
. . .

.

.

.

α
(i)

� k−2−i
q−1 �,� k−2−i

q−1 � α
(i)

� k−2−i
q−1 �,� k−2−i

q−1 �−1
α

(i)

� k−2−i
q−1 �,� k−2−i

q−1 �−2
. . . α

(i)

� k−2−i
q−1 �,0 + P

k−2−(i+� k−2−i
q−1 �(q−1))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

α
(i)

mi ,m
′ =

i+(mi−m′)(q−1)∑
l=0

(
i + mi(q − 1)

l + m′(q − 1)

)(
k − 2 − (i + mi(q − 1))

l

)
(1 − P)l

− P k−2−(i+mi(q−1))

(
i + mi(q − 1)

m′(q − 1)

)

and
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β(i)
mi ,n

=
k−2−(i+mi(q−1))∑

l=n(q−1)

(
i + mi(q − 1)

l − n(q − 1)

)(
k − 2 − (i + mi(q − 1))

l

)
(1 − P)l

− P i+mi(q−1)

(
k − 2 − (i + mi(q − 1))

n(q − 1)

)
T n(q−1)

for mi = 0,1, . . . , � k−2−i
q−1 �, 0 � m′ � mi and 1 � n � � k−2−i

q−1 � − mi .

Using geometric arguments, Böckle and Pink computed the above structures for the space of
double cusp forms of k = 5, q = 2 and k = 6, q = 3 in Proposition 15.3 of [Böc04]. To illustrate
the above theorem, we give two examples of cusp forms with weights k > q; in the first each
Hecke action is diagonalizable, while in the second it is not.

Example 10. q = 3, k = 7 and P = 1 + T . There are two invariant subspaces under TP, namely,
S7,m(Γ1(T ))0 and S7,m(Γ1(T ))1 spanned by {c0, c2, c4} and {c1, c3, c5}, respectively. With re-
spect to these bases, we have

[TP]0 =
( 1 0 0

2T 3 1 T 3

2T 2T 1 + 2T

)
and [TP]1 =

(1 + 2T 2T 3 2T 4

T 1 2T 5

0 0 1

)
.

Both matrices have the same distinct eigenvalues 1,1 +T +T
√

1 − T 2 and 1 +T −T
√

1 − T 2.
Thus [TP]0 and [TP]1 are diagonalizable, and hence so is TP.

Example 11. q = 2 and k = 5. There is only one polynomial P = 1 + T to consider. Further
there is only one residue class mod q − 1 given by i = 0, so one has

[TP]0 =
⎛⎜⎝

1 0 0 0
T 2 1 T 2 T 3

T T 1 T 3

0 0 0 1

⎞⎟⎠ .

Thus TP has the eigenvalue 1 of multiplicity two with two linearly independent eigenfunctions
c0 and c3, and the eigenvalue 1 + T 3/2 of multiplicity two with only one linearly independent
eigenfunction T 1/2c1 + c2. Hence TP is not diagonalizable on S5,m(Γ1(T )). Further, since c1
and c2 span the space of the double cusp forms S2

5,m(Γ1(T )), this shows that the Hecke operator

TP is not diagonalizable on S2
5,m(Γ1(T )) either.

Remark. In both examples, unlike the case k � q + 2, there are irrational eigenvalues. Our
computations seem to suggest that the nondiagonalizability results from inseparable eigenvalues.
It would be interesting to know if it could occur with separable eigenvalues.

8. Cusp forms for Γ (T )

In this section, we work with Γ = Γ (T ), the group of matrices in GL2(A) congruent to the
identity matrix modulo T . A fundamental domain of Γ (T )\T contains q + 1 rays, correspond-
ing to the cusps [∞] = (1) and [r] = (

r
)
, r ∈ F, one stable vertex

(
1 0

)
and q + 1 stable edges
0 1 0 1



1952 W.-C.W. Li, Y. Meemark / Journal of Number Theory 128 (2008) 1941–1965
γr := 〈(
r 1
1 0

)〉
, r ∈ F, and γ∞ := 〈(

1 0
0 1

)〉
. Thus gΓ (T ) = 0 so that dimC Sk,m(Γ (T )) = (k − 1)q

by Proposition 1, and dimC S2
2,m(Γ (T )) = 0 and dimC S2

k,m(Γ (T )) = (k − 2)q − 1 for k � 3 by
Proposition 4. To determine a harmonic cocycle for Γ (T ), as noted in Section 4, one needs
to know only its values at γr , r ∈ F, and its value at γ∞ is determined by the harmonicity
condition c(γ∞) + ∑

r∈F
c(γr) = 0. The stabilizer of the cusp [∞] (respectively [r], r ∈ F)

is Γ[∞] = {( 1 c
0 1

)
: c ≡ 0 mod T } (respectively Γ[r] = {( 1+rc −r2c

c 1−rc

)
: c ≡ 0 mod T }) so that

V (k,m)Γ[∞] (respectively V (k,m)Γ[r] ) is spanned by Y k−2 (respectively (X − rY )k−2). More-
over, Γ[∞]\ src([∞]) = {γ∞} and Γ[r]\ src([r]) = {γr}, r ∈ F. Thus by Theorem 3, the double
cusp forms can be described as follows.

