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SUMMARY

The synthesis of nucleotides in the body is centrally
controlled by the liver, via salvage or de novo
synthesis. We reveal a pervasive circadian influence
on hepatic nucleotide metabolism, from rhythmic
gene expression of rate-limiting enzymes to oscil-
lating nucleotide metabolome in wild-type (WT)
mice. Genetic disruption of the hepatic clock leads
to aberrant expression of these enzymes, together
with anomalous nucleotide rhythms, such as
constant low levels of ATP with an excess in uric
acid, the degradation product of purines. These
results clearly demonstrate that the hepatic circadian
clock orchestrates nucleotide synthesis and degra-
dation. This circadian metabolome timetable,
obtained using state-of-the-art capillary electropho-
resis time-of-flight mass spectrometry, will guide
further investigations in nucleotide metabolism-
related disorders.
INTRODUCTION

The circadian clock synchronizes physiology and behavior to the

appropriate time of day and endogenously generates rhythms

under constant conditions. The clock regulates the transcription

of thousands of target clock-controlled genes involved in funda-

mental metabolic pathways (Akhtar et al., 2002; Lamia et al.,

2008; Panda et al., 2002; Reddy et al., 2006; Ueda et al., 2002;

Vollmers et al., 2009), but the metabolic consequences of such

regulation often remain to be described.

Two essential discoveries, the circadian control of the cell

cycle (Matsuo et al., 2003) and DNA repair (Kang et al., 2010)

in the liver, suggest the supply of nucleotides itself is regulated

by the circadian clock. Since the liver is a site of active de

novo nucleotide synthesis and controls the supply of free bases

and nucleosides to other tissues for salvage (Barsotti et al., 2002;

Cansev, 2006; Cao et al., 2005; Gasser et al., 1981), the circadian

control of hepatic nucleotide metabolism will have wide implica-

tions for the body.

To define the role of the hepatic clock in the control of nucle-

otide metabolism, we analyzed gene expression and metabo-

lome of wild-type (WT) and liver Bmal1-deficient mice
(Bmal1L�/�), which show rhythmic activity and food intake but

lack a functional molecular clock in the liver driving hepatic phys-

iology (Shimba et al., 2011). We show that the expression of rate-

limiting enzymes in nucleotidemetabolism is under clock control,

and that nucleotides are rhythmic and time segregated. In

Bmal1L�/� liver, aberrant expression of these enzymes is corre-

lated with the disruption of nucleotide rhythms. In particular,

ATP and was constantly low and uric acid was increased, sug-

gesting inefficient purine synthesis and/or increased degrada-

tion. We here provide the first (to our knowledge) integrated tran-

scriptome and metabolome circadian timetable focused on

a single metabolic pathway, giving insights into the physiological

importance of the local hepatic clock for nucleotide synthesis.

This study is particularly relevant for cancer chemotherapy and

for the treatment of nucleotide imbalance disorders such as gout.

RESULTS

The expression of genes involved in purine and pyrimidine nucle-

otide metabolism (KEGG mmu00230 and 00240, initially

screened for rhythmic expression in microarray data set at

http://circadian.salk.edu) was analyzed by quantitative real-

time PCR from WT liver samples dissected every 4 hr during

24 hr. To avoid external interferences on the endogenous circa-

dian clock, mice were housed in constant dark (DD) conditions

with food and water ad libitum. To investigate the role of the liver

circadian clock in the control of nucleotide biosynthesis, gene

expression was analyzed in clock-less liver generated by liver-

specific disruption of the clock gene Bmal1 (Shimba et al.,

2011). The loss of temporal hepatic organization was confirmed

by the absence of Bmal1 transcript and the aberrant rhythms of

clock gene expression (Figure S1). For the sake of clarity, we

report only genes that showed significant variations of expres-

sion (p < 0.05 in one-way ANOVA in WT). The results presented

here are largely consistent with previous microarray data sets

(Vollmers et al., 2009), but some genes showing very low-ampli-

tude oscillations on microarray were not significant in our

analysis.

Rate-Limiting Enzymes in De Novo Nucleotide Synthesis
De novo synthesis of nucleotides, with multiple enzymatic steps

mediated by different genes, leads to the synthesis of inosine

monophosphate (IMP, Figure 1A) or uridine monophosphate

(UMP, Figure 1B), precursors for other nucleotides. The rate-

limiting enzymes in the de novo synthesis of IMP (Ppat) (Nelson
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et al., 2008) and UMP (Cad and Umps) (Traut, 2009; Traut and

Jones, 1977) showed significant circadian rhythms of expres-

sion. In Bmal1L�/� liver, their expression was significantly

affected (Ppat showing elevated levels) but still displayed

a rhythmic component.

