
Theoretical

ELSEVIER Theoretical Computer Science 199 (1998) 5-24

Computer Science

Algebraic structures in categorial grammar

Wojciech Buszkowski *

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 60-769 Poznali, Poland

Abstract

In this paper we discuss different algebraic structures which are natural algebraic frames for
categorial grammars. First, absolutely free algebras of functor-argument structures and phrase
structures together with power-set algebras of types are used to characterize structure languages
of Basic categorial grammars and to provide algorithms for equivalence problems and related
questions. Second, unification applied to the above frames is employed to develop learning
procedures for basic categorial grammars. Third, residuated algebras are used to model language
hierarchies of Lambek categorial grammars. The paper focuses on the author’s research in this
area with references to related works in logic and linguistics. @ 1998-Elsevier Science B.V.

All rights reserved

Keywords: Categorial grammar; Type logics; Type algebras; Lambek calculus;
Residuated semigroup

0. Introduction

Categorial grammars are formal grammars based upon some fundamental ideas of

mathematical logic: the theory of types and deductive systems. Expressions of a lan-

guage are divided in syntactic categories denoted by logical types; usually, the hierarchy

of syntactic categories is closely related to a hierarchy of semantic categories deter-

mined by logical types of semantic denotations of these expressions. Instead of produc-

tion rules, characteristic of generative grammars, categorial grammars employ certain

deductive systems of type change. Basic categorial grammars use a system whose only

inference rule is Modus Ponens (no axioms), while different kinds of categorial gram-

mar of current interest are based on much richer systems with special introduction and

elimination rules for logical constants. From the modern perspective, the latter systems

belong to so-called substructural logics whose most famous representatives are linear

logics of Girard [22]. Due to the interplay of logical and linguistic issues, the the-

ory of categorial grammars enjoys nowadays a growing significance in (semantically

* E-mail: buszko@math.amu.edu.pl.

0304-3975/98/$19.00 @ 1998-Elsevier Science B.V. All rights reserved
PI2 SO304-3975(97)00266-l

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82630845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24

oriented) computational linguistics, logical foundations of computer science and logical

philosophy of language (see [7]).

A standard mathematical framework in the theory of deductive systems is algebraic

models; see e.g. [37]. Deductive systems of categorial grammars can be modelled by al-

gebraic structures of different kind. Pure MP deductions induce hmctor-argument struc-

tures of expressions, and these structures form an absolutely free algebra (term algebra).

Substructural logics used by modem categorial grammars, e.g. the Lambek calculus,

refer to residuated algebras, in particular residuated (noncommutative or commutative)

groupoids and semigroups. Many problems of both logical and linguistic interest can

be solved by studying fine properties of these algebraic structures.

In this paper, we outline some basic notions and methods connected with algebraic

structures of categorial grammars: absolutely free algebras of syntactic structures and

residuated algebras. The former are especially significant for the theory of basic cat-

egorial grammars (however, they also play a role for richer systems; every categorial

grammar can be regarded as a basic categorial grammar with an infinite set of lexical

assumptions [151). In Section 1 we define several notions relevant to functor-argument

structures (tree languages, congruences, type algebras, quotient-algebras) and show their

role in studying various mathematical properties of basic categorial grammars (char-

acterization of tree languages generated by these grammars, relation to context-free

grammars, decidability problems). In Section 2 we describe an algorithm for deter-

mining a minimal categorial grammar whose structure language contains a given finite

set of functor-argument structures. This algorithm involves unification of finite families

of finite sets of type-schemes. We discuss different versions of this algorithm and its

connections with problems of learnability of the class of basic categorial grammars.

In Section 3 we focus on residuated algebras corresponding to the Lambek calculus

and related systems; we show different methods to prove representation theorems for

these algebras and completeness theorems for deductive systems and point out some

further applications.

1. Algebras of basic categorial grammars

Basic categorial grammars (BCGs) were introduced by Bar-Hillel [3,4] with ori-

gins in Ajdukiewicz [l], who had followed some logical ideas of Frege, Russell and

Lesniewski. Expressions are assigned types; first, lexical assumptions assign types to

atomic expressions (symbols, words), and second, Hilbert style deductions based on

Modus Ponens are used to derive types of complex expressions.

Types can be represented as purely conditional formulas, applying two conditionals

+ and +--. Atomic types are simply (sentential) variables (one may also think of them

as constants). The type A + B (resp. B +A) is assigned to functors from type A to

type B which take their arguments on the left (resp. right). Thus, if S, PN and N are

atomic types of Sentence, Proper Noun and Common Noun, respectively, then PN --+ S
is the type VP, of Verb Phrase, S +-- VP is the type NP, of full Noun Phrase, and

W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24 7

NP t N is the type D, of Determiner. A BCG is defined by a finite set of lexical

assumptions v :A such that v is an atomic expression and A is a type.. By & we

denote the lexicon of the grammar G, i.e. the set of atomic expressions appearing in

lexical assumptions. Given a string vt . . . v,, vi E &, the grammar G assigns type A to

this string, if there are assumptions vi :Ai, i = 1,. . . , n, such that there is a deduction

tree with the root A and the yield Al . . . A,. Actually, this definition can be preserved

for all kinds of categorial grammar, only, inference rules admissible in deductions are

different for different kinds. BCGs admit two MP-rules:

A; AAB
W+) B ,

B+A; A
W’+) B .

For example, the grammar defined by lexical assumptions:

every, the: D = NP c N,

student, test: N,

passed: TV = VP +-- NP,

where NP = S t VP, assigns type S to the expression:

every student passed the test

on the basis of the following deduction:

D N TV D N

\/

\

\/
NP NP

\

/

/vp
s

This deduction can also be represented as the bracketed term:

W,Nll, [TV, P,Nl11111

which yields the functor-argument structure of the given expression

[[every, student]1 ,[passed, [the test]l]l]l.

Here, the numerical subscript i means that the ith constituent

functor. In the example above, always the first constituents are

the case for the structure:

[John, [likes, Mary]112

takes the part of the

fimctors, but it is not

8 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24

which is provided by the grammar:

John, Mary: PN,

likes: (PN 4 S) t PN.

