ELSEVIER

Digraph based determination of Jordan block size structure of singular matrix pencils

Klaus Röbenack, Kurt J. Reinschke *
Institut für Regelungs- und Steuerungstheorie, Fakultät Elektrotechnik. Technische Universität Dresclen, D-01062 Dresden, Germam.

Received 12 November 1996; accepted 8 March 1997
Submitted by B. Shader

Abstract

The generic Jordan block sizes corresponding to multiple characteristic roots at zero and at infinity of a singular matrix pencil will be determined graph-theoretically. An application of this technique to detect certain controllability properties of linear time-invariant differential algebraic equations is discussed. © 1998 Elsevier Science Inc. All rights reserved.

Keyrords: Matrix pencils; Linear differential algebraic equations: Impulse controllability

1. Introduction

In this paper the authors study the correspondence between matrix pencils and directed graphs.

The determination of the Jordan block sizes associated with the eigenvalue zero of a matrix A has been of interest for years. Important results were presented by Brualdi [2], Hershkowitz [7,8] and Hershkowitz and Schneider [9]. The present authors make use of cycle families to graph-theoretically determine determinants, minors and determinantal divisors. In a forerunner paper the special case of regular matrix pencil was investigated [17]. In contrast with the regular case, we now take left and right Kronecker indices into consideration. The last part of this contribution deals with an application in control

[^0]theory, namely impulse controllability. This problem has been mentioned in another recent paper [16]. Context and proofs are different.

Since 1960s, the state-space description $\dot{x}-A x+B u, y-C x$ has been widely accepted by the control engineers' community. Generic multiplicities of poles and zeros of the transfer function $C(s I-A)^{-1} B$ were characterized by analysing the Rosenbrock matrix

$$
\left(\begin{array}{cc}
s I-A & B \\
C & 0
\end{array}\right)
$$

graph-theoretically (see Andrei [1], Reinschke [13] and references cited there).
The state-space theory was generalized to differential algebraic equations of the form $E \dot{x}=A x+B u, y=C x$, where the matrix E may be singular. Murota [11,12] and Reinschke [14,15] obtained various results using the matrix pencil

$$
\left(\begin{array}{cc}
s E-A & B \\
C & 0
\end{array}\right)
$$

where Murota considered bipartite graphs instead of directed graphs.
In Section 2 of this paper, the reader is reminded of some topics from the matrix pencil theory. Structure matrices and directed graphs are introduced in Section 3. In Section 4 we determine the generic Jordan block sizes associated with characteristic roots at zero and at infinity of a possibly singular matrix pencil $\lambda E+\mu A$. The results derived there will be applied in Section 5 to analyse differential algebraic equations.

2. Matrix pencils

First, we recall some facts from the theory of matrix pencils [21,10,6,19]. Let $\lambda E+\mu A$ be a matrix pencil with $E, A \in \mathbb{R}^{m \times n}$. A matrix pencil is said to be regular, if $m=n$ and $\operatorname{det}(\lambda E+\mu A)$ is not the zero polynomial. Otherwise, the pencil is said to be singular. Each pencil can be transformed into Kronecker canonical form

$$
\begin{equation*}
P(\lambda E+\mu A) Q=\operatorname{diag}\left(\lambda E_{\mathrm{r}}+\mu A_{\mathrm{r}}, \lambda E_{\mathrm{s}}+\mu A_{\mathrm{s}}\right) \tag{1}
\end{equation*}
$$

with regular matrices P and Q. The block diagonal matrix on the right-hand side consists of a regular part $\lambda E_{\mathrm{r}}+\mu A_{\mathrm{r}}$ and a singular part $\lambda E_{\mathrm{s}}+\mu A_{\mathrm{s}}$. Let us consider the regular part. A pair $(\lambda, \mu) \in \mathbb{C}^{2} \backslash(0,0)$ is called a characteristic root if $\operatorname{det}(\lambda E+\mu A)=0$. A characteristic root (λ, μ) is said to be a characteristic root at zero if $\lambda=0$, a characteristic root at infinity if $\mu=0$, and a finite characteristic root else. The regular part has the following structure

$$
\begin{equation*}
\lambda E_{\mathrm{r}}+\mu A_{\mathrm{r}}=\operatorname{diag}\left(\lambda I_{n_{f}}+\mu W, \lambda I_{n_{0}}+\mu N^{0}, \lambda N^{\infty}+\mu I_{n_{x}}\right) . \tag{2}
\end{equation*}
$$

The $n_{f} \times n_{f}$ matrix W is regular and the matrices N^{0}, N^{\times}are $n_{0} \times n_{0}, n_{x} \times n_{x}$ block diagonal matrices

$$
\begin{equation*}
N^{0}=\operatorname{diag}\left(N_{1}^{0}, \ldots, N_{d_{0}}^{0}\right), \quad N^{\times}=\operatorname{diag}\left(N_{1}^{\times}, \ldots, N_{d_{1}}^{\times}\right) \tag{3}
\end{equation*}
$$

consisting of nilpotent Jordan blocks. The characteristic roots at zero and at infinity are associated with the matrices N^{0} and N^{∞}. We denote the sizes of the Jordan blocks by $s_{1}^{0} \geqslant \cdots \geqslant s_{d_{0}}^{0}$ and $s_{1}^{\infty} \geqslant \cdots \geqslant s_{d_{\chi}}^{\infty}$ respectively. The index is defined by

$$
\text { ind }(\lambda E+\mu A):= \begin{cases}0 & \text { if } n_{x}=0 \tag{4}\\ s_{1}^{\times} & \text {if } n_{x}>0 .\end{cases}
$$

Obviously, the finite characteristic roots are given by the zeros of $\operatorname{det}\left(\lambda I_{n_{j}}+\right.$ $\mu W)=0$, the characteristic roots at zero by the zeros of $\operatorname{det}\left(\lambda I_{n_{0}}+\mu N^{0}\right)=0$, and the characteristic roots at infinity by the zeros of $\operatorname{det}\left(\lambda N^{\infty}+\mu I_{n_{\chi}}\right)$.