Proposition 12. A harmonic cocycle c ∈ Hk,m(Γ (T )) lies in H 2
k,m(Γ (T )) if and only if

c(γ∞)(Y k−2) = 0 and c(γr)((X − rY )k−2) = 0 for all r ∈ F.

Next we study the action of the Hecke operator TP at c ∈ Hk,m(Γ (T )). Recall that a harmonic
cocycle takes values in Hom(V (k,m),C). In view of the above proposition, it turns out that the
action is best described if, for all r ∈ F, the basis (X − rY )jY k−2−j , 0 � j � k − 2, of V (k,m)

is used when we discuss the values of a harmonic cocycle at the directed edge γr . Therefore we
shall describe the action using such bases. To ease our notation, for c ∈ Hk,m(Γ (T )), r ∈ F, and
0 � j � k − 2, let

Z(c, r, j) = c(γr)
(
(X − rY )jY k−2−j

)
. (8.1)

Assume that P is generated by P = 1 + αT with α ∈ F
×. Again, we use (6.1), harmonicity and

Γ (T )-equivariancy to arrive at the main identity of the Hecke action:

Z(TPc, r, j)

= P k−2−jZ(c, r, j) − P j

� k−2−j
q−1 �∑
n=1

(
k − 2 − j

n(q − 1)

)
T n(q−1)Z

(
c, r, j + n(q − 1)

)

+
∑
b �=r

[
j∑

u=0

(b − r)j−u

(
P k−2−j

(
j

u

)
−

u∑
l=0

(
j

u − l

)(
k − 2 − j

l

)
(1 − P)l

)
Z(c, b,u)

−
k−2∑

u=j+1

k−2−j∑
l=u−j

(
j

u − l

)(
k − 2 − j

l

)
(1 − P)l(b − r)j−uZ(c, b,u)

]
. (8.2)

Notice that when j = k − 2, (8.2) becomes

Z(TPc, r, k − 2) = Z(c, r, k − 2) (8.3)

for all r ∈ F. Moreover, for j = 0 and r ∈ F we have

Z(TPc, r,0) = P k−2Z(c, r,0) −
� k−2

q−1 �∑ (
k − 2

n(q − 1)

)
T n(q−1)Z

(
c, r, n(q − 1)

)

n=1
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+
∑
b �=r

((
P k−2 − 1

)
Z(c, b,0) −

k−2∑
u=1

(1 − P)u(b − r)−uZ(c, b,u)

)
.

Summing over all r ∈ F and using harmonicity, we get

−TPc(γ∞)
(
Y k−2) = I + II,

where

I =
∑
r∈F

(
P k−2Z(c, r,0) −

� k−2
q−1 �∑
n=1

(
k − 2

n(q − 1)

)
T n(q−1)Z

(
c, r, n(q − 1)

))

and

II =
∑
b∈F

(∑
r �=b

(
P k−2 − 1

)
Z(c, b,0) −

k−2∑
u=1

(1 − P)u
∑
r �=b

(b − r)−uZ(c, b,u)

)

=
∑
b∈F

(
−(

P k−2 − 1
)
Z(c, b,0) +

� k−2
q−1 �∑
n=1

(1 − P)n(q−1)Z
(
c, b, n(q − 1)

))
.

Combined, this gives

TPc(γ∞)
(
Y k−2) = c(γ∞)

(
Y k−2). (8.4)

Eqs. (8.3) and (8.4) then imply

Proposition 13. Let c ∈ Sk,m(Γ (T )) be an eigenfunction of TP, where P �= (T ) has degree 1. If
it is not a double cusp form, then the eigenvalue is 1.

Assume further that q � k � 2. In this case (8.2) is reduced to

Z(TPc, r, j) =
j−1∑
u=0

∑
b∈F

(b − r)j−u

(
P k−2−j

(
j

u

)
−

u∑
l=0

(
j

u − l

)(
k − 2 − j

l

)
(1 − P)l

)

× Z(c, b,u) + [
P k−2−j − λj (P )

]∑
b∈F

Z(c, b, j) + λj (P )Z(c, r, j)

−
k−2∑

u=j+1

k−2−j∑
l=u−j

(
j

u − l

)(
k − 2 − j

l

)
(1 − P)l

∑
b �=r

(b − r)j−uZ(c, b,u)

=
j−1∑
u=0

αu(j,P )
∑
b∈F

(b − r)j−uZ(c, b,u) + [
P k−2−j − λj (P )