The set FS(V), of functor-argument structures over the lexicon V, is defined by the

recursive clauses:

(a) V C FS(U,
(b) if X, Y EFS(V) then [X, Y]i EFS(I’), for i = 1,2.

X is the functor and Y is the argument in [X, Y] 1, and the opposite holds for [X, Y]*.

Clearly, FS(V) can be treated as an absolutely free algebra with the set Y of free gener-

ators and two binary operations [. . . , . . .]I and [. . . , . . .]z. Dropping numerical subscripts

changes functor-argument structures into phrase structures. PS(V) denotes the set of

phrase structures over V. Again, PS(V) is an absolutely free algebra with one binary

operation [. . . , . . .].

We assume that each BCG G distinguishes an atomic type, say S, as the basic type,

to be denoted So. We write vi . . . v, *GA, if G aSSignS type A to String VI . . . v,. For

XEFS(VG), we write X *GA, if G assigns type A to the yield of X by a deduction

which determines the structure X. We define

L(G) and FL(G) are called the language and the F-language of G, respectively. PL(G)
denotes the P-language of G: it arises from FL(G), after one has dropped all numer-

ical subscripts. Grammars G and G’ are said to be equivalent (resp. F-equivalent,
P-equivalent), if L(G) = L(G’) (resp. FL(G) = FL(G’), PL(G) = PL(G’)).

Surely, the notions defined above are quite crucial for the theory of BCGs, as they

(or their variants) are for other branches of mathematical linguistics. Below we outline

main algebraic methods which are needed to establish fundamental properties of BCGs.

Actually, one needs universal algebra and combinatorics of trees.

It is useful to see that types can be treated as functor-argument structures over

the set P, of atomic types; just write [A,B]z for A + B and [B,A]l for B + A. So,
Tp = FS(P) is the set of types. A path (resp. an F-path) in structure XEFS(V) is

a sequence X0,. . . , X,,, of substructures of X, such that Xi+i is a constituent (resp. the

fimctor) of Xi, for all i <n; n is the length of this path. The height of X (h(X)) is the

maximal length of paths in X. The F-degree of X (Fd(X)) is the maximal length of

F-paths in X. The depth of structure X (d(X)) is the minimal length of paths beginning

with X and ending with an atom, and the degree of X (deg(X)) is the maximal depth

of substructures of X. Clearly, all F-free notions can be defined for phrase structures,

as well. For L L FS(V), we set

Fd(L) = sup{Fd(X): X EL},

deg(L) = sup{deg(X): X EL}.

The latter notion is also defined for L C PS(V).

W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24 9

X[u : Y] denotes the substitution of Y for atom u in X. Given a lexicon V, we set

V, = VU {x}, where x is a variable not in V. Each language L C FS(V) determines

the basic congruence -JL in the algebra FS(V), defined as follows: X NL Y iff, for all

ZEFS(V,),

Z[XZ]EL M Z[x:Y]EL.

The index of L (ind(L)) is the total number of equivalence classes of -L. One easily

shows that -L is the largest congruence in FS(V) compatible with L, that means, for

all X, Y EFS(V),

ifXwLY thenXEL iff YEL.

The first problem which can be solved by these tools is an algebraic characterization

of F-languages of BCGs. In [12], it has been proven that

(Tl) For L C: FS(V), there is some BCG G such that L = FL(G) if, and only if, both

ind(L) and Fd(L) are finite.

By Q(G) we denote the set of all types appearing in lexical assumptions of G. The

grammar G determines the relation -o on Fs(vG), defined as follows:

X-G Y iff, for all A, X+oA ($ Y+oA.

Clearly, NG is a congruence in Fs(&) compatible with FL(G). We refer to this relation

as the basic congruence determined by G. One easily shows the inequalities

ind(FL(G))<ind(-o),

which yield the ‘only if’ part of (Tl). For the ‘if’ part, one identifies atomic types with

equivalence classes of -L and adds a new atomic type S. Languages LA, for AE Tp,
are defined by induction on A:

(a) LP = p, for atomic p; Ls = L,

(b) Lp-+~ = {Y: WEL,) K y12 &3),
(c) L&p = {X: (3Y ELp) [x, Y]l ELB}.

Actually, we have defined LA merely for types A of order less than 2, where the order
of A (ord(A)) is a nonnegative integer defined as follows:

(a) ord(p) = 0, for atomic types p,
(b) ord(A + B) = ord(B +-A) = = max(ord(B), ord(A) + 1).

One shows that LA # 8 only if Fd(A) <Fd(L), and consequently, the BCG G defined

by the lexical assumptions:

v:A iff UCLA

is a finite object. This grammar G satisfies FL(G) = L. We also have ord(G) < 1, where

ord(G) is the maximal order of types in Tp(G). Consequently,

(T2) Each BCG is F-equivalent to some BCG G’ with ord(G’) < 1.

10 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24

To compare BCGs with context-free grammars (CFGs), it is useful to characterize

P-languages of BCGs. Using (Tl), one shows [131:

(T3) For L CPS(V), there is some BCG G such that L=PL(G) if, and only if, both

ind(L) and deg(L) are finite.

Accordingly, P-languages of BCGs is a narrower class than P-languages of CFGs:

by the result of Thatcher [38], the latter are precisely those L CPS(V) for which

ind(L) is finite. For instance, the CFG defined by production rules S +SS, S + a,

S + b generates the total P-language PS(a, b) whose degree is infinite; thus, it is not

P-equivalent to any BCG. The BCG defined by lexical assumptions:

a, b : S, S -+ S,

generates the same string language but not the same P-language (the degree of the

latter equals 1).

In [4], there is proven the Gaifman theorem: BCGs are equivalent to CFGs, that

means, both kinds of grammar yield the same class of string languages. This theorem

is closely related to the Greibach normal form theorem for CFGs. Original proofs of

both theorems use purely combinatorial transformations of one grammar into another

one. An algebraic proof of the Gaifman theorem, based on the algebra FS(V), is

given in [16,151. First, observe that, for any BCG G, deg(PL(G)) <Fd(FL(G)) and

ind(PL(G)) is finite. That yields the first part of the Gaifman theorem: each BCG is

P-equivalent, hence also equivalent, to some CFG. For the second part, fix a CFG Y

in the Chomsky normal form. Then, PL(%) is of finite index (by Thatcher’s theorem).

