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Abstract 

In this paper we discuss different algebraic structures which are natural algebraic frames for 
categorial grammars. First, absolutely free algebras of functor-argument structures and phrase 
structures together with power-set algebras of types are used to characterize structure languages 
of Basic categorial grammars and to provide algorithms for equivalence problems and related 
questions. Second, unification applied to the above frames is employed to develop learning 
procedures for basic categorial grammars. Third, residuated algebras are used to model language 
hierarchies of Lambek categorial grammars. The paper focuses on the author’s research in this 
area with references to related works in logic and linguistics. @ 1998-Elsevier Science B.V. 
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0. Introduction 

Categorial grammars are formal grammars based upon some fundamental ideas of 

mathematical logic: the theory of types and deductive systems. Expressions of a lan- 

guage are divided in syntactic categories denoted by logical types; usually, the hierarchy 

of syntactic categories is closely related to a hierarchy of semantic categories deter- 

mined by logical types of semantic denotations of these expressions. Instead of produc- 

tion rules, characteristic of generative grammars, categorial grammars employ certain 

deductive systems of type change. Basic categorial grammars use a system whose only 

inference rule is Modus Ponens (no axioms), while different kinds of categorial gram- 

mar of current interest are based on much richer systems with special introduction and 

elimination rules for logical constants. From the modern perspective, the latter systems 

belong to so-called substructural logics whose most famous representatives are linear 

logics of Girard [22]. Due to the interplay of logical and linguistic issues, the the- 

ory of categorial grammars enjoys nowadays a growing significance in (semantically 
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oriented) computational linguistics, logical foundations of computer science and logical 

philosophy of language (see [7]). 

A standard mathematical framework in the theory of deductive systems is algebraic 

models; see e.g. [37]. Deductive systems of categorial grammars can be modelled by al- 

gebraic structures of different kind. Pure MP deductions induce hmctor-argument struc- 

tures of expressions, and these structures form an absolutely free algebra (term algebra). 

Substructural logics used by modem categorial grammars, e.g. the Lambek calculus, 

refer to residuated algebras, in particular residuated (noncommutative or commutative) 

groupoids and semigroups. Many problems of both logical and linguistic interest can 

be solved by studying fine properties of these algebraic structures. 

In this paper, we outline some basic notions and methods connected with algebraic 

structures of categorial grammars: absolutely free algebras of syntactic structures and 

residuated algebras. The former are especially significant for the theory of basic cat- 

egorial grammars (however, they also play a role for richer systems; every categorial 

grammar can be regarded as a basic categorial grammar with an infinite set of lexical 

assumptions [ 151). In Section 1 we define several notions relevant to functor-argument 

structures (tree languages, congruences, type algebras, quotient-algebras) and show their 

role in studying various mathematical properties of basic categorial grammars (char- 

acterization of tree languages generated by these grammars, relation to context-free 

grammars, decidability problems). In Section 2 we describe an algorithm for deter- 

mining a minimal categorial grammar whose structure language contains a given finite 

set of functor-argument structures. This algorithm involves unification of finite families 

of finite sets of type-schemes. We discuss different versions of this algorithm and its 

connections with problems of learnability of the class of basic categorial grammars. 

In Section 3 we focus on residuated algebras corresponding to the Lambek calculus 

and related systems; we show different methods to prove representation theorems for 

these algebras and completeness theorems for deductive systems and point out some 

further applications. 

1. Algebras of basic categorial grammars 

Basic categorial grammars (BCGs) were introduced by Bar-Hillel [3,4] with ori- 

gins in Ajdukiewicz [l], who had followed some logical ideas of Frege, Russell and 

Lesniewski. Expressions are assigned types; first, lexical assumptions assign types to 

atomic expressions (symbols, words), and second, Hilbert style deductions based on 

Modus Ponens are used to derive types of complex expressions. 

Types can be represented as purely conditional formulas, applying two conditionals 

+ and +--. Atomic types are simply (sentential) variables (one may also think of them 

as constants). The type A + B (resp. B +A) is assigned to functors from type A to 

type B which take their arguments on the left (resp. right). Thus, if S, PN and N are 

atomic types of Sentence, Proper Noun and Common Noun, respectively, then PN --+ S 
is the type VP, of Verb Phrase, S +-- VP is the type NP, of full Noun Phrase, and 
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NP t N is the type D, of Determiner. A BCG is defined by a finite set of lexical 

assumptions v :A such that v is an atomic expression and A is a type.. By & we 

denote the lexicon of the grammar G, i.e. the set of atomic expressions appearing in 

lexical assumptions. Given a string vt . . . v,, vi E &, the grammar G assigns type A to 

this string, if there are assumptions vi :Ai, i = 1,. . . , n, such that there is a deduction 

tree with the root A and the yield Al . . . A,. Actually, this definition can be preserved 

for all kinds of categorial grammar, only, inference rules admissible in deductions are 

different for different kinds. BCGs admit two MP-rules: 

A; AAB 
W+) B , 

B+A; A 
W’+) B . 

For example, the grammar defined by lexical assumptions: 

every, the: D = NP c N, 

student, test: N, 

passed: TV = VP +-- NP, 

where NP = S t VP, assigns type S to the expression: 

every student passed the test 

on the basis of the following deduction: 

D N TV D N 

\/ 

\ 

\/ 
NP NP 

\ 

/ 

/vp 
s 

This deduction can also be represented as the bracketed term: 

W,Nll, [TV, P,Nl11111 

which yields the functor-argument structure of the given expression 

[[every, student]1 ,[passed, [the test]l]l]l. 