The singular part in Eq. (1) has a generalized block diagonal form

$$
\begin{equation*}
\lambda E_{\mathrm{s}}+\mu A_{\mathrm{s}}=\operatorname{diag}\left(L_{r_{1}}, \ldots, L_{\varepsilon_{p}}, \ldots, L_{\eta_{1}}^{\mathrm{T}}, \ldots, L_{\eta_{q}}^{\mathrm{T}}\right) \tag{5}
\end{equation*}
$$

The $\left(\sum_{i=1}^{p} \varepsilon_{i}+\sum_{j=1}^{q} \eta_{j}+q\right) \times\left(\sum_{i=1}^{p} \varepsilon_{i}+\sum_{j=1}^{q} \eta_{j}+p\right)$ matrix pencil $\hat{\lambda} E_{\mathrm{s}}+\mu A_{\mathrm{s}}$ is formed by $k \times(k+1)$ blocks L_{k} with

$$
\left.L_{k}=\left(\begin{array}{cccc}
\lambda & \mu & 0 & 0 \tag{6}\\
0 & \ddots & \ddots & 0 \\
0 & 0 & \lambda & \mu
\end{array}\right)\right\} k
$$

The integers $0 \leqslant \varepsilon_{1} \leqslant \cdots \leqslant \varepsilon_{p}$ and $0 \leqslant \eta_{1} \leqslant \cdots \leqslant \eta_{\varphi}$ are called right and left Kronecker indices, respectively. In case of a rectangular pencil, one can obtain a square pencil by inserting zero rows or columns. Furthermore, we have $m=n$ if and only if $p=q$.

3. Structure matrices and digraphs

In this section we consider matrices whose entries are either fixed at zero or indeterminate values. Denoting the indeterminate entries of a matrix M by " \times " and the zero entries by " 0 ", one obtains a (Boolean) structure matrix $[M]$. Fixing all the indeterminate entries of $[M]$ at some particular values we obtain an admissible realization, for short, $M \in[M]$. The matrices M^{\prime} and $M^{\prime \prime}$ are said to be structurally equivalent if $M^{\prime} \in[M]$ and $M^{\prime \prime} \in[M]$.

Consider a structure matrix $[M]$ with k non-zero entries. The set of admissible realizations $M \in[M]$ is isomorphic to the vector space \mathbb{R}^{k}. We say "a property holds generically for $[M]$ " or, equivalently, "a property holds for almost all $M \in[M]$ " if the property under consideration is met for all $M \in[M]$ belonging to an open and dense subset of \mathbb{R}^{k}. For example, the generic rank of a structure
matrix is given by $\operatorname{rank}[M]:=\max _{M \in[M]} \operatorname{rank} M$ (cf. [11,13,3]). Let $[\lambda E+\mu A]$ denote a pencil of $n \times n$ structure matrices $[E]$ and $[A]$. The generic rank of a pencil $[\lambda E+\mu A]$ is defined by rank $[\lambda E+\mu A]:=\max _{(E, A) \in[E A]} \max ; \mu \in \mathbb{C}$ rank $(\lambda E+\mu A)$.

We consider an associated digraph (directed graph) $G([\lambda E+\mu A]$) with n vertices enumerated $1, \ldots, n$, and E-edges and A-edges leading from vertex j to vertex i if $\left[e_{i j}\right] \neq 0$ or $\left[a_{i j}\right] \neq 0$, respectively. A path is a sequence of edges such that the initial vertex of the succeeding edge is the final vertex of the proceeding edge, where each vertex is incident to at most two edges. A path is said to be a cycle if the initial vertex of the first edge is the final vertex of the last edge. A self-cycle is a cycle consisting of exactly one edge. A set of vertex disjoint cycles is called a cycle family. Its length is given by the number of all the edges involved. A cycle family of length n is called a spanning cycle family (scf). An $n \times n$ structure matrix $[M]$ is generically $\operatorname{regular}(\operatorname{rank}[M]=n)$ if and only if there exists an scf within the associated digraph $G([M])$.

Let $G^{k}(\cdot)$ denote the set of digraphs resulting from $G^{0}(\cdot):=G(\cdot)$ by supplementing k additional edges. Furthermore, we define

$$
\begin{aligned}
\varrho: & =\min \left\{k: \exists \operatorname{scf} \text { within } G^{k}([\lambda E+\mu A])\right\}, \\
Q^{\left[E_{3}\right.}: & =\min \left\{k: \exists \operatorname{scf} \text { within } G^{k}([\lambda E])\right\}, \\
\varrho^{[A]}: & =\min \left\{k: \exists \operatorname{scf} \text { within } G^{k}([\mu A])\right\},
\end{aligned}
$$

The integers $\theta_{k}^{[E]}$ and $\theta_{k}^{[A}$ denote the minimal numbers of E-edges or A-edges, respectively, contained in an scf of $G^{k}([\lambda E+\mu A])$ involving k additional edges. Obviously, $O_{k}^{[E]}$ and $\theta_{k}^{[A]}$ are defined for $k \geqslant \varrho$ only.