By the convention ‘brackets associated to the left’, each phrase structure can uniquely

be represented in the form uXi . . .X,,, where v is an atom and n 20. The following

transformation:

(VXl . * .xnf = [u, [xl’, [g-, . . . , [x,‘-, ,X,‘] . . .I]]

sends each phrase structure X to a phrase structure XT such that Fd(Xr) Q2 and the

yield of XT equals that of X (here we identify phrase structures with mnctor-argument

structures whose numerical subscripts always equal 1). We set

L = PL(sy = {XT: x E PL(F3)).

The language L C FS(I$) satisfies Fd(L) d 2. It requires some calculation to show that

the finiteness of ind(PL(Q)) entails the finiteness of ind(L). Then, by (Tl), L = FL(G),

for some BCG G. Clearly, L(G) = L(9), hence G is equivaIent to Q.

The global equivalence problem for BCGs is the question if L(G) = L(G’), for ar-

bitrary BCGs G and G’. Since the original proof of the Gaifman theorem yields an

effective construction of a BCG G equivalent to any given CFG ‘9, then the global

equivalence problem for CFGs (which is undecidable [23]) is effectively reducible to

that for BCGs. Consequently, the global equivalence problem for BCGs is undecidable,

and so is the global inclusion problem L(G) E L(G’). As shown in [141, a refinement of

W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24 11

algebraic notions sketched above provides algorithms for solving global F-equivalence

and F-inclusion problems for BCGs and many related problems.

The quotient algebra FS(Vo)/mo is denoted ALG(G) and called the basic algebra
of the BCG G. The quotient operations ft, f2 in the algebra ALG(G) are defined in

the standard way:

for i = 1,2. Here x/-o denotes the equivalence class of X with respect to -G. Since

No is of finite index, then ALG(G) is finite. For any BCG G, one can effectively

construct a powerset algebra over the set of types which is isomorphic to ALG(G).

By T(G) we denote the set of all subtypes of types from Q(G). In the powerset

P(T(G)), we define operations

for Tt, T2 & T(G). Thus, fi (resp. F2) yields the results of all possible applications of

rule (MPc) (resp. (MP+)) whose left premise is in Tl and right premise is in T2.

The mapping

is well defined, and hG is a monomorphism of the algebra ALG(G) into the algebra

(P(T(G)),fi ,fi). The image ho(ALG(G)) is a subalgebra of the latter algebra; this

subalgebra will be called the type algebra of G and denoted TP(G). Clearly, hG is an

isomorphism of ALG(G) onto TP(G).

For any BCG G, the algebra TP(G) can effectively be constructed. For TP(G) is

the subalgebra of the (finite and effectively given) algebra P(T(G)) generated by the

set of all sets

TG(u)={AET(G): ZI+GA},

for VE VG. Observe that v JoA holds if, and only if, u :A is a lexical assumption of G.

Now, many properties of BCGs can be expressed as properties of their type algebras,

and the latter can effectively be verified.

The inclusion -G C -FL(G) holds for every BCG G. We say that G is well-formed
if “‘G = -FL(G). For well-formed grammars G, syntactic categories defined as inter-

substitutability classes with respect to the F-language of G are the same as natural

equivalence classes determined by the type assignment of G.

(T4) The problem of whether G is well formed is decidable.

To prove (T4) we define

~Z(G)={TETP(G): S’GET}.

12 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24

One easily shows

fZ(G)= {&-(X/-G): XeFL(G)}.

Thus, fZ(G) represents the F-language FL(G) in the algebra TP(G). Now, NG = -FL(G)

holds true if, and only if, the identity is the only congruence in TP(G) compatible with

fZ(G), and the latter condition admits an effective verification.

In a similar way we prove

(T5) The global F-equivalence problem for BCGs is decidable.

Fix two BCGs Gi and G2. We assume VG, = VG, = V (otherwise we add new atoms to

the lexicons but no new lexical assumptions). Denote Lj = FL(Gi), for i = 1,2. First,

observe that Li = LZ if, and only if, there is an isomorphism g from the quotient algebra

F,S(V)/wL, to the quotient algebra FS(V)/NL~ such that

g(v/-LI) = V/NL~, for all v E V,

{g(X/y,): XEL,} = {X/y2: XEL2).

For the ‘only if’ direction, take the identity mapping for g. For the ‘if’ direction,

assume there is an isomorphism g fulfilling the above equalities. By the first equality,

we infer

m/-L, > =XINL2,

for all X EFS(V) (g is a homomorphism). It follows that -L, C wL2, since g is a func-

tion, and the converse inclusion is also true, since g is a bijective mapping. Conse-

quently, NL) =-L~, and g is the identity mapping. The second equality and the fact

that Li is a union of equivalence classes X/ -L,, for XEL~ yield L1 = L2. NOW, the iso-

morphism condition can be copied in type algebras. Let -i be the largest congruence

in TP(Gi) compatible with fl(Gi), for i = 1,2. Then, FL(Gl) = FL(G2) if, and only

if, there is an isomorphism g’ from the quotient algebra TP(Gi)/WI to the quotient

algebra TP(Gl)/--2 such that

{g'(T/-d: TEfl(Gl)}={~/~z: r~fl(G2)).

Clearly, the latter isomorphism condition can effectively be verified.

Analogous methods can be used to find algorithms for many other problems

concerning BCGs, for instance, the global P-equivalence problem, the F-inclusion and

P-inclusion problems (use an effective construction of a BCG G such that FL(G) =

FL(G1) U FL(Gz), and similarly for phrase languages), a construction of a rigid or

well-formed grammar F-equivalent to a given grammar, a construction of a (restricted)

complementation grammar for a given grammar, and so on. The reader is referred

to [14] for details.

W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24 13

In Section 3 we consider categorial grammars based on stronger systems of types,

as e.g. the Lambek calculus. For categorial grammars based on the Lambek calculus

and related (associative!) systems, FL(G) consists of all possible functor-argument

structures which can be defined on strings from L(G), and consequently, F-equivalence

and P-equivalence are the same as (weak) equivalence [151.