The de novo synthesis of CTP from UTP is mediated by two

enzymes called CTP synthases. Two isoforms exist, Ctps (cyto-

solic) and Ctps2 (mitochondrial), both mediating the rate-limiting

step in the synthesis of cytidine nucleotides. Ctps expression

was circadian but Ctps2 showed significant bimodal variations.

In Bmal1L�/� liver, both genes still displayed rhythmic expres-

sion with lower amplitude but with a 2-fold increase in baseline.

Together these data suggest the rhythmic de novo synthesis is

under predominant systemic control, but modulated by the local

liver clock.

Mitochondrial Nucleotide Monophosphate Kinases
The phosphorylation of nucleotide monophosphates, mediated

by specific kinases, is a critical step toward the synthesis of

NTPs (Nelson et al., 2008). Among these kinases, only the mito-

chondrial isoforms Ak2, Ak4 (Figure 1A), and Cmpk2 (Figure 1B)

showed significant rhythmic expressions. Ak2 and Ak4 showed

identical waveforms in WT and were similarly affected in

Bmal1L�/�, showing lower expression with a bimodal pattern.

Cmpk2 in contrast showed higher expression in Bmal1L�/� but

remained rhythmic. This suggests that the rhythmic supply of

nucleotide diphosphate, ADP in particular, is important in the

mitochondria where ATP is synthesized. Lower Ak expression

but higher Cmpk2 expression may cause an imbalance in

purine/pyrimidine content.

dNDP Synthesis Is Controlled by the Circadian Clock
Deoxynucleotide synthesis fromnucleotide diphosphate ismedi-

ated by a single enzyme called ribonucleotide reductase M

(RRM). RRM is composed of two subunits, RRM1 and RRM2

(Nelson et al., 2008), the latter being rate limiting for the activity

of the enzyme (Zuckerman et al., 2011). Rrm1 expression in liver

was constant; while Rrm2 displayed pronounced circadian vari-

ations (Figure 1; Figure S2B). NadirRrm2mRNA levels were three

times lower than those of Rrm1, whereas at peak level they were

equivalent, suggesting indeed a circadian control of RRMactivity

via regulation of Rrm2 expression. In Bmal1L�/� liver, Rrm2 re-

mained constantly low. This particular enzyme is interesting

since it operates both on purines and pyrimidines, and since
Figure 1. Rate-Limiting Enzymes Are under Transcriptional Control by
Gene expression analysis in C57BL/6J andBmal1L�/�mice, on the second day in c

4 hr). One-way ANOVA was used to analyze gene expression profiles in WT mice

gene expression in the liver of C57BL/6J andBmal1L�/�micewas performed by T

the following order: interaction/genotype/time with *p < 0.05; **p < 0.01; ***p < 0.0

night, respectively. For visual clarity, data at CT0 is double plotted at CT24 in all

(A) Gene expression analysis of enzymes in the purine pathway. A simplified purine

Rrm2, Ak2, and Ak4, different from that of Pnp.

(B) Gene expression analysis of enzymes in the pyrimidine pathway. A simplified p

novo synthesis (multiple enzymatic steps, but rate-limiting enzymes are indicated

phosphorylases. Double black lines represent enzymatic activities encoded by n

All data presented are mean ± SEM.

See also Figures S1, S2, and S4.
the synthesis of dNTPs is specifically for DNA replication and

repair. Lower Rrm2 expression in clock-less liver may cause

dNTPs insufficiency and hamper liver regeneration after injury.

Nucleotide Degradation and Salvage
The degradation of nucleosides to free bases, an important step

for their subsequent salvage by other tissues (Balestri et al.,

2007; Griffiths and Stratford, 1997; Markert, 1991; Pizzorno

et al., 2002), is mediated by nucleoside phosphorylases. All

hepatic nucleoside phosphorylases showed significant and

high-amplitude rhythmic expression: Pnp (Figure 1A), Tymp,

and Upp2 (Figure 1B). Pnp, Tymp, and Upp2 were highly ex-

pressed in the liver compared to other tissues (Figure S2A), but

Upp1was barely detectable andwas not significant (Figure S2B).