Here, the numerical subscript i means that the ith constituent 

functor. In the example above, always the first constituents are 

the case for the structure: 

[John, [likes, Mary]112 

takes the part of the 

fimctors, but it is not 
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which is provided by the grammar: 

John, Mary: PN, 

likes: (PN 4 S) t PN. 

The set FS( V), of functor-argument structures over the lexicon V, is defined by the 

recursive clauses: 

(a) V C FS(U, 
(b) if X, Y EFS( V) then [X, Y]i EFS( I’), for i = 1,2. 

X is the functor and Y is the argument in [X, Y] 1, and the opposite holds for [X, Y]*. 

Clearly, FS( V) can be treated as an absolutely free algebra with the set Y of free gener- 

ators and two binary operations [. . . , . . .]I and [ . . . , . . .]z. Dropping numerical subscripts 

changes functor-argument structures into phrase structures. PS(V) denotes the set of 

phrase structures over V. Again, PS( V) is an absolutely free algebra with one binary 

operation [. . . , . . .]. 

We assume that each BCG G distinguishes an atomic type, say S, as the basic type, 

to be denoted So. We write vi . . . v, *GA, if G aSSignS type A to String VI . . . v,. For 

XEFS( VG), we write X *GA, if G assigns type A to the yield of X by a deduction 

which determines the structure X. We define 

L(G) and FL(G) are called the language and the F-language of G, respectively. PL( G) 
denotes the P-language of G: it arises from FL(G), after one has dropped all numer- 

ical subscripts. Grammars G and G’ are said to be equivalent (resp. F-equivalent, 
P-equivalent), if L(G) = L( G’) (resp. FL(G) = FL( G’), PL( G) = PL( G’)). 

Surely, the notions defined above are quite crucial for the theory of BCGs, as they 

(or their variants) are for other branches of mathematical linguistics. Below we outline 

main algebraic methods which are needed to establish fundamental properties of BCGs. 

Actually, one needs universal algebra and combinatorics of trees. 

It is useful to see that types can be treated as functor-argument structures over 

the set P, of atomic types; just write [A,B]z for A + B and [B,A]l for B + A. So, 
Tp = FS(P) is the set of types. A path (resp. an F-path) in structure XEFS( V) is 

a sequence X0,. . . , X,,, of substructures of X, such that Xi+i is a constituent (resp. the 

fimctor) of Xi, for all i <n; n is the length of this path. The height of X (h(X)) is the 

maximal length of paths in X. The F-degree of X (Fd(X)) is the maximal length of 

F-paths in X. The depth of structure X (d(X)) is the minimal length of paths beginning 

with X and ending with an atom, and the degree of X (deg(X)) is the maximal depth 

of substructures of X. Clearly, all F-free notions can be defined for phrase structures, 

as well. For L L FS( V), we set 

Fd(L) = sup{Fd(X): X EL}, 

deg(L) = sup{deg(X): X EL}. 

The latter notion is also defined for L C PS( V). 
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X[u : Y] denotes the substitution of Y for atom u in X. Given a lexicon V, we set 

V, = VU {x}, where x is a variable not in V. Each language L C FS( V) determines 

the basic congruence -JL in the algebra FS( V), defined as follows: X NL Y iff, for all 

ZEFS(V,), 

Z[XZ]EL M Z[x:Y]EL. 

The index of L (ind(L)) is the total number of equivalence classes of -L. One easily 

shows that -L is the largest congruence in FS( V) compatible with L, that means, for 

all X, Y EFS( V), 

ifXwLY thenXEL iff YEL. 

The first problem which can be solved by these tools is an algebraic characterization 

of F-languages of BCGs. In [12], it has been proven that 

(Tl ) For L C: FS( V), there is some BCG G such that L = FL(G) if, and only if, both 

ind(L) and Fd(L) are finite. 

By Q(G) we denote the set of all types appearing in lexical assumptions of G. The 

grammar G determines the relation -o on Fs(vG), defined as follows: 

X-G Y iff, for all A, X+oA ($ Y+oA. 

Clearly, NG is a congruence in Fs( &) compatible with FL(G). We refer to this relation 

as the basic congruence determined by G. One easily shows the inequalities 

ind(FL(G))<ind(-o), 

which yield the ‘only if’ part of (Tl). For the ‘if’ part, one identifies atomic types with 

equivalence classes of -L and adds a new atomic type S. Languages LA, for AE Tp, 
are defined by induction on A: 

(a) LP = p, for atomic p; Ls = L, 

(b) Lp-+~ = {Y: WEL,) K y12 &3), 
(c) L&p = {X: (3Y ELp) [x, Y]l ELB}. 

Actually, we have defined LA merely for types A of order less than 2, where the order 
of A (ord(A)) is a nonnegative integer defined as follows: 

(a) ord(p) = 0, for atomic types p, 
(b) ord(A + B) = ord(B +-A) = = max(ord(B), ord(A) + 1). 

One shows that LA # 8 only if Fd(A) <Fd(L), and consequently, the BCG G defined 

by the lexical assumptions: 

v:A iff UCLA 

is a finite object. This grammar G satisfies FL(G) = L. We also have ord(G) < 1, where 

ord(G) is the maximal order of types in Tp(G). Consequently, 

(T2) Each BCG is F-equivalent to some BCG G’ with ord(G’) < 1. 
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To compare BCGs with context-free grammars (CFGs), it is useful to characterize 

P-languages of BCGs. Using (Tl ), one shows [ 131: 

(T3) For L CPS(V), there is some BCG G such that L=PL(G) if, and only if, both 

ind(L) and deg(L) are finite. 