2. Grammars determined by unification

The method of unification, extensively used in logic programming and unification

systems in computational linguistics (see [36,21]), can be applied to fi_mctor-argument

structures and types in order to develop quite natural learning procedures for BCGs. The

basic learning algorithms of that kind were described in [14, 191, and Kanazawa [25,24]

elaborated a Gold style learning theory for BCGs, essentially involving these algorithms

(van Benthem [6] studies a closely related problem of solving ‘categorial equations’).

In this section, we briefly outline these algorithms and apply them to study the fine

algebraic structure of F-languages, generated by BCGs.

Let us recall some basic notions concerning unification. We consider terms (of a first-

order language) built from constants, variables and function symbols. A substitution
is an assignment of terms to variables, and it naturally extends to a mapping from the

set of terms to itself. A substitution 0 is u unifier of a set T, of terms, if D(S) = o(t),

for all S, t E T. o is a unifier of a family { TI, . . . , T,}, of sets of terms, if it is a unifier

of each Ti, for i = 1 , . . . , n. A most general unifier (mgu) of a family of sets of terms

is a unifier (T of this family such that, for every unifier CI of this family, there is

a substitution /I, such that CI = pa. It is well known that, for any finite family of finite

sets of types, one can effectively construct an mgu of this family (if exists) or prove

the nonexistence of any unifier of it (see [30,19]). Notice that two mgu’s of the same

family must be equal up to alphabetic variants.

We assume that atomic types are variables and constants. Thus, the set Tp, of all

types, can be treated as a set of terms in the above sense. We describe an effective

procedure which takes a finite set L c FS(V) as an input, and returns a ‘most general’

BCG G such that L C FL(G).

Fix a nonempty, finite set L c FS(Y). We assign type S to all structures from L,
and to each occurrence of an argument substructure in a structure from L we assign

a different variable. Then, types are assigned to occurrences of functor substructures of

structures from L by the following rules:

(F+) K Yl2 :B; X:A
Y:A-+B '

(Fc) KYll:B; Y:A
X:B+A ’

Now, we define the so-called general form of L (GF(L)) as the BCG determined by all

assumptions v : A such that v E V and A has been assigned to u by the above procedure.

14 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24

We have

FL(GF(L)) =L.

For any BCG G and substitution (T, let o(G) denote the BCG determined by the

assumptions v : o(A), for all assumptions v : A of G. One easily shows

FL(G) 2 FL(o(G)), for every BCG G.

We also write Gt C GZ, if each lexical assumption of Gt is an assumption of G2. The

basic property of GF(L) is: for every BCG G, L C FL(G) if, and only if, there is

a substitution cr such that o(GF(L)) C G.

For each VE V, let TL(v) be the set of all types A such that v : A is a lexical assump-

tion of GF(L). We set

FL = {TL(v): VE V}.

We assume that all sets T’(v) are nonempty (otherwise, drop the redundant atoms from

V). Recall that a BCG G is rigid, if, for any VE V, there is at most one type A such

that v : A is an assumption of G. We define RG(L) = o(GF(L)), where 0 is an mgu of

FL.. Thus, RG(L) is a rigid BCG, and L &FL(RG(L)). The following theorems, proven

in [19], show that RG(L) is a most general rigid BCG G such that L&FL(G).

(T6) For any nonempty, finite L c FS(V), the following conditions are equivalent:

(a) L C FL(G), for some rigid BCG G, (b) the family F. is unifiable.

(T7) For any rigid BCG G, L c FL(G) if, and only if, there is a substitution CI such

that a(RG(L)) C G.

To give a simple example, we consider the set L consisting of two structures:

l [Joan, smiles]*,

l [Joan, [smiles, charmingly]&.

According to the procedure described above, we assign type S to these two struc-

tures, variables X, y to the first and the second occurrence of ‘Joan’, respectively, and

variable z to the second occurrence of ‘smiles’. By rule (FA), we derive

0 smiles: x+S,

l [smiles, charminglyl2: y--+S,

l charmingly: z -+ (y + S).

So, GF(L) is defined by the following assumptions:

l Joan: x, y, smiles: z, x -+ S,

l charmingly: z + (y -+ S).

The family YL is unifiable; o(y) =x, a(z) =x +S is an mgu. Consequently, RG(L)

exists and is given by:

l Joan: x, smiles: x + S,

l charmingly: (X --f S) + (x --) S).

W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24 15

It is natural to interpret x = PN, hence ‘smiles’ is of type VP, and ‘charmingly’ is of

type VP 4 VP, of Adverb. RG(L) generates the infinite F-language which consists of

structures:

a [Joan, smilesIT,

l [Joan, [smiles, charmingly]&,

l [Joan, [[smiles, charminglylz, charmingly]&] etc.

It follows from (T7) that the latter F-language is contained in FL(G), for every rigid

BCG G such that L C FL(G).

An F-language L C FS(V) is said to be rigid, if L = FL(G), for some rigid BCG G.

Kanazawa [25,24] proves that the class of rigid F-languages possesses finite elas-

ticity: for all infinite sequences (A,), A,EFS(V), and all infinite sequences (L,),

of rigid F-languages L, G FS(V), there is an integer n such that either A, EL,, or

{Aa, . . . ,A,} g L,+l. Consequently, there exists a learning function for this class (this

notion is not defined here; the reader is referred to [25,24]). The same holds for

the class of string languages, generated by rigid BCGs, and the class of string lan-

guages, generated by BCGs which assign at most k types to each lexical atom, for any

k 2 1. A computable learning function can be defined by an adaptation of the above

algorithm. To prove the finite elasticity of the class of rigid F-languages, Kanazawa

establishes the ascending chain condition (ACC) for this class: there is no infinite chain

LOCLl CLZ..., of rigid F-languages over a finite lexicon.

These results enable us to say more about the class of rigid F-languages L C F,S(V).

Let W denote the class consisting of the latter F-languages and the total F-language

FS(V) (which is not rigid, by (Tl)). For any set L C FS(V), we define

C(L) = n {L’ E 9: L s L’}.

We prove

(T8) For any set L & FS(V), C(L)EB. Further, the operator C satisfies Tarski’s con-

ditions:

(i) L C C(L),
(ii) if L1 C L2, then C(Ll) 2 C(L2),

(iii) C(C(L)) = C(L),

(iv) for any L G FS(V), there is a finite set L’ CL such that C(L) = C(L’).