4. Determination of the Jordan block size structure

In this section we apply the concepts introduced in the previous sections.

Lemma 4.1. Let $[\hat{\lambda} E+\mu A]$ be a pencil of $n \times n$ structure matrices. The numbers $d_{[0]}$ and $d_{[x]}$ of Jordan blocks corresponding to the characteristic roots at zero and at infinity, respectively, may be obtained for almost all $(E, A) \in[E, A]$ from the set of digraphs $G^{k}([\lambda E+\mu A \mid)$ as follows:

$$
\begin{equation*}
d_{[0]}=\varrho^{[A]}-\varrho, \quad d_{[x!}=\varrho^{[E]}-\varrho . \tag{7}
\end{equation*}
$$

Furthermore, $\varrho=p=q$ holds generically.
Proof. The integers $\varrho, \varrho^{[E]}$ and $\varrho^{[4]}$ are the minimal numbers of additional matrix entries to be supplemented such that $[\lambda E+\mu A],[E]$ and $[A]$, respectively, become generically regular. Consequently, $\varrho, \varrho^{[E]}$ and $\varrho^{[A]}$ can be interpreted as generic rank deficiencies of $[\lambda E+\mu A],[E]$ and $[A]$, respectively. For almost all admissible realizations $(E, A) \in[E, A]$ there hold the equations rank
$E=\operatorname{rank}[E], \operatorname{rank} A=\operatorname{rank}[A]$, and $\max _{\lambda, \mu \in \mathbb{C}} \operatorname{rank}(\lambda E+\mu A)=\operatorname{rank}[\lambda E+$ $\mu A]$. Using the Kronecker canonical form, one obtains for almost all $(E, A) \in[E, A]:$

$$
\begin{aligned}
\varrho= & n-\operatorname{rank}[\lambda E+\mu A]=n-\max _{i \mu \in \mathbb{C}} \operatorname{rank}(\lambda E+\mu A) \\
= & n-\left(\left(n_{0}+n_{f}+n_{\infty}\right)+\operatorname{rank}\left(\lambda E_{\mathrm{s}}+\mu A_{\mathrm{s}}\right)\right) . \\
\varrho^{\left[E_{i}=\right.}= & n-\operatorname{rank}[E]=n-\operatorname{rank} E=n-\left(\left(n_{0}+n_{f}+n_{\chi}-d_{x}\right)\right. \\
& \left.+\operatorname{rank} E_{\mathrm{s}}\right), \\
\varrho^{[A]}= & n-\operatorname{rank}[A]=n-\operatorname{rank} A=n-\left(\left(n_{0}+n_{f}+n_{x}-d_{0}\right)\right. \\
& \left.+\operatorname{rank} A_{\mathrm{s}}\right) .
\end{aligned}
$$

Because of Eqs. (5) and (6) we have rank $\left(\lambda E_{\mathrm{s}}+\mu A_{\mathrm{s}}\right)=\operatorname{rank} E_{\mathrm{s}}=\operatorname{rank} A_{\mathrm{s}}$ for all $(\lambda, \mu) \in \mathbb{C}^{2} \backslash\{(0,0)\}$. Hence,

$$
\begin{aligned}
& \varrho=\varrho^{[E]}-d_{[x}, \\
& \varrho=\varrho^{[A]}-d_{[0]}
\end{aligned}
$$

Furthermore, $\varrho=n-\left(\left(n_{0}+n_{f}+n_{x}\right)+\sum_{i=1}^{p} \varepsilon_{i}+\sum_{j=1}^{q} \eta_{j}\right)=p=q$.
Example 4.1. Consider the given structure matrices

$$
[E]=\left(\begin{array}{cccc}
0 & 0 & \times & 0 \\
0 & 0 & 0 & 0 \\
\times & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad[A]=\left(\begin{array}{cccc}
\times & \times & 0 & 0 \\
0 & 0 & \times & 0 \\
0 & \times & 0 & \times \\
0 & 0 & 0 & 0
\end{array}\right)
$$

with the digraph $G([i E+\mu A])$ depicted in Fig. 1(a). The E-edges have been drawn as bold lines, and we will draw additional edges as dotted lines. Let us denote an A-edge from j to i by j, i, an E-edge by $j \Rightarrow i$ and an additional edge by $j \Rightarrow i$. At least $k=1$ additional edge is needed to obtain an scf within the digraphs $G^{k}([\lambda E+\mu A])$ or $G^{k}([\mu A])$, for example $1 \rightarrow 1,2 \rightarrow 3 \rightarrow 2,4 \Rightarrow 4$, see Fig. $1(b)$. Hence, $\underline{Q}=\varrho^{[A]}=1$.

The digraph $G([\hat{\lambda} E])$ must be supplemented by at least two additional edges to obtain an scf, e.g. $1 \Rightarrow 3 \Rightarrow 1,2 \Rightarrow 4 \Rightarrow 2$ (see Fig. 1(c)). Therefore, $\varrho^{[E]}=2$. Referring to Lemma 4.1, we have no Jordan block corresponding to a characteristic root at zero and exactly one Jordan block corresponding to a characteristic root at infinity.

Fig. 1. Digraphs to Example 4.1.