Accordingly, P-languages of BCGs is a narrower class than P-languages of CFGs: 

by the result of Thatcher [38], the latter are precisely those L CPS( V) for which 

ind(L) is finite. For instance, the CFG defined by production rules S +SS, S + a, 

S + b generates the total P-language PS(a, b) whose degree is infinite; thus, it is not 

P-equivalent to any BCG. The BCG defined by lexical assumptions: 

a, b : S, S -+ S, 

generates the same string language but not the same P-language (the degree of the 

latter equals 1). 

In [4], there is proven the Gaifman theorem: BCGs are equivalent to CFGs, that 

means, both kinds of grammar yield the same class of string languages. This theorem 

is closely related to the Greibach normal form theorem for CFGs. Original proofs of 

both theorems use purely combinatorial transformations of one grammar into another 

one. An algebraic proof of the Gaifman theorem, based on the algebra FS( V), is 

given in [ 16,151. First, observe that, for any BCG G, deg(PL(G)) <Fd(FL( G)) and 

ind(PL(G)) is finite. That yields the first part of the Gaifman theorem: each BCG is 

P-equivalent, hence also equivalent, to some CFG. For the second part, fix a CFG Y 

in the Chomsky normal form. Then, PL(%) is of finite index (by Thatcher’s theorem). 

By the convention ‘brackets associated to the left’, each phrase structure can uniquely 

be represented in the form uXi . . .X,,, where v is an atom and n 20. The following 

transformation: 

(VXl . * .xnf = [u, [xl’, [g-, . . . , [x,‘-, ,X,‘] . . .I]] 

sends each phrase structure X to a phrase structure XT such that Fd(Xr) Q2 and the 

yield of XT equals that of X (here we identify phrase structures with mnctor-argument 

structures whose numerical subscripts always equal 1). We set 

L = PL(sy = {XT: x E PL(F3)). 

The language L C FS( I$) satisfies Fd(L) d 2. It requires some calculation to show that 

the finiteness of ind(PL(Q)) entails the finiteness of ind(L). Then, by (Tl), L = FL(G), 

for some BCG G. Clearly, L(G) = L(9), hence G is equivaIent to Q. 

The global equivalence problem for BCGs is the question if L(G) = L(G’), for ar- 

bitrary BCGs G and G’. Since the original proof of the Gaifman theorem yields an 

effective construction of a BCG G equivalent to any given CFG ‘9, then the global 

equivalence problem for CFGs (which is undecidable [23]) is effectively reducible to 

that for BCGs. Consequently, the global equivalence problem for BCGs is undecidable, 

and so is the global inclusion problem L(G) E L(G’). As shown in [ 141, a refinement of 



W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24 11 

algebraic notions sketched above provides algorithms for solving global F-equivalence 

and F-inclusion problems for BCGs and many related problems. 

The quotient algebra FS( Vo)/mo is denoted ALG(G) and called the basic algebra 
of the BCG G. The quotient operations ft, f2 in the algebra ALG(G) are defined in 

the standard way: 

for i = 1,2. Here x/-o denotes the equivalence class of X with respect to -G. Since 

No is of finite index, then ALG(G) is finite. For any BCG G, one can effectively 

construct a powerset algebra over the set of types which is isomorphic to ALG(G). 

By T(G) we denote the set of all subtypes of types from Q(G). In the powerset 

P(T(G)), we define operations 

for Tt, T2 & T(G). Thus, fi (resp. F2) yields the results of all possible applications of 

rule (MPc) (resp. (MP+)) whose left premise is in Tl and right premise is in T2. 

The mapping 

is well defined, and hG is a monomorphism of the algebra ALG(G) into the algebra 

(P( T(G)),fi ,fi). The image ho(ALG(G)) is a subalgebra of the latter algebra; this 

subalgebra will be called the type algebra of G and denoted TP(G). Clearly, hG is an 

isomorphism of ALG(G) onto TP(G). 

For any BCG G, the algebra TP(G) can effectively be constructed. For TP(G) is 

the subalgebra of the (finite and effectively given) algebra P( T(G)) generated by the 

set of all sets 

TG(u)={AET(G): ZI+GA}, 

for VE VG. Observe that v JoA holds if, and only if, u :A is a lexical assumption of G. 

Now, many properties of BCGs can be expressed as properties of their type algebras, 

and the latter can effectively be verified. 

The inclusion -G C -FL(G) holds for every BCG G. We say that G is well-formed 
if “‘G = -FL(G). For well-formed grammars G, syntactic categories defined as inter- 

substitutability classes with respect to the F-language of G are the same as natural 

equivalence classes determined by the type assignment of G. 

(T4) The problem of whether G is well formed is decidable. 

To prove (T4) we define 

~Z(G)={TETP(G): S’GET}. 
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One easily shows 

fZ(G)= {&-(X/-G): XeFL(G)}. 

Thus, fZ(G) represents the F-language FL(G) in the algebra TP(G). Now, NG = -FL(G) 

holds true if, and only if, the identity is the only congruence in TP(G) compatible with 

fZ(G), and the latter condition admits an effective verification. 

In a similar way we prove 

(T5) The global F-equivalence problem for BCGs is decidable. 

Fix two BCGs Gi and G2. We assume VG, = VG, = V (otherwise we add new atoms to 

the lexicons but no new lexical assumptions). Denote Lj = FL(Gi), for i = 1,2. First, 

observe that Li = LZ if, and only if, there is an isomorphism g from the quotient algebra 

F,S( V)/wL, to the quotient algebra FS( V)/NL~ such that 

g(v/-LI ) = V/NL~, for all v E V, 

{g(X/y,): XEL,} = {X/y2: XEL2). 