We prove the first part of (TS). Fix a set L c FS(V). If there is no L’ E% such that

L & L’, then C(L) = FS(V) E W. Otherwise, fix L’ E 9 such that L C L’. If L # 0 is finite,

then RG(L) exists (use (T6)), and FL(RG(L)) is the least rigid F-language containing L

(use (T7)), hence C(L) =FL(RG(L)) E 22. If L = 8, then C(L) = 0 E 92. So, assume L is

infinite. Then, L is the join of an ascending chain LO c LI c . . . , of finite F-languages.

By (T6), RG(L,) exists, for all 12 > 0; we denote LA = FL(RG(L,)). By (T7), we obtain

hence, by (ACC), there is an integer k 20 such that LL = LL, for all k >n. Clearly

C(L) = L; E 92.

16 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24

Conditions (i)-(iii) are obvious. To prove (iv), fix L sFS(V). We may assume

that L be infinite. If L C L’, for some rigid L’, then we proceed as above; we have

C(L) = Li = C(Lk). So, assume there is no rigid F-language L’ such that L c L’. Then,

C(L) =FS(V). We must show that C(Lw) = FS(V), for some finite L” 2 L. Suppose

the contrary. Then, for every finite L” 5 L, there is a rigid L” such that L” CL”.

Consequently, RG(L”) exists. As above, choose an ascending chain Lo c L1 c . . . , of

finite sets, whose join equals L. We define LA, for all n > 0, as above. By (ACC), there

is k > 0 such that LL = LL, for all II 3 k. Then, L C LL, which contradicts the assumption.

The operator C is a natural grammatical consequence operator. The deductively

closed sets L = C(L) are precisely the rigid F-languages and the total F-language

F&‘(V). It would be interesting to find an axiomatization of this operator by means of

‘inference rules’ defined on Rector-argument structures. One of these rules could be

WI; 4Cl; WI.
D[Cl ’

here, A[B] stands for a fiurctor-argument structure A with a designated occurrence of

a substructure B, and A[C] results from substituting C for B in A, and similarly for

D[B] and D[C]. This rule can be justified as follows. Since A[B] and A[C] belong to

FL(G), where G is rigid, then B and C are assigned the same type; since also D[B]

belongs to FL(G), then D[C] must belong to FL(G), because No C NFL(G).

Rigid BCGs and rigid F-languages are typical for artificial languages of formal logic

and mathematics (but they are also useful technical tools for studying general properties

of categorial grammars). Syntactic and semantic ambiguities of natural language are

reflected by nonrigid grammars. A nonrigid version of the algorithm described above

has been elaborated in [191.

The key notion is optimal unification. Let r be a family of sets of terms and 0 be

a substitution. Ker(cr) is the relation which holds between terms s and t iff cr(s) = o(t).

Let [t] denote the equivalence class of term t with respect to Ker(o). We define

T/o={[t]nT: JET}, for TEY,

Y/o=U{T/a: TEE-}.

c is called an optimal unifier (ou) of the family Y, if it satisfies the conditions

(OU.l) (T is an mgu of 5/a,

(OU.2) for all T E F, s, t E T, if a(s) # a(t), then the set {a(s), a(t)} is not unifiable.

Intuitively, an ou for Y is a most general substitution which unifies the family .Y as

far as possible. For every nonempty family 9, of nonempty, finite sets of terms, one

can effectively find finitely many au’s of Y (they are all ou’s of Y up to alphabetic

variants). We write a <S a’ if, for every T E 5, the cardinality of T/a is not greater

than that of T/a’. A minimal unifier (mu) for 5 is an ou for F which is <-minimal

in the set of all ou’s for K By the above, for every nonempty, finite family Y, of

W Buszkowskil Theoretical Computer Science 199 (1998) 5-24 17

nonempty, finite sets of terms, one can effectively find all mu’s for .F (up to alphabetic

variants).

Let g(L) be the family of all BCGs a(GF(L)) such that c~ is an mu for FL. The fol-

lowing theorem, proven in [19], shows that ‘S(L) contains precisely the ‘most general’

minimal BCGs G such that L C FL(G). Here, ‘minimality’ is defined with respect to

the following relation: G < G’ iff, for all 2, E V, the cardinality of Td(v) is not greater

than that of TQ(u).

(T9) Let L c FS(Y) be a finite set. The following conditions are equivalent:

(a) G is minimal in the class of grammars G’ such that L C FL(G’),

(b) there are G’ E g(L) and a substitution c1 such that G = a(G’).

Clearly, if FL is unifiable, then RG(L) is the only member of g(L), and minimal gram-

mars G such that L & FL(G) are rigid. Therefore, the nonrigid procedure is a ‘conser-

vative’ generalization of the rigid one. Unlike the latter, the former always yields an

outcome grammar.

Marciniec [31] studies more general versions of the above procedures in which in-

put data can be of the form Xi : Ai, i = 1,. . . , m (positive data) as well as non-5 : Bj,

j=l , . . . ,n (negative data). Roughly, negative data restrict the class of admissible

substitutions, and the ‘positive’ procedures, described above, are relativized to this

restricted class. Thus, the role of negative data is not merely to sieve out ‘wrong’ out-

comes of the positive procedure, but they essentially influence the positive procedure.

3. Residuated algebras

In the last section we pass from absolutely free algebras of structure trees to algebras

corresponding to stronger deductive systems applied in categorial grammars. The central

notion is residuation.

Types are formed out of atomic types by means of two conditionals +, c and

product o. F, A will denote finite strings of types. Let F t A mean: there is a deduction

tree of A with yield r. The deduction system of BCGs can be defined as a sequential

system with axioms:

(Id) A t A,

and inference rules

(E+) if TtA and AtA-+B, then I’,AtB,

(Ec) if TtBtA and AtA, then r,AtB.

The Lambek calculus L results from completing the above elimination rules by

introduction rules:

(I+) if A,rtB, then TtA-+B,

(It) if T,AtB, then TtBtA,

18 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24

where r # n (dropping this constraint leads to the stronger system Ll). The rules for

product are

(Eo) if AkAoB and r,A,B,r’tC, then r,A,r’tC,

(IO) if TtA and At-B, then r,AtAoB.