In addition, Tk1 and Tk2, salvaging thymidine to dTMP in the

cytoplasm and mitochondria, respectively (Munch-Petersen,

2010), were rhythmically expressed in the liver (Figure 1B).

In Bmal1L�/� liver, Upp2 expression lost its peak at CT12 and

showed a low bimodal pattern. Tymp andPnp showed increased

expression, but with a residual rhythm of lower amplitude. Tk1

and Tk2 were both significantly affected, showing higher base-

line and bimodal expression.

Together these results suggest that the hepatic clock, together

with systemic cues, orchestrate nucleotide synthesis and degra-

dation. To test this hypothesis, we quantified circadian liver me-

tabolome by capillary electrophoresis time-of-flight mass spec-

trometry (CE-TOFMS) in WT mice, every 4 hr during 24 hr.

Rhythmic Abundance of Bases, Nucleosides,
and Nucleotides by CE-TOFMS
CE-TOFMS analysis of liver metabolome revealed pervasive

rhythms in free purine and pyrimidine bases, nucleosides, and

nucleotides (Figures 2A and 2B).

The rhythms of IMP and UMP were similar to that of the

expression of their own synthetic enzymes: Ppat and IMP rose

during the day, Cad and Umps peaked at night with UMP.

The purine nucleotides ADP, ATP, GDP, and GTP all had

similar phases (Figure 2A), which is consistent with the two

parallel branches of the purine pathway. Since ATP allosterically

regulates the synthesis of GMP from IMP, it is likely that the

rhythm observed for ATP drives that of GTP. In contrast, all cyti-

dine nucleotides showed significant bimodal patterns (Fig-

ure 2B), very similar to Ctps2 expression. In contrast, UDP and

UTP did not show significant variations.
the Hepatic Circadian Clock
onstant darkness, starting fromCT0 (n = 3mice per time points, sampled every

, with significance levels given under the legend of each graph. Comparison of

wo-way ANOVA, the significance levels are given under the title of each graph in

01. The empty and filled rectangles over the x axis indicate subjective day and

graphs.

metabolic pathway is shown in the center. Note the similar peak times for Ppat,

yrimidine metabolic pathway is shown in the center. Green arrows indicate de

by a green label); blue, NMP kinases; red, NDP reductase; purple, nucleoside

onrhythmic genes.
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Figure 2. Rhythmic Abundance of Free Bases, Nucleosides, and Nucleotides in the Liver

Quantification of purine and pyrimidine nucleotides, nucleosides and free bases in the liver of C57BL/6J mice sampled on the second day in constant darkness

from CT0 (n = 3 animals per time point). Significance levels in one-way ANOVA are given on the upper right corner of each graph. The empty and filled rectangles

over the x axis indicate subjective day and night, respectively. Here, the color of curves indicates initial nucleotide monophosphate from the de novo pathway
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The purine bases adenine and guanine peaked at night, rising

at the end of the day in a pattern similar to Pnp expression and in

antiphase to adenosine and guanosine. Similarly, uridine abun-

dance was antiphasic to Upp2 expression. Due to efficient

degradation of pyrimidine free bases to soluble metabolites in

the liver, the uracil rhythm closely mirrored that of uridine an

order of magnitude lower. Since no cytidine phosphorylase has

so far been discovered in mammals, it is likely that the rhythms

observed for cytidine and cytosine depend mostly on digestion.

A similar rhythm in cytidine, peaking during the subjective day,

was previously reported in a partial circadian metabolomics

study from mouse plasma (Minami et al., 2009).

Hierarchical clustering by Pearson correlation (Figure 2C) re-

vealed that purines are time segregated, with nucleotides peak-

ing in the mid-subjective day, followed by nucleosides at CT12,

then by the adenine and guanine bases at CT16. ATP and GTP

originate from the two opposite branches of the purine pathway

but are perfectly synchronous. Clearly, a tight regulation of

purines operates, resulting in a constant ratio between ATP

and GTP throughout the day. Adenosine nucleotides are the

most abundant purines (Figure S3A), reflecting their metabolic

importance.