Theorem 4.1. The generic Jordan block sizes $s_{[1]}^{0}, \ldots, s_{\left[d_{0]]}\right]}^{0}$ and $s_{[1]}^{\infty}, \ldots, s_{\left[d_{[x]}\right]}^{\infty}$ may be obtained from the set of digraphs $G^{k}([\lambda . E+\mu A])$ as follows:

$$
\begin{aligned}
& s_{[1]}^{0}=\theta_{\underline{Q}}^{[E]}-\theta_{\underline{Q}+1}^{[E}, \quad s_{[1]}^{\times}=\theta_{\underline{Q}}^{[A]}-\theta_{\underline{Q}+1}^{[A]}
\end{aligned}
$$

The generic index is ind $([\lambda E+\mu A])=\theta_{Q}^{[A]}-\theta_{q+1}^{[4]}$.
Proof. Let $\lambda E+\mu A$ be a pencil of $n \times n$ matrices $(E, A) \in[E, A]$, and $0 \leqslant k \leqslant n$. The determinant Δ of an $(n-k) \times(n-k)$ submatrix pencil resulting from $\lambda E+\mu A$ by deletion of the rows i_{1}, \ldots, i_{k} and the columns $j_{1}, \ldots j_{k}$ is either the zero polynomial or a homogeneous polynomial of degree $n-k$ within the variables λ and μ. This minor of order $n-k$ can be determined as follows

$$
\begin{align*}
\Delta & =(-1)^{i_{1}+\cdots+i_{k}-j_{1}+\cdots+j_{k}} \operatorname{det}\left(\begin{array}{cccc}
\lambda E+\mu A & e_{i_{1}} & \ldots & e_{i_{k}} \\
e_{j_{1}}^{\mathrm{T}} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
e_{j_{k}}^{\mathrm{T}} & 0 & \ldots & 0
\end{array}\right) \\
& =\sum_{r=k}^{n} p_{v} \lambda^{n-v} \mu^{r-k} \tag{8}
\end{align*}
$$

where e_{i} is a column vector whose i th entry is one and the remaining $n-1$ entries are zero. The coefficients $p_{v}(k \leqslant v \leqslant n)$ may be obtained from the (weighted) digraph $G(\lambda E+\mu A)$ (see [15] and references cited there). For this purpose we supplement $G(\lambda E+\mu A)$ by k additional edges leading from j_{1} to i_{1}, \ldots, j_{k} to i_{k}, respectively, each with weight 1 . Each coefficient p_{v} of Δ corresponds to the scf whose edge set consists of all the k supplementary edges, $n-v E$-edges, and $v-k A$-edges (cf. [17]). This implies that for almost all $(E, A) \in[E, A]$ the zero multiplicity (z.m.) of Δ with respect to λ is the smallest number of E-edges within such an scf.

The determinantal divisors $D_{n-k}(\lambda, \mu)$ of $\dot{\lambda} E+\mu A$ are defined as the greatest common divisors (gcd) of all minors of order $n-k$ of the pencil $\lambda E+\mu A$. Eq. (8) yields

$$
D_{n-k}(i, \mu)-\underset{\substack{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n \\
1 \leqslant j_{1}<\cdots<i_{k} \leqslant n}}{\operatorname{gcd}} \operatorname{dct}\left(\begin{array}{cccc}
\lambda E+\mu A & e_{i_{1}} & \ldots & e_{i_{k}} \\
e_{j_{1}}^{\mathrm{T}} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
e_{j_{k}}^{\mathrm{T}} & 0 & \ldots & 0
\end{array}\right) .
$$

To obtain the z.m. of $D_{n-k}(\lambda, \mu)$ one has to find the smallest v with $p_{v} \neq 0$ for all minors of order $n-k$. Hence, for almost all $(E, A) \in[E, A]$ the z.m. of $D_{n-k}(\lambda, \mu)$ with respect to λ is the smallest number of E-edges involved in an scf of the set $G^{k}([\lambda E+\mu A])$, i.e., $\theta_{k}^{E E]}=$ z.m. ${ }_{\lambda}\left(D_{n-k}(\lambda, \mu)\right)$ holds generically. Because of Lemma 4.1 we have $D_{n-k}(\lambda, \mu) \equiv 0$ for $k<\varrho$ and z.m. $\left(D_{n-k}(\lambda, \mu)\right)=0$ for $k \geqslant \varrho^{[4]}$. The z.m. of the determinantal divisors with respect to λ determine the sizes of the Jordan blocks corresponding to the characteristic roots at zero (see [10,6])

$$
\begin{array}{rll}
D_{n-k}(\lambda, \mu) & = & s_{1}^{0}+s_{2}^{0}+\cdots+s_{d_{0}}^{0} \\
D_{n-k-1}(\hat{\lambda}, \mu) & = & s_{2}^{0}+\cdots+s_{l_{0}}^{0} \\
& \vdots & \\
& & \\
D_{n-l^{(/ 1)}}(\lambda, \mu) & = & \\
& & \\
s_{d_{0}}^{0}
\end{array}
$$

for $\varrho=n-\max _{i, \mu \in \mathbb{C}} \operatorname{rank}(\lambda E+\mu A)$ and $\varrho^{[A]}=n-\operatorname{rank} A$ (which holds generically because of Lemma 4.1). This implies $s_{[1 \mid}^{0}=\theta_{\underline{Q}}^{[E]}-\theta_{\underline{Q}}^{[E]}, \ldots$, $s_{\left[d 0_{0}\right]}^{0}=\theta_{\left.e^{[f]}\right)-1}^{[E]}-\theta_{e^{[4]}}^{[E]}$.

Similarly, the integers $\theta_{k}^{[A]}$ can be interpreted as the generic z.m. of $D_{n-k}(\lambda, \mu)$ with respect to μ. One obtains $s_{[1]}^{\times}=\theta_{Q}^{[4]}-\theta_{\theta+1}^{[A]}=\operatorname{ind}([\lambda E+\mu A])$ etc. for $\varrho<\varrho^{[E]}$, i.e., for $d_{[0]}>0$. In case of $d_{[0]}=0\left(\varrho=\varrho^{[E]]}\right)$ we have $\theta_{k}^{[A]}=0$ for all $k \geqslant \varrho$, which implies ind $([\lambda E+\mu A])=0$. This completes the proof.