For the ‘only if’ direction, take the identity mapping for g. For the ‘if’ direction, 

assume there is an isomorphism g fulfilling the above equalities. By the first equality, 

we infer 

m/-L, > =XINL2, 

for all X EFS(V) (g is a homomorphism). It follows that -L, C wL2, since g is a func- 

tion, and the converse inclusion is also true, since g is a bijective mapping. Conse- 

quently, NL) =-L~, and g is the identity mapping. The second equality and the fact 

that Li is a union of equivalence classes X/ -L,, for XEL~ yield L1 = L2. NOW, the iso- 

morphism condition can be copied in type algebras. Let -i be the largest congruence 

in TP(Gi) compatible with fl(Gi), for i = 1,2. Then, FL(Gl ) = FL(G2) if, and only 

if, there is an isomorphism g’ from the quotient algebra TP(Gi )/WI to the quotient 

algebra TP(Gl)/--2 such that 

{g'(T/-d: TEfl(Gl)}={~/~z: r~fl(G2)). 

Clearly, the latter isomorphism condition can effectively be verified. 

Analogous methods can be used to find algorithms for many other problems 

concerning BCGs, for instance, the global P-equivalence problem, the F-inclusion and 

P-inclusion problems (use an effective construction of a BCG G such that FL(G) = 

FL(G1) U FL(Gz), and similarly for phrase languages), a construction of a rigid or 

well-formed grammar F-equivalent to a given grammar, a construction of a (restricted) 

complementation grammar for a given grammar, and so on. The reader is referred 

to [14] for details. 
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In Section 3 we consider categorial grammars based on stronger systems of types, 

as e.g. the Lambek calculus. For categorial grammars based on the Lambek calculus 

and related (associative!) systems, FL(G) consists of all possible functor-argument 

structures which can be defined on strings from L(G), and consequently, F-equivalence 

and P-equivalence are the same as (weak) equivalence [ 151. 

2. Grammars determined by unification 

The method of unification, extensively used in logic programming and unification 

systems in computational linguistics (see [36,21]), can be applied to fi_mctor-argument 

structures and types in order to develop quite natural learning procedures for BCGs. The 

basic learning algorithms of that kind were described in [14, 191, and Kanazawa [25,24] 

elaborated a Gold style learning theory for BCGs, essentially involving these algorithms 

(van Benthem [6] studies a closely related problem of solving ‘categorial equations’). 

In this section, we briefly outline these algorithms and apply them to study the fine 

algebraic structure of F-languages, generated by BCGs. 

Let us recall some basic notions concerning unification. We consider terms (of a first- 

order language) built from constants, variables and function symbols. A substitution 
is an assignment of terms to variables, and it naturally extends to a mapping from the 

set of terms to itself. A substitution 0 is u unifier of a set T, of terms, if D(S) = o(t), 

for all S, t E T. o is a unifier of a family { TI, . . . , T,}, of sets of terms, if it is a unifier 

of each Ti, for i = 1 , . . . , n. A most general unifier (mgu) of a family of sets of terms 

is a unifier (T of this family such that, for every unifier CI of this family, there is 

a substitution /I, such that CI = pa. It is well known that, for any finite family of finite 

sets of types, one can effectively construct an mgu of this family (if exists) or prove 

the nonexistence of any unifier of it (see [30,19]). Notice that two mgu’s of the same 

family must be equal up to alphabetic variants. 

We assume that atomic types are variables and constants. Thus, the set Tp, of all 

types, can be treated as a set of terms in the above sense. We describe an effective 

procedure which takes a finite set L c FS( V) as an input, and returns a ‘most general’ 

BCG G such that L C FL(G). 

Fix a nonempty, finite set L c FS( Y). We assign type S to all structures from L, 
and to each occurrence of an argument substructure in a structure from L we assign 

a different variable. Then, types are assigned to occurrences of functor substructures of 

structures from L by the following rules: 

(F+) K Yl2 :B; X:A 
Y:A-+B ' 

(Fc) KYll:B; Y:A 
X:B+A ’ 

Now, we define the so-called general form of L (GF(L)) as the BCG determined by all 

assumptions v : A such that v E V and A has been assigned to u by the above procedure. 



14 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24 

We have 

FL(GF(L)) =L. 

For any BCG G and substitution (T, let o(G) denote the BCG determined by the 

assumptions v : o(A), for all assumptions v : A of G. One easily shows 

FL(G) 2 FL(o(G)), for every BCG G. 

We also write Gt C GZ, if each lexical assumption of Gt is an assumption of G2. The 

basic property of GF(L) is: for every BCG G, L C FL(G) if, and only if, there is 

a substitution cr such that o(GF(L)) C G. 

For each VE V, let TL(v) be the set of all types A such that v : A is a lexical assump- 

tion of GF(L). We set 

FL = {TL(v): VE V}. 

We assume that all sets T’(v) are nonempty (otherwise, drop the redundant atoms from 

V). Recall that a BCG G is rigid, if, for any VE V, there is at most one type A such 

that v : A is an assumption of G. We define RG(L) = o(GF(L)), where 0 is an mgu of 

FL.. Thus, RG(L) is a rigid BCG, and L &FL(RG(L)). The following theorems, proven 

in [19], show that RG(L) is a most general rigid BCG G such that L&FL(G). 

(T6) For any nonempty, finite L c FS( V), the following conditions are equivalent: 

(a) L C FL(G), for some rigid BCG G, (b) the family F. is unifiable. 

(T7) For any rigid BCG G, L c FL(G) if, and only if, there is a substitution CI such 

that a(RG(L)) C G. 