Hierarchical clustering of pyrimidines revealed a different

pattern (Figure 2D). Here, the highest level of temporal organiza-

tion reflected the nature of the base used, either uracil or cyto-

sine. This underlines the differences between the two parallel

and symmetric branches of the purine pathway versus the asym-

metric and serial pyrimidine pathway (compare Figures 1A and

1B). The most abundant pyrimidine is UMP, consistent with it

being the precursor for all other pyrimidine nucleotides

(Figure S3B).

Similar to the disrupted rhythmic expression of genes pre-

sented in Figure 1, we predict that the nucleotide rhythms pre-

sented here will likewise be affected by the loss of the hepatic

clock.

Loss of Liver Clock Affects Nucleotide Rhythms and
Abundance
To determine which nucleotide rhythms and abundance are

affected by the loss of the hepatic clock, we compared the

nucleotide metabolome of Bmal1L�/� and Bmal1f/f mice at CT4

andCT16. These time points were chosen since they often corre-

spond to high and low nucleotide abundance in WT mice. We

present the results of this analysis organized in a metabolic

map, similar to that used in Figure 1 (Figure 3).

IMP and UMP were little affected by the loss of the liver clock.

While circadian time had a strongly significant effect on the

abundance of both, only UMP showed a significant time/geno-
(green), NDP and NTP (blue) and free bases and nucleosides (purple), correspond

these metabolites. For visual clarity, data at CT0 are double plotted at CT24 in a

(A) Rhythmic profiles of purine nucleotides, nucleosides and free bases.

(B) Rhythmic profiles of pyrimidine nucleotides, nucleosides, and free bases.

(C) Hierarchical clustering of purines using Pearson correlation coefficient display

and free bases, forming three separated time domains of maximal abundance.

(D) Hierarchical clustering of pyrimidines using Pearson correlation coefficient d

cytidine nucleotides, nucleoside, and bases, and UMP, uridine, and uracil.

All data presented are mean ± SEM.

See also Figure S3.
type interaction in two-way ANOVA. This is reminiscent of

Ppat, Cad, and Umps expression in Figure 1: while they were

affected by the loss of the hepatic clock, a rhythmic expression

persisted, suggesting systemic control of de novo nucleotide

synthesis by rhythmic cues.

AMP significantly increased in Bmal1L�/� liver but ATP re-

mained low, which is consistent with the blunted expression

pattern of Ak2 and Ak4, resulting in a lower ADP/AMP ratio.

The opposite branch of the purine pathway appeared similarly

but somewhat less affected. GTP showed blunted CT4/CT16

fold ratio (genotype/time interaction significantly different in

two way ANOVA, p < 0.05). Together this is consistent with

a primary circadian regulation of ATP synthesis that in turn drives

changes in GTP via allosteric control.

For pyrimidines, UTP and UDP were significantly lower in

Bmal1L�/� liver, despite showing nonsignificant circadian varia-

tions in WT mice. CTP and CMP levels at CT4 were similar

between genotypes, but at CT16 they increased in Bmal1L�/�

liver while they decreased in WT, suggesting altered phase of

synthesis, with higher basal synthesis level in clock-less liver.

The purine nucleosides adenosine and guanosine were less

abundant in Bmal1L�/� liver, but showed CT4/CT16 variations

as in WT. Adenine base however showed a reduction in the

CT4/CT16 fold ratio. Low adenosine and blunted adenine rhythm

are consistent with higher expression levels but lower amplitude

rhythm observed for Pnp in Figure 1. For pyrimidine nucleosides,

uridine showed increased levels in Bmal1L�/� liver, but cytidine

was not affected.

Interestingly, the degradation product of purine nucleotides,

uric acid, whose excess in human leads to gout, was elevated

in Bmal1L�/� liver, suggesting indeed that the balance between

synthesis (low ATP levels) and degradation (high urate) of purines

is tilted toward degradation.

Together these data provide direct evidence that the hepatic

circadian clock orchestrates the entire nucleotide metabolic

pathway, in synchrony with systemic cues.

DISCUSSION

Nucleotide metabolism within the liver is orchestrated by the

hepatic circadian clock but also synchronized at the level of

the whole organism. First, de novo synthesis appears to respond

mostly to systemic signals, which is consistent with the

restricted feeding/fasting-driven rhythmic expression of Ppat,

Umps, and Cad in clock-deficient animal reported in a previous

data set (Vollmers et al., 2009). Second, the degradation of all

nucleosides to their respective free bases appears regulated

by the hepatic clock via control of phosphorylases transcription,
ing to the colors used for the enzyme activities contributing to the regulation of

ll graphs.

ed as a heat map. Note the clear clustering between nucleotides, nucleosides

isplayed as a heat map. Note here the clear higher-order clustering between
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Figure 3. Loss of Liver Clock Affects Nucleotide Rhythms and Abundance

Absolute quantification of nucleotides, nucleosides and free bases in Bmal1L�/� and Bmal1f/f (WT) mice by CE-TOFMS at CT4 and CT16 (n = 2).