]∑
b∈F

Z(c, b, j)

+ λj (P )Z(c, r, j) −
k−2∑

βu(j,P )
∑

(b − r)j−uZ(c, b,u), (8.5)

u=j+1 b �=r
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where λj (P ) = ∑j

l=0

(
j
l

)(
k−2−j

l

)
(1 − P)l is given by (7.3),

αu(j,P ) = P k−2−j

(
j

u

)
−

u∑
l=0

(
j

u − l

)(
k − 2 − j

l

)
(1 − P)l for 0 � u � j − 1,

and

βu(j,P ) =
k−2−j∑
l=u−j

(
j

u − l

)(
k − 2 − j

l

)
(1 − P)l for j + 1 � u � k − 2.

For r ∈ F and 0 � j � k − 2, denote by c(r)
j the function

c(r)
j (γr )

(
(X − rY )jY k−2−j

) = 1 and c(r)
j (γs)

(
(X − rY )lY k−2−l

) = 0 if s �= r or l �= j.

Let cj = ∑
r∈F

c(r)
j . Then TPcj = λj (P )cj , that is, cj is an eigenfunction of TP with eigenvalue

λj (P ). Observe that cj are liftings of the eigenfunctions of Sk,m(Γ1(T )).
Our next goal is to show that λj (P ) are the eigenvalues for the Hecke operator TP on

Sk,m(Γ (T )) when q � k. For this, we need

Lemma 14. Suppose that c is an eigenfunction of the Hecke operator TP on Sk,m(Γ (T )) with
eigenvalue λ �= λn(P ) for all 0 � n � k − 2. Then for each 0 � n � k − 2 and each r ∈ F, there
are constants A

(n)
u ∈ F(T ) for n + 1 � u � k − 2 such that

(
λ − λn(P )

)
Z(c, r, n) =

k−2∑
u=n+1

A(n)
u

∑
b �=r

(b − r)n−uZ(c, b,u). (8.6)n

Grant this lemma. By applying (8.6)n repeatedly from n = k − 2 down to n = 0, we deduce
that c = 0. This proves

Theorem 15. Let P = (P ) �= (T ) be a degree one prime ideal of A. For q � k � 2 the distinct
eigenvalues for the Hecke operator TP on Sk,m(Γ (T )) are the distinct λj (P ), 0 � j � k − 2.

Let c be an eigenfunction of TP with eigenvalue λ. Then (8.5) gives rise to

(
λ − λj (P )

)
Z(c, r, j) =

j−1∑
u=0

αu(j,P )
∑
b∈F

(b − r)j−uZ(c, b,u)

+
∑
b∈F

[
P k−2−j − λj (P )

]
Z(c, b, j)

−
k−2∑

βu(j,P )
∑

(b − r)j−uZ(c, b,u)
u=j+1 b �=r
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for all 0 � j � k − 2 and r ∈ F. Summing over all r ∈ F, we get, for each 0 � j � k − 2,(
λ − λj (P )

)∑
r∈F

Z(c, r, j) = 0. (8.7)

Hence if λ �= λj (P ), then
∑

r∈F
Z(c, r, j) = 0 so that

(
λ − λj (P )

)
Z(c, r, j) =

j−1∑
u=0

αu(j,P )
∑
b∈F

(b − r)j−uZ(c, b,u)

−
k−2∑

u=j+1

βu(j,P )
∑
b �=r

(b − r)j−uZ(c, b,u) (8.8)j

for all 0 � j � k − 2 and r ∈ F. When j = 0, the first sum on the right side is void and hence
(8.6)0 holds with A

(0)
u = βu(0,P ) for 1 � u � k − 2. We shall prove Lemma 14 by induction

on n. To proceed, we prove an identity which will be used repeatedly in the computations to
follow.

Proposition 16. For 1 � l, t � k − 2 � q − 2 and any C-valued function X(s) on F, we have

∑
b∈F

∑
s∈F
s �=b

(b − r)t

(s − b)l
X(s) =

⎧⎪⎨⎪⎩
∑

s∈F
(−1)l+1

(
t
l

)
(s − r)t−lX(s) if t > l;∑

s∈F
(−1)l+1X(s) if t = l;

0 if t � l.

Proof. Let 1 � l, t � k − 2 � q − 2. Then

∑
b∈F

∑
s∈F
s �=b

(b − r)t

(s − b)l
X(s) =

∑
s∈F

∑
b∈F
b �=s

((b − s) + (s − r))t

(s − b)l
X(s)

=
∑
s∈F

t∑
i=0

(−1)l
(

t

i

)
(s − r)t−i

∑
b �=s

(b − s)i−lX(s).