Example 4.2. For the matrix pencil of Example 4.1 we have only to determine the size of the Jordan block at infinity. Within the set $G^{1}([\lambda E+\mu A])$ the minimal number of A-edges contained in an scf is $\theta_{1}^{[A]}=2$ (see Fig. l(b) and consider the scf $1 \Rightarrow 3 \rightarrow 2 \rightarrow 1,4 \Rightarrow 4$). As mentioned in Example 4.1, there is an scf without A-edges with the set $G^{2}([\lambda E+\mu A])$, i.e., $\theta_{2}^{[A]}=0$. Hence, the size of the only Jordan block corresponding to a characteristic root at infinity is $s_{[1]}^{x}=2=\operatorname{ind}([\lambda E+\mu A])$. A symbolical decomposition of the example matrix pencil into the Kronecker canonical form yields actually a 2×2 Jordan block at infinity and the remaining singular part with $p=q=1$:

$$
\begin{aligned}
P(\hat{\lambda} E+\mu A) Q & =\operatorname{diag}\left(\lambda E_{r}+\mu A_{r}, \dot{\lambda} E_{s}+\mu A_{s}\right) \\
& =\operatorname{diag}\left(\lambda N_{1}^{\infty}+\mu I_{2}, L_{\varepsilon_{1}}, L_{\eta_{1}}^{\mathrm{T}}\right) \\
& =\operatorname{diag}\left(\lambda N_{1}^{\infty}+\mu I_{2}, L_{1}, L_{0}^{\mathrm{T}}\right)=\left(\begin{array}{cccc}
\mu & \lambda & & \\
0 & \mu & & \\
& & \lambda & \mu \\
& & 0 & 0
\end{array}\right) .
\end{aligned}
$$

5. Applications in control theory

Many real-world systems can be modelled by differential algebraic equations ($D A E$). We confine ourselves to linear time-invariant DAE of the form

$$
\begin{equation*}
E \dot{x}(t)=A x(t)+B u(t) ; \quad E, A \in \mathbb{R}^{n \times n} ; \quad B \in \mathbb{R}^{n \times m} \tag{9}
\end{equation*}
$$

or, equivalently, of the Laplace-transformed form

$$
\begin{equation*}
(s E-A) X(s)=E x(0)+B U(s) \tag{10}
\end{equation*}
$$

We set $(\lambda, \mu):=(s,-1)$ to use the notations common in the control engineers' community. The following pencils derived from Eq. (9) play important roles:
(i) Consider $s E-A$. Eqs. (9) and (10) have an unique solution if and only if
$s E-A$ is regular. In the following we assume $s E-A$ to be regular. The generic regularity of $[s E-A]$ is equivalent to the existence of an scf within the digraph $G([s E-A])$, i.e., $\varrho=0[15]$, Cor. to Th. 1 .
(ii) The controllability properties of Eq. (9) can be characterized by the pencil ($s E-A,-B$). Adding m zero rows one gets an $(n+m) \times(n+m)$ matrix pencil

$$
(s \tilde{E}-\tilde{A}):=\left(\begin{array}{cc}
s E-A & -B \tag{11}\\
0_{m \times n} & 0_{m \times m}
\end{array}\right)
$$

One needs m additional edges to obtain an scf within the digraph associated with Eq. (11), for example self-cycles at the vertices $n+1, \ldots, n+m$, i.e., $\varrho=m$.
Now, the reader is reminded of some facts from control theory [$18,22,20,4,5]$. The system (9) can be transformed into the canonical form

$$
\left(\begin{array}{ccc}
I_{n_{j}} & 0 & 0 \tag{12}\\
0 & I_{n_{0}} & 0 \\
0 & 0 & N^{\propto}
\end{array}\right) \dot{z}=\left(\begin{array}{ccc}
W & 0 & 0 \\
0 & N^{0} & 0 \\
0 & 0 & I_{n_{\chi}}
\end{array}\right) z+\left(\begin{array}{c}
B^{f} \\
B^{0} \\
B^{\propto}
\end{array}\right)
$$

where $z(t):=Q^{-1} x(t)$, comp. Eqs. (1) and (2). Setting $J:=\operatorname{diag}\left(W, N^{0}\right)$ and $B^{1}:=\binom{B^{f}}{B^{0}}$ we obtain two subsystems:

$$
\begin{align*}
& \dot{z}_{1}(t)=J_{1}(t)+B^{1} u(t), \tag{13}\\
& N^{\infty} \dot{z}_{2}(t)=z_{2}(t)+B^{\propto} u(t) . \tag{14}
\end{align*}
$$

The subsystem (13) associated with the finite characteristic roots and the characteristic roots at zero of $s E-A$ is called slow subsystem because the responses z_{1} when $B^{1} u$ is a unit step are continuous functions. The so-called fast subsystem (14) is associated with the characteristic roots at infinity. Here, the responses z_{2} when $B^{\infty} u$ is a unit step are discontinuous functions. The subspace defined by the image im $N^{\infty} \subseteq \mathbb{R}^{n_{x}}$ is called the impulse subspace.

Lemma 5.1. Let $[s E-A]$ be a pencil of $n \times n$ structure matrices such that the digraph $G([s E-A])$ contains an scf. Then the following hold for almost $(E, A) \in[E, A]:$

Dimension of fast subsystem: $\theta_{0}^{[A]}$,
Dimension of slow subsystem: $n-\theta_{0}^{[A]}$,
Dimension of impulse subspace: $\theta_{0}^{[A]}-\varrho^{[E]}$.