To give a simple example, we consider the set L consisting of two structures: 

l [Joan, smiles]*, 

l [Joan, [smiles, charmingly]&. 

According to the procedure described above, we assign type S to these two struc- 

tures, variables X, y to the first and the second occurrence of ‘Joan’, respectively, and 

variable z to the second occurrence of ‘smiles’. By rule (FA), we derive 

0 smiles: x+S, 

l [smiles, charminglyl2: y--+S, 

l charmingly: z -+ (y + S). 

So, GF(L) is defined by the following assumptions: 

l Joan: x, y, smiles: z, x -+ S, 

l charmingly: z + (y -+ S). 

The family YL is unifiable; o(y) =x, a(z) =x +S is an mgu. Consequently, RG(L) 

exists and is given by: 

l Joan: x, smiles: x + S, 

l charmingly: (X --f S) + (x --) S). 
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It is natural to interpret x = PN, hence ‘smiles’ is of type VP, and ‘charmingly’ is of 

type VP 4 VP, of Adverb. RG(L) generates the infinite F-language which consists of 

structures: 

a [Joan, smilesIT, 

l [Joan, [smiles, charmingly]&, 

l [Joan, [[smiles, charminglylz, charmingly]&] etc. 

It follows from (T7) that the latter F-language is contained in FL(G), for every rigid 

BCG G such that L C FL(G). 

An F-language L C FS( V) is said to be rigid, if L = FL(G), for some rigid BCG G. 

Kanazawa [25,24] proves that the class of rigid F-languages possesses finite elas- 

ticity: for all infinite sequences (A,), A,EFS( V), and all infinite sequences (L,), 

of rigid F-languages L, G FS( V), there is an integer n such that either A, EL,, or 

{Aa, . . . ,A,} g L,+l. Consequently, there exists a learning function for this class (this 

notion is not defined here; the reader is referred to [25,24]). The same holds for 

the class of string languages, generated by rigid BCGs, and the class of string lan- 

guages, generated by BCGs which assign at most k types to each lexical atom, for any 

k 2 1. A computable learning function can be defined by an adaptation of the above 

algorithm. To prove the finite elasticity of the class of rigid F-languages, Kanazawa 

establishes the ascending chain condition (ACC) for this class: there is no infinite chain 

LOCLl CLZ..., of rigid F-languages over a finite lexicon. 

These results enable us to say more about the class of rigid F-languages L C F,S( V). 

Let W denote the class consisting of the latter F-languages and the total F-language 

FS( V) (which is not rigid, by (Tl)). For any set L C FS( V), we define 

C(L) = n {L’ E 9: L s L’}. 

We prove 

(T8) For any set L & FS( V), C(L)EB. Further, the operator C satisfies Tarski’s con- 

ditions: 

(i) L C C(L), 
(ii) if L1 C L2, then C(Ll) 2 C(L2), 

(iii) C( C(L)) = C(L), 

(iv) for any L G FS( V), there is a finite set L’ CL such that C(L) = C(L’). 

We prove the first part of (TS). Fix a set L c FS( V). If there is no L’ E% such that 

L & L’, then C(L) = FS( V) E W. Otherwise, fix L’ E 9 such that L C L’. If L # 0 is finite, 

then RG(L) exists (use (T6)), and FL(RG(L)) is the least rigid F-language containing L 

(use (T7)), hence C(L) =FL(RG(L)) E 22. If L = 8, then C(L) = 0 E 92. So, assume L is 

infinite. Then, L is the join of an ascending chain LO c LI c . . . , of finite F-languages. 

By (T6), RG(L,) exists, for all 12 > 0; we denote LA = FL(RG(L,)). By (T7), we obtain 

hence, by (ACC), there is an integer k 20 such that LL = LL, for all k >n. Clearly 

C(L) = L; E 92. 
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Conditions (i)-(iii) are obvious. To prove (iv), fix L sFS(V). We may assume 

that L be infinite. If L C L’, for some rigid L’, then we proceed as above; we have 

C(L) = Li = C(Lk). So, assume there is no rigid F-language L’ such that L c L’. Then, 

C(L) =FS( V). We must show that C(Lw) = FS( V), for some finite L” 2 L. Suppose 

the contrary. Then, for every finite L” 5 L, there is a rigid L” such that L” CL”. 

Consequently, RG(L”) exists. As above, choose an ascending chain Lo c L1 c . . . , of 

finite sets, whose join equals L. We define LA, for all n > 0, as above. By (ACC), there 

is k > 0 such that LL = LL, for all II 3 k. Then, L C LL, which contradicts the assumption. 

The operator C is a natural grammatical consequence operator. The deductively 

closed sets L = C(L) are precisely the rigid F-languages and the total F-language 

F&‘(V). It would be interesting to find an axiomatization of this operator by means of 

‘inference rules’ defined on Rector-argument structures. One of these rules could be 

WI; 4Cl; WI. 
D[Cl ’ 

here, A[B] stands for a fiurctor-argument structure A with a designated occurrence of 

a substructure B, and A[C] results from substituting C for B in A, and similarly for 

D[B] and D[C]. This rule can be justified as follows. Since A[B] and A[C] belong to 

FL(G), where G is rigid, then B and C are assigned the same type; since also D[B] 

belongs to FL(G), then D[C] must belong to FL(G), because No C NFL(G). 

Rigid BCGs and rigid F-languages are typical for artificial languages of formal logic 

and mathematics (but they are also useful technical tools for studying general properties 

of categorial grammars). Syntactic and semantic ambiguities of natural language are 

reflected by nonrigid grammars. A nonrigid version of the algorithm described above 

has been elaborated in [ 191. 

