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SUMMARY

Nonalcoholic fatty liver disease is the most com-
mon chronic liver disorder in developed countries.
Its pathogenesis is poorly understood, and thera-
peutic options are limited. Here, we show that
SIRT7, an NAD+-dependent H3K18Ac deacetylase,
functions at chromatin to suppress ER stress and
prevent the development of fatty liver disease.
SIRT7 is induced upon ER stress and is stabilized
at the promoters of ribosomal proteins through
its interaction with the transcription factor Myc to
silence gene expression and to relieve ER stress.
SIRT7-deficient mice develop chronic hepatos-
teatosis resembling human fatty liver disease. Myc
inactivation or pharmacological suppression of ER
stress alleviates fatty liver caused by SIRT7 defi-
ciency. Importantly, SIRT7 suppresses ER stress
and reverts the fatty liver disease in diet-induced
obese mice. Our study identifies SIRT7 as a
cofactor of Myc for transcriptional repression and
delineates a druggable regulatory branch of the
ER stress response that prevents and reverts fatty
liver disease.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) affects one-third of

adults and an increasing number of children in developed coun-

tries and is strongly associated with obesity and insulin resis-

tance (Browning and Horton, 2004; Browning et al., 2004; Cohen

et al., 2011). NAFLD begins with aberrant accumulation of tri-

glyceride in the liver (steatosis). Hepatic steatosis can proceed

to nonalcoholic steatohepatitis (NASH), a condition associated

with hepatocyte injury, inflammation, and fibrosis. Steatohepati-

tis can further progress to cirrhosis and liver cancer (Argo and

Caldwell, 2009; Starley et al., 2010).

The endoplasmic reticulum (ER) stress response (also known

as the unfolded protein response [UPRER]), a signal transduction

pathway that is activated in response to the accumulation of

unfolded proteins in the ER, has emerged as a critical regulator

of lipid homeostasis in the liver (Basseri and Austin, 2012;

Cnop et al., 2012; Fu et al., 2012; Hotamisligil, 2010; Ozcan

and Tabas, 2012). The initial phase of the UPRER is suppression

of protein translation and increased production of molecular

chaperones to promote protein folding, allowing the cells to

cope with an increased protein-folding demand and restore pro-

tein homeostasis (Hetz, 2012; Walter and Ron, 2011). Prolonged

ER stress has been implicated in the development of numerous

diseases, including fatty liver disease (Hotamisligil, 2010; Ozcan

and Tabas, 2012). Identification of crucial UPR regulators with
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precise ER-stress-relieving properties that are amenable for

therapeutic targeting represents attractive opportunities for

pharmacological intervention of fatty liver and a wide spectrum

of human diseases.

The sirtuin family of nicotinamide adenine dinucleotide

(NAD+)-dependent deacetylases is profoundly implicated in

metabolic regulation (Bellet et al., 2011; Finkel et al., 2009; Gillum

et al., 2010; Hirschey et al., 2011; Houtkooper et al. 2012; Imai

and Guarente, 2010). Sirtuins are well-sought-after drug targets

for metabolic disorders, as their enzymatic activities are

amenable for regulation (Baur et al., 2012). SIRT7, a histone H3

lysine 18 (H3K18) deacetylase that binds to the promoters of a

specific set of gene targets for transcriptional repression (Barber

et al., 2012), is the only mammalian sirtuin whose function in

metabolic regulation remains unknown.

We set out to fill this gap in knowledge by asking whether

SIRT7 governs metabolic homeostasis under physiological con-

ditions. Here, we show that SIRT7 has a physiological function in

metabolic regulation that occurs through a chromatin-depen-

dent signaling pathway that maintains metabolic homeostasis.

Finally, we show that SIRT7 can be targeted to restore metabolic

homeostasis in animals with metabolic disorders.

RESULTS

SIRT7-Deficient Mice Develop Steatosis Resembling
Human Fatty Liver Disease
Among themetabolic tissues, SIRT7 is themost highly expressed

in the liver (Ford et al., 2006). To gain insight into SIRT7 function,

we generated SIRT7 knockout (KO)mice (Figures 1A and 1B; Fig-

ure S1A). Livers of SIRT7 KO mice fed a chow diet appeared

paler and slightly larger than the wild-type (WT) controls with

100% penetrance (Figures 1C and S1B). Hematoxylin and eosin

(H&E) staining showed that SIRT7 KO hepatocytes were mark-

edly vacuolated, with the accumulated material staining positive

for fat with the Oil Red O stain (Figure 1C). Quantification of the

triglyceride extracted from the livers by a colorimetric assay

showed that SIRT7 KO livers had a 2.5-fold increase in triglyc-

eride content (Figure 1D). Compared to the WT controls, the

livers of SIRT7 KO mice had increased expression of inflamma-

tory markers (Figure 1E), and immunohistochemistry showed

increased staining for F4/80 (Figure 1C), a marker for tissue

macrophages, indicating the progression to steatohepatitis.