(A) Purine pathway. Note IMP rhythm persists in Bmal1L�/� liver while ATP remains low.

(B) Pyrimidine pathway. Note opposite changes in UTP and CTP. Data were analyzed by two-way ANOVA. Significance levels in two-way ANOVA are given under

the title of each graph in the following order: interaction/genotype/time, with *p < 0.05; **p < 0.01; ***p < 0.001. All data presented are mean ± SD.
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but the rhythmic abundance of nucleosides likely reflects their

absorption from food. Indeed, all nucleoside variations between

CT4 and CT16 show parallel changes in WT and clock-deficient

liver. Taken together, systemic and local circadian regulation of

nucleotide metabolism will regulate the amount of free bases

and/or nucleosides released into the circulation for salvage,

while ensuring an appropriately timed flow of newly synthesized

nucleotides into the hepatic pool. This is especially obvious for

purines, since all rhythmic genes involved in the anabolism of

purines (Ppat, Ak2, Ak4, and Rrm2) show synchronized expres-

sion with a peak around CT12, in contrast to Pnp peaking at

CT20.

The influence of the hepatic clock is mostly seen in the phos-

phorylation of nucleotides. All nucleotide triphosphates synthe-

sized from their monophosphate forms (ATP, GTP, UTP) show

lower abundance and/or amplitude in clock-less liver. The

blunted Ak2 and Ak4 expression in Bmal1L�/� liver is consistent

with these observations for ATP and GTP. UTP was not rhythmic

in WT but its decreased abundance in Bmal1L�/� liver clearly

indicates nucleotide synthesis as a whole suffers from the loss

of the hepatic clock. The same is true for opposite variations of

cytidine nucleotides.

The expression rhythms of mitochondrial kinases (Ak2, Ak4,

Cmpk2, and Tk2) suggest that timed nucleotide conversion is

especially important in mitochondria, perhaps because they

rely exclusively on nucleotide salvage and have a more dynamic

genome (Rötig and Poulton, 2009). Notably, AKs are critically

important in the control of cellular energy homeostasis, by regu-

lating the amount of ADP available for the synthesis of ATP

(Noma, 2005), 70% of which originate from mitochondria. We

propose that the constant low levels in Ak2 and Ak4 expression

may contribute to decreased supply of ADP, in turn leading to

low ATP levels, affecting, in turn, the synthesis of other nucleo-

tides. Similarly, overexpression of both Ctps and Ctps2 in

Bmal1L�/� liver is likely to contribute to lower UTP and higher

CTP and CMP levels observed in these animals.

Available data on the Arabidopsis circadian transcriptome

(Mockler et al., 2007) reveal that plant homologs of Rrm2, Ak,

Ppat, and Cad show a circadian component in their expression.

Interestingly, most of these homologs are targeted to chloro-

plasts or mitochondria, where the de novo synthesis of nucleo-

tides in plant is located (Zrenner et al., 2006). The evolutionary

conserved circadian nucleotide synthesis, located in different

subcellular compartments, essentially times maximal availability

of nucleotides when they are required the most. As a concrete

example in mammals, nucleotide excision repair activity in adult

mouse liver and brain DNA is maximal at CT12 (Kang et al., 2009,

2010), when Rrm2 expression is highest, replenishing the pool of

dNTPs.

AMP-activated protein kinase (AMPK), whose activity is allo-

sterically regulated by the AMP/ATP ratio, was found to regulate

the circadian clock (Lamia et al., 2009). Interestingly, the

AMP/ATP ratio will change during the day due to constant

AMP levels but cyclic ATP abundance. The circadian clock

thus regulates ATP levels, whichmay, in turn, feed back to adjust

the clock in a complex interplay between metabolism and the

clock, the topic of recent reviews (Asher and Schibler, 2011;

Bass and Takahashi, 2010; Schmutz et al., 2011). The role of ad-
enylate kinases, more precisely ofAk2, in the generation of circa-

dian rhythms has even been suggested previously (Noma, 2005).