The key notion is optimal unification. Let r be a family of sets of terms and 0 be 

a substitution. Ker(cr) is the relation which holds between terms s and t iff cr(s) = o(t). 

Let [t] denote the equivalence class of term t with respect to Ker(o). We define 

T/o={[t]nT: JET}, for TEY, 

Y/o=U{T/a: TEE-}. 

c is called an optimal unifier (ou) of the family Y, if it satisfies the conditions 

(OU.l) (T is an mgu of 5/a, 

(OU.2) for all T E F, s, t E T, if a(s) # a(t), then the set {a(s), a(t)} is not unifiable. 

Intuitively, an ou for Y is a most general substitution which unifies the family .Y as 

far as possible. For every nonempty family 9, of nonempty, finite sets of terms, one 

can effectively find finitely many au’s of Y (they are all ou’s of Y up to alphabetic 

variants). We write a <S a’ if, for every T E 5, the cardinality of T/a is not greater 

than that of T/a’. A minimal unifier (mu) for 5 is an ou for F which is <-minimal 

in the set of all ou’s for K By the above, for every nonempty, finite family Y, of 
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nonempty, finite sets of terms, one can effectively find all mu’s for .F (up to alphabetic 

variants). 

Let g(L) be the family of all BCGs a(GF(L)) such that c~ is an mu for FL. The fol- 

lowing theorem, proven in [19], shows that ‘S(L) contains precisely the ‘most general’ 

minimal BCGs G such that L C FL(G). Here, ‘minimality’ is defined with respect to 

the following relation: G < G’ iff, for all 2, E V, the cardinality of Td(v) is not greater 

than that of TQ(u). 

(T9) Let L c FS( Y) be a finite set. The following conditions are equivalent: 

(a) G is minimal in the class of grammars G’ such that L C FL(G’), 

(b) there are G’ E g(L) and a substitution c1 such that G = a(G’). 

Clearly, if FL is unifiable, then RG(L) is the only member of g(L), and minimal gram- 

mars G such that L & FL(G) are rigid. Therefore, the nonrigid procedure is a ‘conser- 

vative’ generalization of the rigid one. Unlike the latter, the former always yields an 

outcome grammar. 

Marciniec [31] studies more general versions of the above procedures in which in- 

put data can be of the form Xi : Ai, i = 1,. . . , m (positive data) as well as non-5 : Bj, 

j=l , . . . ,n (negative data). Roughly, negative data restrict the class of admissible 

substitutions, and the ‘positive’ procedures, described above, are relativized to this 

restricted class. Thus, the role of negative data is not merely to sieve out ‘wrong’ out- 

comes of the positive procedure, but they essentially influence the positive procedure. 

3. Residuated algebras 

In the last section we pass from absolutely free algebras of structure trees to algebras 

corresponding to stronger deductive systems applied in categorial grammars. The central 

notion is residuation. 

Types are formed out of atomic types by means of two conditionals +, c and 

product o. F, A will denote finite strings of types. Let F t A mean: there is a deduction 

tree of A with yield r. The deduction system of BCGs can be defined as a sequential 

system with axioms: 

(Id) A t A, 

and inference rules 

(E+) if TtA and AtA-+B, then I’,AtB, 

(Ec) if TtBtA and AtA, then r,AtB. 

The Lambek calculus L results from completing the above elimination rules by 

introduction rules: 

(I+) if A,rtB, then TtA-+B, 

(It) if T,AtB, then TtBtA, 
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where r # n (dropping this constraint leads to the stronger system Ll). The rules for 

product are 

(Eo) if AkAoB and r,A,B,r’tC, then r,A,r’tC, 

(IO) if TtA and At-B, then r,AtAoB. 

Both L and Ll are closed under the cut rule: 

(CUT) if T,A, r’ t B and d t-A, then r, A, r’ t B. 

Intuitively, rules (I -+ ), (I c ) enable us to employ hypothetical reasoning in catego- 

rial grammars. For instance, given the lexical assumption ‘John: PN’ and the derivable 

pattern 

PN,PN+StS, 

one infers the Montague type raising principle, 

PNtS+(PN+S)=NP, 

which lifts up proper nouns to the type of noun phrase. As usual for natural deduction, 

the latter derivation can be represented by the lambda term 

~uxPN-S. (XPN + S jPN ), 

which means that the constant j (standing for ‘John’) is transformed into the family 

of predicates holding for it. The reader is referred to [5,7] for a thorough account 

of natural deduction and the lambda calculus in categorial semantics, and to [ 181 for 

a formal analysis of different deduction systems connected with linguistically relevant 

fragments of the lambda calculus (see also [39] for a version of the lambda calculus 

appropriate for directional types). 

Here we focus on algebraic structures naturally modelling natural deduction systems. 

A residuated semigroup (r. semigroup) is a structure &? = (A4, o, =+, +, < ) such that 

(M, o) is a semigroup, < is a partial ordering on M, and =+, -+ are binary operations 

on M, satisfying the equivalences 

b<a+c iff aob<c iff adc+b, 

for all a,b,cEM. 

We describe a general powerset construction of residuated semigroups. Let ~2 = (A, .) 

be a semigroup. In the powerset P(A) we define operations o, +, G in the following 

way: 

XoY={a.b: aEX, bEY}, 

X+Y={CEA: (tlaEX)a.cEY}, 

X+Y={CEA: (VaEY)c.aEX}, 
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for X, Y 2 A. (P(A), o, +, +, C ) is a residuated semigroup; we refer to it as the power- 
set r. semigroup over the semigroup d. If A = V+ is the free semigroup of nonempty 

finite strings over the lexicon V, then P(A) is the r. semigroup of languages over V. 