Proof. The existence of an scf with $G([s E-A])$ implies $\varrho=0$, and $p=q=0$ for almost all $(E, A) \in[E, A]$. From the degree $\operatorname{deg}_{s} \operatorname{det}(s E-A)=n_{f}+$ $n_{0}=n-n_{\infty}$ (see Eq. (2)) the statements Eqs. (15) and (16) follow immediately, comp. [13], p. 232, [14], Th. 2. The matrix $N^{\infty} \in \mathbb{R}^{n_{x} \times n_{x}}$ consists of d_{∞} Jordan blocks N_{i}^{∞}, therefore $\operatorname{dim} \operatorname{im} N^{\infty}=n_{\infty}-d_{\infty}$, i.e., the image of N^{∞} is $\left(n_{x}-d_{\infty}\right)$-dimensional. For almost all $(E, A) \in[E, A]$ we have $n_{x}=\theta^{[A]}$ and $d_{x}=\varrho^{[E]}$ (Lemma 4.1). Hence, $\operatorname{dim} \operatorname{im} N^{\infty}=\theta^{[A]} \quad \varrho^{[E]}$ holds generically.

Example 5.1. The DAE system

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \times & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\times & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \times \\
0 & \times & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)}_{[E]} \dot{x} \\
& =\underbrace{\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & \times & 0 & 0 & 0 \\
0 & \times & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \times & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \times & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \times \\
0 & 0 & \times & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \times & 0 & 0 \\
\times & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)}_{[A]} x+\underbrace{\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
\times & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & \times
\end{array}\right)}_{\left[B_{i}\right]} u
\end{aligned}
$$

Fig. 2. Digraphs of the sets $G^{10}([s E-A]), G^{1}([s E-A]), G^{2}([s E-A])$.
is associated with the digraph $G([s E-A])$ depicted in Fig. 2(a). The minimal number of A-edges contained in an scf is $\theta_{0}^{[A]}=7(1 \rightarrow 8 \Rightarrow 5 \rightarrow 1$, $2 \rightarrow 2,4 \rightarrow 3 \rightarrow 6 \rightarrow 7 \rightarrow 4)$. Supplementing the digraph with a self-cycle at vertex 3 , we obtain $\theta_{1}^{[A]}=4(1 \rightarrow 8 \Rightarrow 5 \rightarrow 1,2 \Rightarrow 6 \rightarrow 7 \rightarrow 4 \Rightarrow 2,3 \Rightarrow 3)$, see Fig. 2(b). With a further additional edge from 7 to 8 , the minimal number of A-edges involved in an scf of $G^{2}([s E-A])$ can be reduced to $\theta_{2}^{[A]}=2$ (Fig. 2(c)). Introducing additional edges from 6 to 7 and from 5 to 1 , one gets $\theta_{3}^{[A]}=1$ and $\theta_{4}^{[A]}=0$. This implies $d_{[x]}=4, s_{[1]}^{\infty}=3, s_{[2]}^{\infty}=2$ and $s_{[3]}^{\infty}=s_{[4]}^{\infty}=1$. Therefore, the generic dimension of the fast subsystem is 7 , of the slow subsystem is 1 , and we have a 3-dimensional impulse subspace.

Let be $E, A, \tilde{E}, \tilde{A}$ and B as defined in Eqs. (11) and (12), and denote the number of Jordan blocks associated with the characteristic roots at infinity of $s \tilde{E}-\tilde{A}$ by \tilde{d}_{x}. In general we have rank $\tilde{E}=\operatorname{rank} E$ and $\tilde{d}_{x}=\max _{s \in \mathbb{C}}$ $\operatorname{rank}(s \tilde{E}-\tilde{A})-\operatorname{rank} \tilde{E} \leqslant \max _{s \in \mathrm{C}} \operatorname{rank}(\lambda E+\mu A)-\operatorname{rank} E=d_{\infty}$ (see Proof of Lemma 4.1). Under the assumption $\operatorname{det}(s E-A) \not \equiv 0$, for any matrix $B \in \mathbb{R}^{n \times m}$ the pencils $s E-A$ and $s \tilde{E}-\tilde{A}$ (Eq. (11)) have the same number of Jordan blocks associated with the characteristic roots at infinity, and we will use the notation d_{x}. We denote the Jordan block sizes of $s \tilde{E}-\tilde{A}$ by $\tilde{s}_{1}^{\infty} \geqslant \cdots \geqslant \tilde{s}_{d_{x}}^{\infty}$, and we define $\langle M \mid \bar{B}\rangle:=\operatorname{im} \bar{B}+\operatorname{im} M \bar{B}+\operatorname{im} M^{2} \bar{B}+\cdots+$ $\operatorname{im} M^{k-1} \bar{B}$, where $M \in \mathbb{R}^{k \times k}, \bar{B} \in \mathbb{R}^{k \times m}$. The subspace $\left\langle N^{\infty} \mid N^{\infty} B^{\infty}\right\rangle \subseteq \operatorname{im} N^{\infty}$ is called impulse controllable subspace of Eq. (14) and can be interpreted as the set of points of $\mathbb{R}^{n_{x}}$ reachable by impulse solutions of Eq. (14) induced by non-impulsive excitations u (see [20,4] for details).