Both L and Ll are closed under the cut rule:

(CUT) if T,A, r’ t B and d t-A, then r, A, r’ t B.

Intuitively, rules (I -+), (I c) enable us to employ hypothetical reasoning in catego-

rial grammars. For instance, given the lexical assumption ‘John: PN’ and the derivable

pattern

PN,PN+StS,

one infers the Montague type raising principle,

PNtS+(PN+S)=NP,

which lifts up proper nouns to the type of noun phrase. As usual for natural deduction,

the latter derivation can be represented by the lambda term

~uxPN-S. (XPN + S jPN),

which means that the constant j (standing for ‘John’) is transformed into the family

of predicates holding for it. The reader is referred to [5,7] for a thorough account

of natural deduction and the lambda calculus in categorial semantics, and to [181 for

a formal analysis of different deduction systems connected with linguistically relevant

fragments of the lambda calculus (see also [39] for a version of the lambda calculus

appropriate for directional types).

Here we focus on algebraic structures naturally modelling natural deduction systems.

A residuated semigroup (r. semigroup) is a structure &? = (A4, o, =+, +, <) such that

(M, o) is a semigroup, < is a partial ordering on M, and =+, -+ are binary operations

on M, satisfying the equivalences

b<a+c iff aob<c iff adc+b,

for all a,b,cEM.

We describe a general powerset construction of residuated semigroups. Let ~2 = (A, .)

be a semigroup. In the powerset P(A) we define operations o, +, G in the following

way:

XoY={a.b: aEX, bEY},

X+Y={CEA: (tlaEX)a.cEY},

X+Y={CEA: (VaEY)c.aEX},

W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24 19

for X, Y 2 A. (P(A), o, +, +, C) is a residuated semigroup; we refer to it as the power-
set r. semigroup over the semigroup d. If A = V+ is the free semigroup of nonempty

finite strings over the lexicon V, then P(A) is the r. semigroup of languages over V.

More general structures are based on frames (U, R) such that U is a nonempty set

and R is a ternary relation on U. In P(U) one defines operations 0, +, + as follows:

XoY={c: (3a~X)(3b~ Y)R(u,b,c)},

X+Y={b: (~‘a,c)(a~X, R(a,b,c) imply CEY)},

X+ Y = {a: (vb,c)(bE Y, R(u,b,c) imply CEX)},

for X, Y s U. Following Dunn [20], we call the r. semigroup (P(U), 0, +, -+, C) the
concrete r. semigroup over the frame (U, R). Clearly, the powerset r. semigroup over

(A, .) is the concrete r. semigroup over (A, R), where R(u, b, c) holds iff a. b = c. While

ternary frames are characteristic of Kripke style semantics for relevant logics, powerset

models are more in the style of universal algebra and naturally related to the algebra

of languages.

An assignment of types in an r. semigroup is defined in the standard way. By a

model we mean a pair (A!,p) such that JH is an r. semigroup and p is an assignment

of types in A?. The sequent AI,. . . ,A, t A is true in this model, if

P(AI)o... 0 P(&) d P(A),

and it is valid in A, if it is true in all models (A, p). If the underlying semigroup

is a monoid (M,o, l), then the sequent k A is true in (A, p), if 1 <p(A), and the

remaining notions are defined, as above. The powerset r. monoid over the monoid

(A, .) 1) is (P(A), 0, *, *, (11, C).
Let C be a set of sequents. L(C) (resp. Ll(C)) denotes the system L (resp. Ll)

with (CUT), enlarged with all sequents from C as new axioms. Basic completeness

theorems for the Lambek calculus are the following:

(TlO) Sequents derivable in L(C) are precisely those which are valid in all powerset r.

semigroups over arbitrary semigroups.

(Tll) Sequents derivable in Ll(C) are precisely those which are valid in all power-

set r. monoids over arbitrary monoids.

(T12) If C consists of product-free sequents, then product-free sequents derivable in

L(C) are precisely those which are valid in all powerset r. semigroups over

free semigroups.

(T13) If C consists of product-free sequents, then product-free sequents derivable in

Ll(C) are precisely those which are valid in all powerset r. monoids over free

monoids.

(T14) Sequents derivable in L (resp. Ll) are precisely those which are valid in all

powerset r. semigroups (resp. monoids) over free semigroups (resp. monoids).

20 W Buszkowskil Theoretical Computer Science 199 (1998) 5-24

(T15) Product-free sequents derivable in L (resp. Ll) are precisely those which are

valid in all powerset r. semigroups (resp. monoids) over finite semigroups (resp.

monoids).

For each of these theorems, the ‘only if’ direction (soundness) is easy: axioms (Id)

are true in all models, and inference rules preserve the truth. Theorems (T12), (T13)

were first proven in [8]. One constructs the canonical model P(Z+), where C is the

set of types. The canonical assignment f is defined as follows:

f(p) = {r: r F-LPI.

By induction on type A, one proves

f(A)={P TtLA},

for all product-free types A. That yields

Al,... AI-LA 8 f(Al)o...~f(A~)~f(A).

The ‘only if’ direction holds by soundness, and the ‘if’ direction by (Id) and the latter

equality. For Ll, the argument is similar.

Theorems (Tl 0) and (Tl 1) were proven in [111. They require a more sophisticated

construction. Roughly, one affixes to L new rules of the form

(D) if TtAoB, then (r,l,AoB)kA and (r,2,AoB)tB,

which enable us to decompose each r such that r t-A o B is derivable into two terms

T=(T,l,AoB).(r,2,AoB)

such that (r, 1, A o B) k A and (r, 2, A o B) t B are derivable. Of course, the language

of L must be extended to admit terms of the above form. For the extended system,

one constructs the canonical model, following the lines above, but now the underlying

semigroup is not a free semigroup.

Theorem (T14) has been proven by Pentus [35] by an approximation of a model

with partial models; the proof uses many combinatory tools. Theorem (T15), proven

in [9, 171, establishes the finite model property for Lambek systems. One uses gen-

eralized powerset models over free semigroups. For a set K C Z+ such that K # 0 is

closed under nonempty subintervals, one defines the relativized powerset operations

XoY,X+Y,X+Y, forX,YcK,

XoY={abEK: acX, bEY},

X+Y={CEK: (‘daEX)(ac$?iKVacEY)},

X+Y={CEK: (‘v’aEY)(ca@KVcaEX)}.