More general structures are based on frames (U, R) such that U is a nonempty set 

and R is a ternary relation on U. In P(U) one defines operations 0, +, + as follows: 

XoY={c: (3a~X)(3b~ Y)R(u,b,c)}, 

X+Y={b: (~‘a,c)(a~X, R(a,b,c) imply CEY)}, 

X+ Y = {a: (vb,c)(bE Y, R(u,b,c) imply CEX)}, 

for X, Y s U. Following Dunn [20], we call the r. semigroup (P(U), 0, +, -+, C ) the 
concrete r. semigroup over the frame (U, R). Clearly, the powerset r. semigroup over 

(A, .) is the concrete r. semigroup over (A, R), where R(u, b, c) holds iff a. b = c. While 

ternary frames are characteristic of Kripke style semantics for relevant logics, powerset 

models are more in the style of universal algebra and naturally related to the algebra 

of languages. 

An assignment of types in an r. semigroup is defined in the standard way. By a 

model we mean a pair (A!,p) such that JH is an r. semigroup and p is an assignment 

of types in A?. The sequent AI,. . . ,A, t A is true in this model, if 

P(AI)o... 0 P(&) d P(A ), 

and it is valid in A, if it is true in all models (A, p). If the underlying semigroup 

is a monoid (M,o, l), then the sequent k A is true in (A, p), if 1 <p(A), and the 

remaining notions are defined, as above. The powerset r. monoid over the monoid 

(A, .) 1) is (P(A), 0, *, *, (11, C ). 
Let C be a set of sequents. L(C) (resp. Ll(C)) denotes the system L (resp. Ll) 

with (CUT), enlarged with all sequents from C as new axioms. Basic completeness 

theorems for the Lambek calculus are the following: 

(TlO) Sequents derivable in L(C) are precisely those which are valid in all powerset r. 

semigroups over arbitrary semigroups. 

(Tll) Sequents derivable in Ll(C) are precisely those which are valid in all power- 

set r. monoids over arbitrary monoids. 

(T12) If C consists of product-free sequents, then product-free sequents derivable in 

L(C) are precisely those which are valid in all powerset r. semigroups over 

free semigroups. 

(T13) If C consists of product-free sequents, then product-free sequents derivable in 

Ll(C) are precisely those which are valid in all powerset r. monoids over free 

monoids. 

(T14) Sequents derivable in L (resp. Ll) are precisely those which are valid in all 

powerset r. semigroups (resp. monoids) over free semigroups (resp. monoids). 
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(T15) Product-free sequents derivable in L (resp. Ll) are precisely those which are 

valid in all powerset r. semigroups (resp. monoids) over finite semigroups (resp. 

monoids). 

For each of these theorems, the ‘only if’ direction (soundness) is easy: axioms (Id) 

are true in all models, and inference rules preserve the truth. Theorems (T12), (T13) 

were first proven in [8]. One constructs the canonical model P(Z+), where C is the 

set of types. The canonical assignment f is defined as follows: 

f(p) = {r: r F-LPI. 

By induction on type A, one proves 

f(A)={P TtLA}, 

for all product-free types A. That yields 

Al,... AI-LA 8 f(Al)o...~f(A~)~f(A). 

The ‘only if’ direction holds by soundness, and the ‘if’ direction by (Id) and the latter 

equality. For Ll, the argument is similar. 

Theorems (Tl 0) and (Tl 1) were proven in [ 111. They require a more sophisticated 

construction. Roughly, one affixes to L new rules of the form 

(D) if TtAoB, then (r,l,AoB)kA and (r,2,AoB)tB, 

which enable us to decompose each r such that r t-A o B is derivable into two terms 

T=(T,l,AoB).(r,2,AoB) 

such that (r, 1, A o B) k A and (r, 2, A o B) t B are derivable. Of course, the language 

of L must be extended to admit terms of the above form. For the extended system, 

one constructs the canonical model, following the lines above, but now the underlying 

semigroup is not a free semigroup. 

Theorem (T14) has been proven by Pentus [35] by an approximation of a model 

with partial models; the proof uses many combinatory tools. Theorem (T15), proven 

in [9, 171, establishes the finite model property for Lambek systems. One uses gen- 

eralized powerset models over free semigroups. For a set K C Z+ such that K # 0 is 

closed under nonempty subintervals, one defines the relativized powerset operations 

XoY,X+Y,X+Y, forX,YcK, 

XoY={abEK: acX, bEY}, 

X+Y={CEK: (‘daEX)(ac$?iKVacEY)}, 

X+Y={CEK: (‘v’aEY)(ca@KVcaEX)}. 
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Then, (P(K),o,+,+, C ) is an r. semigroup which is isomorphic to the powerset r. 

semigoup P(K’), where K’= K U {x}, x being a new element which takes the part 

of all strings not in K. One shows that L (resp. Ll) is complete with respect to all 

models of that kind with a finite K. Details of the proof are somewhat cumbersome. 

If powerset models are replaced with concrete models, then analogues of theorems 

(TlO) and (Tl 1) can be obtained by a modification of the well known Stone repre- 

sentation theorem for Boolean algebras. One shows: 

(T16) Each residuated semigroup is embeddable into a concrete residuated semigroup. 

This representation theorem has been proven in [20] in the following way. Let ~4’ be 

an r. semigroup. A set V CM is called a cone, if a E V and a <b entails b E V. Take 

U equal to the set of cones, and define a ternary relation R on U: 

R(V,, V2, V3) iff (V&b)(aE vi, a*bE 02 imply bE 03). 