Notably, although fatty liver disease is often associated with

obesity (Cohen et al., 2011; Ozcan et al., 2006), SIRT7 KO mice

were leaner than littermate controls (Figures S1C and S1D).

Thus, SIRT7 deficiency results in fatty liver without obesity.

Next, we investigated the lipid metabolic pathways in SIRT7

KO livers. The expression of lipogenic genes was increased

in SIRT7 KO livers compared to the WT controls, whereas the

expression of genes in the fatty acid oxidation pathway was un-

changed (Figure 1E), suggesting that increased lipogenesis may

be a contributing factor for hepatosteatosis. Despite increased

lipid content in the livers of SIRT7 KOmice (Figure 1D), the levels

of plasma triglyceride were 4-fold lower in SIRT7 KO mice

compared to WT controls (Figure S1E). Reduced plasma triglyc-

erides in SIRT7 KO mice is not due to reduced food intake or

malabsorption of lipid (Figures S1F and S1G), suggesting that
Ce
SIRT7 KO mice may have reduced very-low-density lipoprotein

(VLDL) secretion, the lipoprotein responsible for hepatic lipid

export. In a well-established VLDL-TG secretion assay, SIRT7

KO mice had a 50% reduction in VLDL-TG secretion (Figure 1F).

Quantification of the VLDL particles (sizes ranging from 250–

550 Å) using a gas-phase differential electrical mobility analyzer

showed greatly reduced VLDL concentration in the blood of

SIRT7 KO mice compared to the WT controls (Figure 1G).

Together, these data indicate that SIRT7 KO mice develop

fatty liver because of increased lipogenesis and reduced VLDL

secretion.

Hepatic SIRT7Autonomously Prevents theDevelopment
of Fatty Liver
To investigate whether the fatty liver phenotype of SIRT7 KO

mice is due to SIRT7 deficiency in the liver or systemic effects

of SIRT7 deletion, we reintroduced SIRT7 specifically in the livers

of SIRT7 KO mice via adenoassociated virus 8 (AAV8)-mediated

gene transfer (Figure 2A). Strikingly, liver-specific reconstitution

of SIRT7 in SIRT7 KO mice reversed the fatty liver phenotype

(Figures 2B–2D), suppressed hepatic inflammation and lipogen-

esis (Figure 2E), and rescued the VLDL-TG secretion defect (Fig-

ure 2F). Importantly, this reversal of hepatosteatosis was not due

to unphysiological levels of SIRT7 overexpression, because the

reconstituted expression of SIRT7 was comparable to endoge-

nous levels (Figure 2A). Together, these data indicate that hepat-

ic SIRT7 autonomously prevents the development of fatty liver.

SIRT7 Activation Is a Critical Event of the UPR to
Alleviate ER Stress
Activation of the UPR pathways induces inflammation (Hotami-

sligil, 2010), perturbs hepatic lipid metabolism by modulating

lipogenesis and lipoprotein metabolism (Kammoun et al., 2009;

Lee et al., 2008; Ota et al., 2008; Rutkowski et al., 2008; So

et al., 2012; Wang et al., 2012; Zhang et al., 2011), and results

in the development of fatty liver, reminiscent of essential aspects

of SIRT7 KO phenotype in the liver (Figure 1). We therefore

hypothesized that SIRT7 might be an essential regulator of the

UPR. ER stress triggers finely regulated signaling events and

transcriptional activation of ER stress response target genes

with well-defined cis-elements (Hetz, 2012; Walter and Ron,

2011). Analysis of the SIRT7 promoter using MATInspector iden-

tified potential binding elements for XBP1, a key regulator of the

UPR, that preferentially binds to sequences containing an ACGT

core (Figure S2A) (Acosta-Alvear et al., 2007; Sha et al., 2009).