Since 1 � l, t � k − 2 � q − 2,
∑

b∈F
b �=s

(b − s)i−l vanishes unless i = l in which case it is −1, so

∑
b∈F

∑
s∈F
s �=b

(b − r)t

(s − b)l
X(s) =

{∑
s∈F

(−1)l+1
(
t
l

)
(s − r)t−lX(s), if t > l;

0, if t < l.

If t = l, then

∑
b∈F

∑
s∈F

(
b − r

s − b

)t

X(s) =
∑
s∈F

∑
b∈F

(
s − r

s − b
− 1

)t

X(s)
s �=b b �=s
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=
∑
s∈F

∑
b �=s

(
t−1∑
i=0

(
t

i

)
(−1)i

(
s − r

s − b

)t−i

+ (−1)t

)
X(s)

= (−1)t+1
∑
s∈F

X(s).

This proves the proposition. �
Proof of Lemma 14. We shall apply Proposition 16 to X(s) = Z(c, s, j), in which case the sum
is equal to 0 when t = l because of (8.7) and the assumption λ �= λj (P ) for all j . Assume that
the statement is valid up to n, where 0 � n < k − 2. That is, for all 0 � j � n and b ∈ F, we have

Z(c, b, j) = 1

λ − λj (P )

k−2∑
u=j+1

A
(j)
u

∑
s �=b

(s − b)j−uZ(c, s, u). (8.9)j

Substituting (8.9)0 into (8.8)n+1, we get

(
λ − λn+1(P )

)
Z(c, r, n + 1)

=
n∑

u=0

αu(n + 1,P )
∑
b∈F

(b − r)(n+1)−uZ(c, b,u)

−
k−2∑

u=n+2

βu(n + 1,P )
∑
b �=r

(b − r)(n+1)−uZ(c, b,u)

=
∑
b∈F

α0(n + 1,P )

λ − λ0(P )

k−2∑
u=1

A(0)
u

∑
s �=b

(b − r)n+1

(s − b)u
Z(c, s, u)

+
n∑

u=1

A(n+1),0
u

∑
b∈F

(b − r)(n+1)−uZ(c, b,u)

+
k−2∑

u=n+2

A(n+1)
u

∑
b �=r

(b − r)(n+1)−uZ(c, b,u).

Here A
(n+1),0
u = αu(n + 1,P ),1 � u � n + 1, depend only on u and n. By Proposition 16, the

first triple sum of the right-hand side is equal to

n∑
u=1

α0(n + 1,P )

λ − λ0(P )

∑
s∈F

(−1)u+1
(

n + 1

u

)
(s − r)(n+1)−uZ(c, s, u),

which can be combined with the middle double sum of the right-hand side to bring the above
identity to the following form:
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(
λ − λn+1(P )

)
Z(c, r, n + 1)

=
n∑

u=1

A(n+1),1
u

∑
b∈F

(b − r)(n+1)−uZ(c, b,u) +
k−2∑

u=n+2

A(n+1)
u

∑
b �=r

(b − r)(n+1)−uZ(c, b,u).

Next we replace Z(c, b,1) above by (8.9)1 and use Proposition 16 to express (λ − λn+1(P ))

times Z(c, r, n + 1) as a linear combination of
∑

b∈F
(b − r)n+1−uZ(c, b,u) for 2 � u � n and∑

b �=r (b − r)n+1−uZ(c, b,u) for n + 2 � u � k − 2 with coefficients A
(n+1),2
u depending only

on n and u. Repeat this procedure. After n − 1 iterations, we arrive at(
λ − λn+1(P )

)
Z(c, r, n + 1)

= A(n+1),n
n

∑
b∈F

(b − r)Z(c, b, n) +
k−2∑

u=n+2

A(n+1)
u

∑
b �=r

(b − r)(n+1)−uZ(c, b,u).

For the final calculation, use (8.9)n to get(
λ − λn+1(P )

)
Z(c, r, n + 1)

= A
(n+1),n
n

λ − λn(P )

∑
b∈F

k−2∑
u=n+1

A(n)
u

∑
s �=b

b − r

(s − b)u−n
Z(c, s, u)

+
k−2∑

u=n+2

A(n+1)
u

∑
b �=r

(b − r)(n+1)−uZ(c, b,u)

=
k−2∑

u=n+2

A(n+1)
u

∑
b �=r

(b − r)(n+1)−uZ(c, b,u).

Hence Lemma 14 follows by induction. �
The techniques used to prove Lemma 14 can be extended to describe the eigenspaces of TP.