To confirm the rhythmic expression of AK2, the variations of its

protein in the liver are shown in Figure S4.

An important question that has not been addressed in our

study is whether the disruption of nucleotide rhythms and abun-

dance leads to pathologies in Bmal1L�/� animals. The increased

uric acid observed in Bmal1L�/� liver, despite its efficient degra-

dation in mouse liver (as opposed to human in which UOX, the

enzyme oxidising urate, is a pseudogene), may have patholog-

ical consequences under special circumstances. In addition,

the regenerating liver, as well as peripheral tissues with high

proliferative rates such as bone marrow or thymus, may be

adversely affected due to nucleotide imbalances seen in the liver

of Bmal1L�/� animals. Further investigations will address these

possibilities.

Conclusions
Hepatic nucleotide metabolism is timely orchestrated, from the

transcriptional control of rate-limiting genes to the rhythmic

abundance ofmetabolites. The loss of the local hepatic circadian

clock causes significant perturbations in the normal rhythms of

nucleotides, likely affecting the physiology of the whole animal.

These results represent a novel integrative approach, linking

transcriptomics with high-end metabolomics, focusing on the

circadian control of a well-characterized metabolic pathway.

EXPERIMENTAL PROCEDURES

Animals

All experiments were approved by the animal experimentation committee of

Kyoto University. Liver specific Bmal1-deficient mice on a full C57BL/6J back-

ground (Bmal1L�/�) and Bmal1f/f were generated as described (Shimba et al.,

2011). Male C57BL/6J mice and Bmal1L�/� mice (8 weeks old) were main-

tained at 23�C ± 1�C with 50% ± 10% relative humidity, three animals per

cage on a 12-hr-light/12-hr-dark cycle (lights on 8:00, lights off 20:00), food

and water ad libitum. At the end of the last dark phase, light was permanently

switched off. On the second day in DD, starting fromCT0 (CT0 beginning of the

endogenous day, CT12 beginning of the endogenous night, 8:00 and 20:00,

respectively), animals (n = 3) were sacrificed every 4 hr under a safe red light

and sampled for liver RNA extraction and metabolomics analysis.

RNA Extraction and Quantitative Real-Time PCR

Mice were sacrificed by cervical dislocation and 50 mg from the left liver lobe

were immediately transferred in 1ml Trizol (Invitrogen, Tokyo, Japan) and

homogenized using TissueLyzer (QIAGEN, Tokyo, Japan). Homogenates

were processed for total RNA extraction (RNeasy, QIAGEN), and final RNA

samples were quantified by Nanodrop spectrophotometer. Total RNA

(1.5 mg) from each liver sample was reverse-transcribed using VILO (Invitro-

gen). Quantitative real-time PCRwas performed on 20 ng cDNA using Platinum

SYBR Green qPCR Supermix (Invitrogen) in StepOnePlus (Applied Biosys-

tems, Tokyo, Japan). Absolute quantification standards for each target cDNA

were obtained using band-purified PCR products as templates, synthesized

using the same primer pairs used in qPCR and verified by sequencing (see

primer list in Table S1). All PCR products used for standard and quantification

were of similar sizes (120–150 bp) and molecular weight (�40 kDa). Data were

then normalized using relative expression of the housekeeping gene Tbp.

CE-TOFMS

At the time of liver sample collection for qPCR, another 50 mg sample from the

left liver lobe, adjacent to the fragment previously taken, was excised and

immediately transferred to a 2 ml tube, then snap-frozen in liquid nitrogen.
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All samples were kept a few days at �80�C until analysis. Samples were then

sent for CE-TOFMS analysis to Human Metabolome Technologies (Tokyo,

Japan). See Supplemental Information for additional information.

Statistical Analyses

Gene expression and metabolites concentration in WT mice were analyzed by

one-way ANOVA. To compare Bmal1L�/� and WT mice, gene expression

profiles were tested by two-way ANOVA. All statistical analyses were per-

formed using Graphpad Prism 4.0. For hierarchical clustering analysis of liver

metabolites, raw concentration data of circadian metabolites were normalized

and mean centered, and then clustered by Pearson correlation coefficients

(Eisen et al., 1998). This was performed using GenePattern available from

The Broad Institute.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, and one table and can be found with this article online at doi:10.

1016/j.celrep.2012.03.001.
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