Theorem 5.1. The generic dimension of the impulse controllable subspace of Eqs. (9) and (14) can be obtained from the digraphs $G([s E-A])$ and $G([s \tilde{E}-\tilde{A}])$ as follows

$$
\operatorname{dim}\left\langle N^{\infty} \mid N^{\infty} B^{\infty}\right\rangle=\theta_{0}^{[A]}-\theta_{m}^{[A]} .
$$

Proof. Let us start with the Jordan block sizes associated with the characteristic roots at infinity of the pencils $(s E-A)$ and $(s E-A,-B)$. For almost all $(E, A, B) \in[E, A, B]$ the generic block sizes are equal to the numcrical block sizes, i.e., $d_{\infty}=d_{[\infty]}$ and $s_{i}^{\infty}=s_{[i]}^{\infty}, \tilde{s}_{i}^{\infty}=\tilde{s}_{[i]}^{\infty}$ for $1 \leqslant i \leqslant d_{\infty}$. Theorem 4.1 implies:

$$
\begin{align*}
& \sum_{i=1}^{d_{\times}} s_{i}^{\infty}=\theta_{0}^{[A]}-\theta_{d \times \mid}^{[A]}=\theta_{0}^{[A]} \tag{18}\\
& \sum_{i=1}^{d_{\times}} \tilde{s}_{i}^{\times}=\theta_{m}^{[\hat{A}]}-\theta_{d_{|x|}+m}^{[\hat{A}]}=\theta_{m}^{[\mid A]}
\end{align*}
$$

Consider such a triple $(E, A, B) \in[E, A, B]$ and the associated pencils $s E-A$ and $s \tilde{E}-\tilde{A}$ fulfilling Eq. (18). Using the representation (13) and (14) of (9) and (10) it has been shown that each Jordan block \tilde{s}_{i}^{∞} corresponds to an ($\tilde{s}_{i}^{\infty}-1$)-dimensional subspace, $\psi_{i} \leq \operatorname{im} N^{\dot{e}}$ of the impulse subspace not contained in the impulse controllable subspace (see [18], Proof of Th. 4 and [20] Sec. IV. A), i.e., $\mathscr{U}_{i} \cap\left\langle N^{\infty} \mid N^{\infty} B^{\infty}\right\rangle=\{0\}$. This implies that the dimension of the impulse controllable subspace can be obtained as the difference of the Jordan block sizes of the pencils of $s E-A$ and $s \tilde{A}-\tilde{E}$ associated with the characteristic roots at infinity

$$
d:=\operatorname{dim}\left\langle N^{\infty} \mid N^{\infty} B^{\infty}\right\rangle=\sum_{i=1}^{d_{x}} s_{i}^{\infty}-\sum_{i=1}^{d_{x}} \tilde{s}_{i}^{\infty} .
$$

Since Eq. (18) is valid for almost all $(E, A, B) \in[E, A, B]$, the integer d is the generic dimension of the impulse controllable subspace, i.e., $d=\theta_{0}^{[A]}-\theta_{m}^{[A]}$ holds generically.

Example 5.2. Consider the DAE system of Example 5.1 with $m=2$. From $G([s E-A])$ we get $\theta_{0}^{[A]}=7$. The digraph $G([s \tilde{E}-\tilde{A}])$ has been sketched in Fig. 3(a). Supplementing $G([s \tilde{E}-\tilde{A}])$ with two additional edges one obtains an scf with only $4 \tilde{A}$-edges, $10 \rightarrow 8 \Rightarrow 5 \rightarrow 1 \Rightarrow 4 \Rightarrow 2 \Rightarrow 6 \rightarrow 7 \Rightarrow 10,9 \rightarrow 39$ (see Fig. 3(b)), i.e., $\theta_{2}^{[4]}=4$. Therefore, almost all systems of the structure given by Example 5.1 have a 3 -dimensional impulse controllable subspace.

Fig. 3. Digraph $G([s \tilde{E}-A])$ and a modification.

Let $\tilde{\varepsilon}_{1} \leqslant \cdots \leqslant \tilde{\varepsilon}_{m}$ and $\bar{\varepsilon}_{1} \leqslant \cdots \leqslant \bar{\varepsilon}_{m}$ denote the right Kronecker indices of the pencils $s \tilde{E}-\tilde{A}$ and ($s N^{\infty}-I,-B^{\infty}$), respectively. It has been shown (see [18] and [4], Th. 5) that

$$
\operatorname{dim}\left\langle N^{\infty} \mid N^{\infty} B^{\infty}\right\rangle=\sum_{i=1}^{m} \bar{\varepsilon}_{i} \leqslant \sum_{i=1}^{m} \tilde{\varepsilon}_{i} .
$$

So Theorem 5.1 can be used to determine $\sum_{i=1}^{m} \bar{\varepsilon}_{i}$ and to give a lower bound for $\sum_{i=1}^{m} \tilde{\varepsilon}_{i}$.