Let c be an eigenfunction of TP with eigenvalue λn(P ). The relations among Z(c, r, j) for r ∈ F

and 0 � j � k − 2 are distinguished by two cases, according to λj (P ) equal to λn(P ) or not.
For those l with λl(P ) �= λn(P ), Eq. (8.8)l gives

Z(c, b, l) = 1

λn(P ) − λl(P )

[
l−1∑
u=0

αu(l,P )
∑
s∈F

(s − b)l−uZ(c, s, u)

−
k−2∑

u=l+1

βu(l,P )
∑
s �=b

(s − b)l−uZ(c, s, u)

]

for all b ∈ F. Further, for such l we have
∑

b∈F
Z(c, b, l) = 0 by (8.7). Let l0 < l1 < · · · < lt be

the distinct l’s such that λl(P ) �= λn(P ). Then the same inductive procedure as in the proof of
Lemma 14 yields, for each lv , 0 � v � t ,
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Z(c, b, lv) =
∑

0�u<lv
λu(P )=λn(P )

A(lv)
u

∑
s∈F

(s − b)lv−uZ(c, s, u)

+
k−2∑

u=lv+1

A(lv)
u

∑
s �=b

(s − b)lv−uZ(c, s, u) (8.10)lv

for some explicitly determined elements A
(lv)
u in F(T ) depending only on u and P .

Let i be an index such that λi(P ) = λn(P ). The Hecke action (8.5) gives rise to

0 =
i−1∑
u=0

αu(i,P )
∑
b∈F

(b − r)i−uZ(c, b,u) + [
P k−2−i − λi(P )

]∑
b∈F

Z(c, b, i)

−
k−2∑

u=i+1

βu(i,P )
∑
b �=r

(b − r)i−uZ(c, b,u). (8.11)

By successively substituting (8.10)lv into (8.11), starting with v = 0 and ending with v = t ,
and simplifying the expression using Proposition 16 at each step, we eliminate all Z(c, b, l)’s in
Eq. (8.11) with λl(P ) �= λn(P ) and arrive at an identity of the form

0 =
∑

0�u�k−2
λu(P )=λn(P )

Cu(i,P )
∑
b �=r

(b − r)i−uZ(c, b,u) (8.12)i,r

for some explicitly determined elements Cu(i,P ) in F(T ) depending only on i, u and P . We
have shown

Theorem 17. Suppose q � k � 2. Let P = (P ), where P ∈ F[T ] has degree one and P(0) = 1.
Then λi(P ), 0 � i � k − 2, with suitable multiplicities are the eigenvalues of the Hecke operator
TP on Sk,m(Γ (T )). For 0 � n � k − 2, set An = {i: 0 � i � k − 2 and λi(P ) = λn(P )} and
denote the integers in [0, k − 2] � An by l0 < · · · < lt . Let c be an eigenfunction in Hk,m(Γ (T ))

with eigenvalue λn(P ). Then c is determined by Z(c, b,u) with u ∈ An and b ∈ F subject to the
conditions (8.12)i,r for i ∈ An and r ∈ F. The remaining Z(c, b, l)’s are determined recursively
by (8.10)lv from v = t to v = 0.

9. Examples

To illustrate Theorem 17, we compute the action of TP on Hk,m(Γ ) for small weights
k = 3,4,5. None of these are diagonalizable with respect to the Hecke operator. Let c be an
eigenfunction.

(i) q � k = 3. Here λ0(P ) = λ1(P ) = 1. It follows from (8.5) that

∑
Z(c, b,0) =

∑ Z(c, b,1)

r − b

b∈F b �=r
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for all r ∈ F. We shall solve this linear system. Fix a generator a of F
× and arrange the elements

of F in the order 0, a, a2, . . . , aq−1. Express the above system in matrix form⎛⎜⎜⎜⎜⎜⎜⎝

0 − 1
a

− 1
a2 − 1

a3 . . . − 1
aq−1

1
a

0 1
a−a2

1
a−a3 . . . 1

a−aq−1

1
a2

1
a2−a

0 1
a2−a3 . . . 1

a2−aq−1

...
...

...
...

. . .
...

1
aq−1

1
aq−1−a

1
aq−1−a2

1
aq−1−a3 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
Z(c,0,1)

Z(c, a,1)

Z(c, a2,1)
...

Z(c, aq−1,1)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
c

c

c
...

c

⎞⎟⎟⎟⎟⎠ , (9.1)

where c = ∑
b∈F

Z(c, b,0). We determine the nullity of the coefficient matrix M . Write

M =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
0 1

a
0 . . . 0

0 0 1
a2 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1
aq−1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

0 − 1
a

− 1
a2 − 1

a3 . . . − 1
aq−1

1 0 1
1−a

1
1−a2 . . . 1

1−aq−2

1 1
1−aq−2 0 1

1−a
. . . 1

1−aq−3

...
...

...
...

. . .
...

1 1
1−a

1
1−a2

1
1−a3 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Call the second matrix on the right-hand side C. Note that Nul(M) = Nul(C). Consider the
submatrix obtained from C by deleting the first row and the first column

C′ =

⎛⎜⎜⎜⎝
0 1

1−a
1

1−a2 . . . 1
1−aq−2

1
1−aq−2 0 1

1−a
. . . 1

1−aq−3

...
...