W. Buszkowskii Theoretical Computer Science 199 (1998) 5-24 21

Then, (P(K),o,+,+, C) is an r. semigroup which is isomorphic to the powerset r.

semigoup P(K’), where K’= K U {x}, x being a new element which takes the part

of all strings not in K. One shows that L (resp. Ll) is complete with respect to all

models of that kind with a finite K. Details of the proof are somewhat cumbersome.

If powerset models are replaced with concrete models, then analogues of theorems

(TlO) and (Tl 1) can be obtained by a modification of the well known Stone repre-

sentation theorem for Boolean algebras. One shows:

(T16) Each residuated semigroup is embeddable into a concrete residuated semigroup.

This representation theorem has been proven in [20] in the following way. Let ~4’ be

an r. semigroup. A set V CM is called a cone, if a E V and a <b entails b E V. Take

U equal to the set of cones, and define a ternary relation R on U:

R(V,, V2, V3) iff (V&b)(aE vi, a*bE 02 imply bE 03).

Then, the mapping h(a) = { 8: a E V} . IS a monomorphism of the r. semigroup J?’ into

the concrete r. semigroup P(U).

Interestingly, if R is replaced with the binary operation

v,. V2={b: (3aEV,)a*bEV2},

then (U, .) is a semigroup, and one can consider the powerset r. semigroup P(U)

instead of the concrete r. semigroup. Yet, the mapping h, defined above, is merely

a homomorphism with respect to +, + and 6, but not o. Thus, using the method

above, one can show that each +, + -reduct of an r. semigroup is embeddable into a

powerset r. semigroup. To prove the full representation theorem:

(T17) Each residuated semigroup is embeddable into a powerset residuated semigroup,

one needs decomposition methods of the proof of theorems (Tl 0) and (Tl 1).
Other representation and completeness theorems for Lambek systems have been ob-

tained in [2,33,29] with respect to algebras of binary relations. These algebras fit an

interesting interpretation of Lambek systems as logics of programs (procedures).

We pass to categorial grammars. Lambek categoriaE grammars (LCGs) result from

enriching BCGs with the full strength of the Lambek calculus (here, we restrict our-

selves to product-free types). For any type A, the LCG G determines the language

LA(G) 5 V$ which consists of all strings on V,, being assigned type A by G. On the

other hand, given languages L,(G), for atomic types p, languages LA(G) are uniquely

determined by powerset operations in the algebra P(V,f):

P(G) = L,(G), for atomic p,

LA+B(G)=LA(G)=d(G),

LBtA(G) =LB(G) -dA(G).

22 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24

There arises a natural problem of compatibility of languages LA(G) and LA(G). As

shown in [8], no Lambek grammar G is complete, that means, it cannot fulfil LA(G) =

LA(G), for all types A. A weaker condition is correctness: LA(G) C LA(G), for all

types A. It is easy to show that G is correct, if r : A in the sense of G entails u E L’(G),

for all lexical atoms n and types A. Each Lambek grammar can be extended to a correct

Lambek grammar by introducing new lexical atoms: for any type B which appears in

lexical assumptions as a subtype, one introduces a new atom VB and a new assumption

VB : B. The new grammar G’ is conservative with respect to the initial grammar G:

LA(G) =&(G'> n I’$

Correct Lambek grammars are precisely those whose language family L,(G), for atomic

types p, is a minimal solution of the lexical postulates u : A. Thus, for correct Lambek

grammars, languages generated by the grammar can be characterized in Algol-like style,

as the minimal languages satisfying a system of postulates.

Problems of the relation of LCGs (and categorial grammars based on other systems

of that kind, e.g. nonassociative and/or commutative) to the Chomsky hierarchy were

considered by several authors [5, 10, 13,26,27,34]. In [34], LCGs are shown to be

weakly equivalent to CFGs. Methods of proofs are of proof-theoretic rather than typi-

cally algebraic character, hence we do not discuss them here (actually, in [13,26,27],

the characterization of P-languages of BCGs, stated in (T3), has been employed to

prove the P-equivalence of Nonassociative Lambek Grammars and BCGs). An ex-

tensive account of proof-theoretic methods in categorial grammar (in connection with

algebraic structures) can be found in [181.

Most questions discussed above can be extended toward abstract algebras (A,F),

where 9 is a set of operations in the universe A. With each operation f, of arity

n 2 1, we associate residuation operations f Ii, i = 1,. . . , n, satisfying the equivalence

f(. ..) ai)...) <U iff @<(f/i)(. . . . Q ,...),

where d is a partial ordering on A. If the residuation operations exist, for each f E 9,

then the structure (A,F, <) is called a residuated algebra. Given an algebra (A,F),
the powerset residuated algebra over this algebra is defined as the set P(A) with C

taking the part of partial ordering, and operations f and f/i given by

f(X ,..., Xn)={f(Ul ,..., &)I (Vi)UiEXi},

(f/i)(Z ,..e,Xn)={Ui: (Vj#i)(VUjEXj)f(Ul,..., U,)E&}.

Residuated algebras as general frames for Lambek style categorial grammars have

been proposed in [15, 181. They correspond to minimal multimodal systems considered

in [32,29] which account for different composition modes in natural language. The
Generalized Lambek Calculus GL (in the natural deduction form) is based on axioms

W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24 23

(Id) and rules:

(Ef) if d tf(Ai, . . . ,A,), and T[f[A 1,. . . ,A,]] I- C, then T[d] t- C,

(If) if T;:kAi, i=l,..., n, then f[rl,...,r,l~f(Al,...,A,),

(Ef/i) if fi k (f/i)@ I,..., A,) and CkAj, for allj#i, then f[ri ,..., rn]tAi,

(If/i) if f[Ai ,..., r)..., A,]tAi, then rt(f/i)(Ai ,..., A,),

(CUT) if T[A]tB and AFA, then T[A] FB.