A DAE system is said to be impulse controllable if im $N^{\infty}=\left\langle N^{\infty} \mid N^{\infty} B^{\infty}\right\rangle$.
Theorem 5.2. A DAE system (9) is generically impulse controllable if and only if for the digraph $G([s \tilde{E}-\tilde{A}])$ there holds

$$
\begin{equation*}
\theta_{m}^{[\hat{A}}-\theta_{m+1}^{[A]} \leqslant 1 . \tag{19}
\end{equation*}
$$

Proof. The difference (19) is the generic index $k:=\operatorname{ind}([s \tilde{E}-\tilde{A}])$, see Th. 4.1, and the non-negative integer k is equal to the numerical index (4) for almost all $(E, A, B) \in[E, A, B]$. For such a "typical" realization (E, A, B) there are three possible cases:
$k=0$: We have no Jordan block associated with the characteristic roots at infinity within both pencils, i.e., the impulse subspace is zero dimensional.
$k=1$: As $s \tilde{E}-\tilde{A}$ has exactly d_{∞} Jordan blocks associated with the characteristic roots at infinity and the sequence $\left(\tilde{s}_{i}^{\times}\right)$is non-increasing, we have $1=\tilde{s}_{1}^{\times}=\cdots=\tilde{s}_{d_{x}}^{\infty}$ and $\sum_{i=1}^{d_{x}} \tilde{s}_{i}^{\infty}=d_{x}$. Because of $\sum_{i=1}^{d_{x}} s_{i}^{x}=n_{x}$, the impulse controllable subspace is $\left(n_{\infty}-d_{x}\right)$-dimensional. This means, the impulse controllable subspace is the whole impulse subspace, i.e., the system is impulse controllable.
$k>1$: In this case $\sum_{i=1}^{d_{\infty}} \tilde{s}_{i}^{\infty}>d_{\infty}$ and therefore $\operatorname{dim}\left\langle N^{\infty} \mid N^{\infty} B^{\infty}\right\rangle<n_{\infty}-$ $d_{\infty}=\operatorname{dim} \operatorname{im} N^{\infty}$. The system is not impulse controllable.

Example 5.3. Supplementing $G^{2}([s \tilde{E}-\tilde{A}])$ of Example 5.2 with a further additional edge, the number of \tilde{A}-edges involved in an scf of $G^{3}([s \tilde{E}-\tilde{A}])$ can be reduced form $\theta_{2}^{[A]}=4$ to $\theta_{3}^{[A]}=3$. Hence, almost all admissible realizations of the example system are impulse controllable.

References

[1] N. Andrei, Sparse Systems - Digraph approach of large-scale linear systems theory, in: Interdisciplinary Systems Research, vol. 90, TÜV, Rheinland, 1985.
[2] R.A. Brualdi, Combinatorically determined elementary divisor, Congr. Numer. 58 (1987) 193216.
[3] R.A. Brualdi, H.J. Ryser, Combinatorical matrix theory, in: Encyclopaedia of Mathematics and Its Applications, Cambridge Univ. Press, Cambridge, 1991.
[4] D. Cobb, Controllability, observability, and duality in singular systems, IEEE Trans. Automat. Control AC-29 (12) (1984) 1076-1082.
[5] L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences. vol. 118, Springer, Berlin, 1989.
[6] F.R. Gantmacher, Theory of Matrices, vol. II, Chelsea, New York, 1959.
[7] D. Hershkowitz, The height characteristic of block triangular matrices, Linear Algebra Appl. 167 (1992) 3-15.
[8] D. Hershkowitz, The relation between the Jordan structure of a matrix and its graph, Linear Algebra Appl. 184 (1993) 55-69.
[9] D. Hershkowitz, H. Schneider, Path coverings of graphs and height characteristics of matrices, J. Combin. Theory Ser. B 59 (1993) 172-187.
[10] L. Kronecker, Algebraische Reduktion der Schaaren bilinearer Formen, Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1980, pp. 1225-1237.
[11] K. Murota, Systems analysis by graphs and matroids - Structural solvability and controllability, in: Algorithms and Combinatorics, vol. 3, Springer, Berlin, 1987.
[12] K. Murota, Structural approach in systems analysis by mixed matrices - An exposition for index of DAE, Mathematical Research 87 (1996) 257-279 (Invited lecture at ICIAM 95, Hamburg).
[13] K.J. Reinschke, Multivariable Control - A Graph-theoretic Approach, Lecture Notes in Control and Information Science, vol. 108, Springer, Berlin, 1988.
[14] K.J. Reinschke, Graph-theoretic approach to the generic structure of zeros and poles of largescale systems in descriptor form, in: K. Reinisch, M. Thoma (Eds.). IFAC/IFORS/IMACS Symposium "LARGE SCALE SYSTEMS 89", Theory and Applications, Berlin, August 1989, pp. 117-120.
[15] K.J. Reinschke, Graph-theoretic approach to symbolic analysis of linear descriptor systems, Linear Algebra Appl. 197, 198 (1994) 217-244.
[16] K.J. Reinschke, G. Wiedemann, Digraph characterization of structural controllability for linear descriptor systems Linear Algebra Appl. 266 (1997) 199-217.
[17] K. Röbenack, K.J. Reinschke, Graph-theoretically determined Jordan block size structure of regular matrix pencils, Linear Algebra Appl. 263 (1997) 333-348.
[18] H.H. Rosenbrock, Structural properties of linear dynamical systems, Int. J. Control 20 (2) (1974) 191-702
[19] P.M. van Dooren, The computation of Kronecker's canonical form of a singular pencil. Linear Algebra Appl. 27 (1979) 103-141.
[20] G.C. Verghese, B.C. Levy, T. Kailath, A generalized state-space for singular systems, IEEE Trans. Automat. Control AC-26 (4) (1981) 811-830.
[21] K. Weierstrass, Zur Theorie der bilinearen und quadratischen Formen, in: Monatsbericht der Preussischen Akademie der Wissenschaften, Berlin, 1868 (Reprinted in: Mathematische Werke von Karl Weierstrass, Band II, Mayer \& Müller, Berlin, 1895, pp. 310 338).
[22] E.L. Yip, R.F. Sincovec, Solvability, controllability, and observability of continuous descriptor systems, IEEE Trans. Automat. Control AC-26 (3) (1981) 702-707.

[^0]: * Corresponding author.