...
. . .

...
1

1−a
1

1−a2
1

1−a3 . . . 0

⎞⎟⎟⎟⎠ ,

which is a (q − 1) × (q − 1) circulant matrix. Then

v′
j =

⎛⎜⎜⎜⎜⎝
1
aj

a2j

...

a(q−2)j

⎞⎟⎟⎟⎟⎠ , j = 1,2, . . . , q − 1,

are q − 1 linearly independent eigenvectors of C′ with eigenvalue

aj

1 − a
+ a2j

1 − a2
+ · · · + a(q−2)j

1 − aq−2
= j,

as a consequence of the following lemma.

Lemma 18. For j = 1,2, . . . , q − 1 and l � 1, we have

q−2∑
n=1

ajn

(1 − an)l
= (−1)l−1

(
j

l

)
.
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Proof. We shall prove this lemma by induction on l. For l = 1, we compute

q−2∑
n=1

ajn

1 − an
=

q−2∑
n=1

ajn − 1 + 1

1 − an
=

q−2∑
n=1

[
−(

1 + an + · · · + a(j−1)n
) + 1

1 − an

]
.

Since a has order q − 1 and 1 � j � q − 1,
∑q−2

n=1 ain = −ai(q−1) = −1 for all i = 1, . . . , j − 1.

As
∑q−2

n=1
1

1−an = −1, the above sum is equal to

q−2∑
n=1

ajn

1 − an
= −(q − 2) + (j − 1) − 1 = j.

Next, we assume that
∑q−2

n=1
ajn

(1−an)l
= (−1)l−1

(
j
l

)
for all j = 1, . . . , q − 1. Then

q−2∑
n=1

ajn

(1 − an)l+1
=

q−2∑
n=1

ajn − 1 + 1

(1 − an)l+1
=

q−2∑
n=1

[
−1 + a + · · · + a(j−1)n

(1 − an)l
+ 1

(1 − an)l+1

]

= −
[
−1 + (−1)l−1

(
1

l

)
+ · · · + (−1)l−1

(
j − 1

l

)]
− 1 = (−1)l

(
j

l + 1

)

by the Pascal’s triangle identity
∑m

i=1

(
i
l

) = (
m+1
l+1

)
. The lemma follows by induction. �

Back to the matrix C. The vectors

v0 =

⎛⎜⎜⎜⎜⎝
1
1
1
...

1

⎞⎟⎟⎟⎟⎠ and vj =

⎛⎜⎜⎜⎜⎝
0
1
aj

...

a(q−2)j

⎞⎟⎟⎟⎟⎠ , j = 1, . . . , q − 1,

are q linearly independent eigenvectors of C with the eigenvalues 0 and j , respectively. Since
our field has characteristic p, this shows that the nullity(C) = q/p. If c = ∑

b∈F
Z(c, b,0) = 0,

then we obtain (q − 1) + q/p linearly independent eigenvectors for TP. When c �= 0, note that

v =

⎛⎜⎜⎜⎜⎝
0
ca

ca2

...

caq−1

⎞⎟⎟⎟⎟⎠
is a solution of (9.1). Together with the homogeneous ones, we have q + q/p linearly indepen-
dent eigenvectors for TP, all with eigenvalue 1. Since 1 is the only eigenvalue of TP, its total
multiplicity 2q , thus TP is not diagonalizable. We record this result in
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Proposition 19. Suppose F has cardinality q � 3 and characteristic p. For a maximal degree one
ideal P �= (T ), 1 is the only eigenvalue of the Hecke operator TP on S3,m(Γ (T )). The eigenspace
of TP has dimension q + q/p, while the space S3,m(Γ (T )) has dimension 2q . Consequently,
TP is not diagonalizable on S3,m(Γ (T )).

As the dimension of the 1-eigenspace of TP on S2
3,m(Γ (T )) is q − 1, which is

dimC S2
3,m(Γ (T )), so TP is diagonalizable on S2

3,m(Γ (T )).

(ii) q � k = 4. In this case λ0(P ) = λ2(P ) = 1 and λ1(P ) = −P + 2. A similar computation
yields

Proposition 20. Suppose F has cardinality q � 4 and characteristic p. For a maximal degree
one ideal P �= (T ), 1 and 2 − P are the two distinct eigenvalues of the Hecke operator TP on
S4,m(Γ (T )). The 1-eigenspace has dimension q+2q/p if p > 2 and dimension q+q/p if p = 2.
The (2 − P)-eigenspace has dimension q . Moreover, TP is not diagonalizable on S4,m(Γ (T )).

One checks that TP on S2
4,m(Γ (T )) is diagonalizable since dimC S2

4,m(Γ (T )) = 2q − 1, the
1-eigenspace is (q − 1)-dimensional, and the (2 − P)-eigenspace has dimension q .