Then, the mapping h(a) = { 8: a E V} . IS a monomorphism of the r. semigroup J?’ into 

the concrete r. semigroup P(U). 

Interestingly, if R is replaced with the binary operation 

v,. V2={b: (3aEV,)a*bEV2}, 

then (U, .) is a semigroup, and one can consider the powerset r. semigroup P(U) 

instead of the concrete r. semigroup. Yet, the mapping h, defined above, is merely 

a homomorphism with respect to +, + and 6, but not o. Thus, using the method 

above, one can show that each +, + -reduct of an r. semigroup is embeddable into a 

powerset r. semigroup. To prove the full representation theorem: 

(T17) Each residuated semigroup is embeddable into a powerset residuated semigroup, 

one needs decomposition methods of the proof of theorems (Tl 0) and (Tl 1). 
Other representation and completeness theorems for Lambek systems have been ob- 

tained in [2,33,29] with respect to algebras of binary relations. These algebras fit an 

interesting interpretation of Lambek systems as logics of programs (procedures). 

We pass to categorial grammars. Lambek categoriaE grammars (LCGs) result from 

enriching BCGs with the full strength of the Lambek calculus (here, we restrict our- 

selves to product-free types). For any type A, the LCG G determines the language 

LA(G) 5 V$ which consists of all strings on V,, being assigned type A by G. On the 

other hand, given languages L,(G), for atomic types p, languages LA(G) are uniquely 

determined by powerset operations in the algebra P(V,f): 

P(G) = L,(G), for atomic p, 

LA+B(G)=LA(G)=d(G), 

LBtA(G) =LB(G) -dA(G). 



22 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24 

There arises a natural problem of compatibility of languages LA(G) and LA(G). As 

shown in [8], no Lambek grammar G is complete, that means, it cannot fulfil LA(G) = 

LA(G), for all types A. A weaker condition is correctness: LA(G) C LA(G), for all 

types A. It is easy to show that G is correct, if r : A in the sense of G entails u E L’(G), 

for all lexical atoms n and types A. Each Lambek grammar can be extended to a correct 

Lambek grammar by introducing new lexical atoms: for any type B which appears in 

lexical assumptions as a subtype, one introduces a new atom VB and a new assumption 

VB : B. The new grammar G’ is conservative with respect to the initial grammar G: 

LA(G) =&(G'> n I’$ 

Correct Lambek grammars are precisely those whose language family L,(G), for atomic 

types p, is a minimal solution of the lexical postulates u : A. Thus, for correct Lambek 

grammars, languages generated by the grammar can be characterized in Algol-like style, 

as the minimal languages satisfying a system of postulates. 

Problems of the relation of LCGs (and categorial grammars based on other systems 

of that kind, e.g. nonassociative and/or commutative) to the Chomsky hierarchy were 

considered by several authors [5, 10, 13,26,27,34]. In [34], LCGs are shown to be 

weakly equivalent to CFGs. Methods of proofs are of proof-theoretic rather than typi- 

cally algebraic character, hence we do not discuss them here (actually, in [13,26,27], 

the characterization of P-languages of BCGs, stated in (T3), has been employed to 

prove the P-equivalence of Nonassociative Lambek Grammars and BCGs). An ex- 

tensive account of proof-theoretic methods in categorial grammar (in connection with 

algebraic structures) can be found in [ 181. 

Most questions discussed above can be extended toward abstract algebras (A,F), 

where 9 is a set of operations in the universe A. With each operation f, of arity 

n 2 1, we associate residuation operations f Ii, i = 1,. . . , n, satisfying the equivalence 

f( . ..) ai )...) <U iff @<(f/i)( . . . . Q ,... ), 

where d is a partial ordering on A. If the residuation operations exist, for each f E 9, 

then the structure (A,F, <) is called a residuated algebra. Given an algebra (A,F), 
the powerset residuated algebra over this algebra is defined as the set P(A) with C 

taking the part of partial ordering, and operations f and f/i given by 

f(X ,..., Xn)={f(Ul ,..., &)I (Vi)UiEXi}, 

(f/i)(Z ,..e,Xn)={Ui: (Vj#i)(VUjEXj)f(Ul,..., U,)E&}. 

Residuated algebras as general frames for Lambek style categorial grammars have 

been proposed in [ 15, 181. They correspond to minimal multimodal systems considered 

in [32,29] which account for different composition modes in natural language. The 
Generalized Lambek Calculus GL (in the natural deduction form) is based on axioms 
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(Id) and rules: 

(Ef) if d tf(Ai, . . . ,A,), and T[f[A 1,. . . ,A,]] I- C, then T[d] t- C, 

(If) if T;:kAi, i=l,..., n, then f[rl,...,r,l~f(Al,...,A,), 

(Ef/i) if fi k (f/i)@ I,..., A,) and CkAj, for allj#i, then f[ri ,..., rn]tAi, 

(If/i) if f[Ai ,..., r )..., A,]tAi, then rt(f/i)(Ai ,..., A,), 

(CUT) if T[A]tB and AFA, then T[A] FB. 

Again, the rule (CUT) can be eliminated from the pure system GL. Now, GL is 

complete with respect to residuated algebras (that is an easy application of Lindenbaum 

algebras), and it is also complete with respect to powerset residuated algebras. The latter 

theorem has been proven in [28] by means of the following representation theorem: 

each residuated algebra is embeddable into a powerset residuated algebra. The proof 

goes by a generalization of the proof of (TlO) in [ 111. 
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