Again, the rule (CUT) can be eliminated from the pure system GL. Now, GL is

complete with respect to residuated algebras (that is an easy application of Lindenbaum

algebras), and it is also complete with respect to powerset residuated algebras. The latter

theorem has been proven in [28] by means of the following representation theorem:

each residuated algebra is embeddable into a powerset residuated algebra. The proof

goes by a generalization of the proof of (TlO) in [111.

References

[l] K. Ajdukiewicz, Die syntaktische Konnexitat, Studia Philos. 1 (1935) l-27.

[2] H. Andreka, S. Mikulas, Lambek calculus and its relational semantics, J. Logic Language Inform.

3 (1994) l-38.

[3] Y. Bar-Hillel, A quasi-arithmetical notation for syntactic description, Language 29 (1953) 47-58.

[4] Y. Bar-Hillel, C. Gait&n, E. Shamir, On categorial and phrase structure grammars, Bull. Res. Council

Israel F9 (1960) 155-166.

[5] J. van Benthem, Essays in Logical Semantics, Reidel, Dordrecht, 1986.

[6] J. van Benthem, Categorial equations, in: E. Klein, J. van Benthem (Eds.), Categories, Polymorphism

and Unification, University of Amsterdam, 1987.

[7] J. van Benthem, Language in Action. Categories, Lambdas and Dynamic Logic, North-Holland,

Amsterdam, 1991.

[S] W. Buszkowski, Compatibility of a categorial grammar with an associated category system, Z. Math.

Logik Grundlagen Math. 28 (1982) 229-238.

[9] W. Buszkowski, Some decision problems in the theory of syntactic categories, Z. Math. Logik

Grundlagen Math. 28 (1982) 539-548.

[lo] W. Buszkowski, The equivalence of unidirectional Lambek categorial grammars and context-free

grammars, Z. Math. Logik Gnmdlagen Math. 31 (1985) 369-384.

[l I] W. Buszkowski, Completeness results for Lambek syntactic calculus, Z. Math. Logik Gnmdlagen Math.

32 (1986) 13-28.

[12] W. Buszkowski, Typed functorial languages, Bull. Polish Academy Sci. Math. 34 (1986) 495-505.

[131 W. Buszkowski, Generative capacity of nonassociative Lambek calculus, Bull. Polish Academy Sci.

Math. 34 (1986) 507-516.

[14] W. Buszkowski, Solvable problems for classical categorial grammars, Bull. Polish Academy Sci. Math.

35 (1987) 373-382.

[15] W. Buszkowski, Generative power of categorial grammars, in: R.T. Oehrle, E. Bach, D. Wheeler (Eds.),

Categorial Grammars and Natural Language Structures, Reidel, Dordrecht, 1988, pp. 69-94.

[16] W. Buszkowski, Gaitinan’s theorem on categorial grammars revisited, Studia Logica 47 (1988) 23-33.

[17] W. Buszkowski, The finite model property for BCI and related systems, Studia Logica 57 (1996)
303 -323.

[18] W. Buszkowski, Mathematical linguistics and proof theory, in: J. van Benthem, A. ter Meulen (Eds.),

Handbook of Logic and Language, Elsevier, Amsterdam, 1997, pp. 683-736.

24 W. Buszkowskil Theoretical Computer Science 199 (1998) 5-24

[19] W. Buszkowski, G. Penn, Categorial grammars determined from linguistic data by unification, Studia

Logica 49 (1990) 431-454.

[20] J.M. Dunn, Partial gaggles applied to logics with restricted structural rules, in: K. DoSen, P. Schroeder-

Heister (Eds.), Substructural Logics, Clarendon Press, Oxford, 1993, pp. 63-108.

[21] G. Gazdar, C. Mellish, Natural Language Processing in PROLOG, Addison-Wesley, Reading, MA, 1989.

[22] J.Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987) l-102.

[23] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley,

Reading, MA, 1979.

[24] M. Kanazawa, Learnable classes of categorial grammars, Ph.D. Thesis, Dept. of Linguistics, University

of Stanford, 1994.

[25] M. Kanazawa, Identification in the limit of categorial grammars, J. Logic Language Inform, 5 (1996)

115-155.

[26] M. Kandulski, The equivalence of nonassociative Lambek categorial grammars and context-free

grammars, Z. Math. Logik Grundlagen Math. 34 (1988) 41-52.

[27] M. Kandulski, Normal form of derivations in the nonassociative and commutative Lambek calculus with

product, Math. Logic Quart. 39 (1993) 103-l 14.

[28] M. Kolowska-Gawiejnowicz, Powerset residuated algebras and generalized Lambek calculus, Math.

Logic Quart. 43 (1997) 60-72.

[29] N. Kurtonina, Frames and labels. A modal analysis of categorial inference, Ph.D. Thesis, Dept. of

Linguistics, University of Utrecht, 1995.

[30] J.W. Lloyd, Foundations of Logic Programming, Springer, Berlin, 1987.

[31] J. Marciniec, Learning categorial grammars by unification with negative constraints, J. Appl. Non-

Classical Logics 4 (1994) 181-200.

[32] M. Moortgat, Categorial type logics, in: J. van Benthem, A. ter Meulen (Eds.), Handbook of Logic and

Language, Elsevier, Amsterdam, 1997, pp. 93 -177.

[33] N. Pankratiev, On the completeness of the Lambek calculus with respect to relativized relational

semantics, J. Logic, Language Inform. 3 (1994) 293-246.

[34] M. Pentus, Lambek grammars are context-free, in: Proc. 8th Ann. IEEE Symp. on Logic in Computer

Science, Montreal, 1993.

[35] M. Pentus, Lambek calculus is L-complete, Report LP 93-14, Institute for Logic, Language and

Computation, University of Amsterdam, 1993.

[36] F. Pereira, S. Shieber, Prolog and Natural Language Analysis, CSLI Lecture Notes, vol. 10, Menlo Park,

1987.

[37] H. Rasiowa, An algebraic approach to non-classical logics, North Holland and Polish Scientific

Publishers, Amsterdam, Warszawa, 1974.

[38] J.W. Thatcher, Characterizing derivation trees of context-free grammars through a generalization of

finite automata theory, J. Comput. Systems Sci. 1 (1967) 317-322.

[39] H. Wansing, The logic of information structures, Ph.D. Thesis, Dept. of Mathematics and Computer

Science, University of Amsterdam, 1992.