(iii) q � k = 5. In this case λ0(P ) = λ3(P ) = 1 and λ1(P ) = λ2(P ) = −2P + 3. First we
assume p > 2 so that 1 �= −2P + 3. To determine the 1-eigenspace, consider the equations from
(8.5) with j = 0,1,2:

0 = (
P 2 + P + 1

)∑
b∈F

Z(c, b,0) + 3
∑
b �=r

Z(c, b,1)

b − r
− 3(P − 1)

∑
b �=r

Z(c, b,2)

(b − r)2

+ (P − 1)2
∑
b �=r

Z(c, b,3)

(b − r)3
, (9.2)

2Z(c, r,1) = (P + 1)
∑
b∈F

(b − r)Z(c, b,0) + (P + 3)
∑
b∈F

Z(c, b,1)

− (P − 3)
∑
b �=r

Z(c, b,2)

b − r
− (P − 1)

∑
b �=r

Z(c, b,3)

(b − r)2
,

and

2Z(c, r,2) =
∑
b∈F

(b − r)2Z(c, b,0) + 3
∑
b∈F

(b − r)Z(c, b,1)

+ 3
∑
b∈F

Z(c, b,2) +
∑
b �=r

Z(c, b,3)

b − r

for all r ∈ F. Summing the second and third equations over all r , we get
∑

r∈F
Z(c, r,1) = 0

and
∑

r∈F
Z(c, r,2) = 0, which lead to the following simplifications of the second and third

equations:
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Z(c, r,1) = P + 1

2

∑
b∈F

(b − r)Z(c, b,0) − P − 3

2

∑
b �=r

Z(c, b,2)

b − r

− P − 1

2

∑
b �=r

Z(c, b,3)

(b − r)2
, (9.3)

and

Z(c, r,2) = 1

2

∑
b∈F

(b − r)2Z(c, b,0) + 3

2

∑
b∈F

(b − r)Z(c, b,1) + 1

2

∑
b �=r

Z(c, b,3)

b − r
(9.4)

for all r ∈ F. Plugging (9.3) into (9.4) and using Proposition 16 to simplify, we get

Z(c, r,2) = 1

2

∑
b∈F

(b − r)2Z(c, b,0) + 1

2

∑
b �=r

Z(c, b,3)

b − r
(9.5)

for all r ∈ F. Substituting (9.3) and (9.5) into (9.2) and simplifying the result using Proposi-
tion 16, we obtain

∑
b∈F

Z(c, b,0) =
∑
b �=r

Z(c, b,3)

(r − b)3
(9.6)

for all r ∈ F. To solve the above linear system, we employ the same method as in case (i), that is,
computing the nullity of

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
a3 − 1

a6 − 1
a9 . . . − 1

a3(q−1)

1 0 1
(1−a)3

1
(1−a2)3 . . . 1

(1−aq−2)3

1 1
(1−aq−2)3 0 1

(1−a)3 . . . 1
(1−aq−3)3

...
...

...
...

. . .
...

1 1
(1−a)3

1
(1−a2)3

1
(1−a3)3 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

By Lemma 18, the vectors

v0 =

⎛⎜⎜⎜⎜⎝
1
1
1
...

⎞⎟⎟⎟⎟⎠ and vj =

⎛⎜⎜⎜⎜⎝
0
1
aj

...
(q−2)j

⎞⎟⎟⎟⎟⎠ , j = 1, . . . , q − 1,
1 a
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are q linearly independent eigenvectors of C with the eigenvalues 0 and
(
j
3

)
, respectively. There-

fore the nullity of C is 3q/p when p > 3 and is q/p when p = 3, which yields the number of
linearly independent eigenvectors if c := ∑

b∈F
Z(c, b,0) = 0. When c �= 0, we note that

v =

⎛⎜⎜⎜⎜⎝
0

ca3

ca6

...

ca3(q−1)

⎞⎟⎟⎟⎟⎠
is a solution of (9.6). Together with the homogeneous ones, we see that the 1-eigenspace of TP

has dimension q + 3q/p if p > 3 and q + q/p if p = 3.
Next we determine the eigenvectors with eigenvalue −2P + 3. Such eigenvectors are double

cusp forms by Proposition 13, so Z(c, r,3) = 0 for all r ∈ F. Thus the equations from (8.5) with
j = 0,1,2 can be simplified as

Z(c, r,0) = −3

2

∑
b �=r

Z(c, b,1)

b − r
+ 3(P − 1)

2

∑
b �=r

Z(c, b,2)

(b − r)2
,

0 = (P + 1)
∑
b∈F

(b − r)Z(c, b,0) + (P + 3)
∑

F

Z(c, b,1) − (P − 3)
∑
b �=r

Z(c, b,2)

b − r
,

and

0 =
∑
b∈F

(b − r)2Z(c, b,0) + 3
∑
b∈F

(b − r)Z(c, b,1) + 3
∑
b∈F

Z(c, b,2)

for all r ∈ F. Substituting the first relation into the second and the third, and simplifying the
resulting expressions by using Proposition 16, we arrive at

∑
b∈F

Z(c, b,1) = 2
∑
b �=r

Z(c, b,2)

r − b
(9.7)

and ∑
b∈F

Z(c, b,2) = 0 (9.8)

for all r ∈ F. Write c = ∑
b∈F

Z(c, b,1). Solve the system (9.7) using the same method as (9.1).
When c = 0, we get homogeneous solutions⎛⎜⎜⎜⎜⎝

Z(c,0,2)

Z(c, a,2)

Z(c, a2,2)
...
q−1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
1
1
...

⎞⎟⎟⎟⎟⎠ or

⎛⎜⎜⎜⎜⎝
0
1
aj

...
(q−2)j

⎞⎟⎟⎟⎟⎠ , j = 1, . . . , q − 1;
Z(c, a ,2) 1 a
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when c �= 0, we get a nonhomogeneous solution⎛⎜⎜⎜⎜⎝
Z(c,0,2)

Z(c, a,2)

Z(c, a2,2)
...

Z(c, aq−1,2)

⎞⎟⎟⎟⎟⎠ = 1

2

⎛⎜⎜⎜⎜⎝
0
ca

ca2

...

caq−1

⎞⎟⎟⎟⎟⎠ .

Note that all solutions satisfy Eq. (9.8). Thus the (−2P +3)-eigenspace of TP has dimension q +
q/p. Combined with the dimension of 1-eigenspace, we conclude that TP is not diagonalizable
on S5,m(Γ (T )) since the space has dimension 4q . We summarize the above discussion in

Proposition 21. Suppose F has cardinality q � 4 and characteristic p > 2. For a maximal degree
one ideal P �= (T ), 1 and −2P + 3 are the two distinct eigenvalues of the Hecke operator TP

on S5,m(Γ (T )). The 1-eigenspace has dimension q + 3q/p if p > 3 and dimension q + q/p if
p = 3. The (−2P + 3)-eigenspace has dimension q + q/p. Further, TP is not diagonalizable on
S5,m(Γ (T )).

Now we turn to the case when p = 2. In this case, we have only one eigenvalue, namely, 1.
Then (8.5) for j = 0,1,2 become

0 = (
P 2 + P + 1

)∑
b∈F

Z(c, b,0) +
∑
b �=r

Z(c, b,1)

b − r
+ (P − 1)

∑
b �=r

Z(c, b,2)

(b − r)2

+ (P − 1)2
∑
b �=r

Z(c, b,3)

(b − r)3
,

0 =
∑
b∈F

(b − r)Z(c, b,0) +
∑
b∈F

Z(c, b,1) +
∑
b �=r

Z(c, b,2)

b − r
+

∑
b �=r

Z(c, b,3)

(b − r)2
,

and

0 =
∑
b∈F

(b − r)2Z(c, b,0) +
∑
b∈F

(b − r)Z(c, b,1) +
∑
b∈F

Z(c, b,2) +
∑
b �=r

Z(c, b,3)

(b − r)

for all r ∈ F. Observe that we can represent the above system as a homogeneous matrix equation
Mx = 0, where M is a 3q ×4q matrix. Moreover, it is clear that rank M > 1. Thus the eigenspace
is has dimension less than 4q , so that the Hecke operator TP is not diagonalizable. Therefore we
have shown

Proposition 22. Suppose F has cardinality q � 4 and characteristic p = 2. For a maximal degree
one ideal P �= (T ), 1 is the only eigenvalue of the Hecke operator TP on S5,m(Γ (T )). The
eigenspace of TP has dimension less than 4q , the dimension of S5,m(Γ (T )). Hence TP is not
diagonalizable on S5,m(Γ (T )).

As for the action of TP on S2
5,m(Γ (T )), by the same computation as before, we see that

for q odd, the 1-eigenspace is (q − 1)-dimensional and the (3 − 2P)-eigenspace has dimension
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q + q/p so that the total dimension is less than 3q − 1, the dimension of S2
5,m(Γ (T )); for q

even, the matrix M is 3q × 3q with rank at least two, thus the eigenspace is at most (3q − 2)-
dimensional. Hence in both cases, TP on S2

5,m(Γ (T )) is not diagonalizable.

Remark. For Drinfeld cusp forms, what happens in case (iii) is representative of the general
weights. For example, when the weight k = 6, we have three distinct eigenvalues 1,4 − 3P and
6 − 6P + P 2 if p �= 3 and two distinct eigenvalues 1 and P 2 if p = 3. The computations for
Z(c, b,u) are similar.
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