Thus, SIRT7 may be transcriptionally upregulated upon ER

stress. Indeed, treatment with chemical inducers of ER stress,

tunicamycin and thapsigargin, increased the expression of

SIRT7 at both the mRNA and protein levels in various cell types

(Figures 3A and 3B; Figures S2B–S2D). However, ER stress did

not induce SIRT7 expression in XBP1 KO mouse embryonic

fibroblasts (MEFs) (Figures 3A and 3B). Furthermore, ectopic

expression of the spliced XBP1 (XBP1s), the active form of

XBP1, induced SIRT7 expression to the same degree as it

induced Erdj4, a known XBP1s target (Figures S2E and S2F).

Additionally, in a luciferase assay, XBP1s induced transcrip-

tion driven by the SIRT7 promoter, but not the SIRT3 promoter

(Figure S2G). SIRT7 activity is dependent on NAD+, but
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Figure 1. SIRT7 Prevents the Development of Fatty Liver Disease

(A) Schematic representation of the SIRT7 locus and the SIRT7 KO-targeting vector.

(B) Southern blot confirming the generation of SIRT7 KO mice.

(C) Morphology, H&E staining, Oil Red O staining, and F4/80 staining showing increased lipid accumulation and inflammation in the livers of SIRT7 KO mice

compared to WT controls.

(D) Quantification of triglyceride extracted from livers in a colorimetric assay showing increased triglyceride content in SIRT7 KO livers. n = 6.

(E) Gene expression analysis by quantitative PCR showing increased inflammation and lipogenesis, but not fatty acid oxidation in SIRT7 KO livers. n = 4.

(F) A VLDL-TG secretion assay showing defective VLDL-TG secretion for SIRT7 KO mice. n = 6.

(G) Quantification of VLDL particle concentration in the blood using a gas-phase differential electrical mobility analyzer showing reduced VLDL particle

concentration in the blood of SIRT7 KO mice. n = 6.

Error bars represent SEM. * p < 0.05. ** p < 0.01. *** p < 0.001. ns: p > 0.05. See also Figure S1.
tunicamycin treatment did not change the cellular NAD+ levels

(Figure S2H). Thus, SIRT7 is induced transcriptionally by XBP1

upon ER stress.
656 Cell Reports 5, 654–665, November 14, 2013 ª2013 The Authors
Next, we tested the effects of altered SIRT7 levels on ER

stress. Overexpression of SIRT7 substantially reduced ER stress

in response to tunicamycin, as evidenced by the reduced eIF2a
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Figure 2. Hepatic SIRT7 Prevents the Devel-

opment of Fatty Liver Autonomously

(A–F) Data shown are the comparison for the livers

of WT, SIRT7 KO, and SIRT7 KO mice expressing

SIRT7 in livers via AAV8-mediated gene transfer.

(A) Western analysis for SIRT7 expression. (B)

Liver morphology. (C) Liver triglyceride quantifi-

cation. (D) H&E and Oil Red O staining. (E) Gene

expression by quantitative PCR showing that

SIRT7 expression in liver suppresses hepatic

inflammation and lipogenesis of SIRT7 KO mice.

(F) In a VLDL-TG secretion assay, SIRT7 expres-

sion in liver rescued VLDL-TG secretion defects of

SIRT7 KO mice. n = 4.

Error bars represent SEM. * p < 0.05. ** p < 0.01.

*** p < 0.001. ns: p > 0.05.
phosphorylation and expression of ER stress response genes

(Figures 3C–3F; Figures S2I and S2J). A catalytically inactive

SIRT7 mutant (H187Y) did not suppress ER stress (Figures

3C–3F), linking the catalytic activity of SIRT7 to ER stress man-

agement. To determine whether endogenous SIRT7 prevents

ER stress, we stably knocked down SIRT7 expression using

two independent short hairpin RNAs that specifically target

SIRT7. SIRT7 depletion led to constitutive induction of ER stress

(Figures 3G and S2K). Similarly, ER stress response genes were

also upregulated in SIRT7 KO MEFs (Figure 3H). ER stress

induces a reduction in the polysome-to-monosome ratio, indic-

ative of translational initiation blockade (Kawai et al., 2004).

Ribosomal profiling via a sucrose gradient showed that in

contrast toWTMEFs, which had a high polysome-to-monosome

ratio, SIRT7 KO MEFs had a reduction in polysomes and an

increase in low-molecular-weight monosomes, consistent with

increased ER stress in SIRT7 KO MEFs (Figure 3I). SIRT7 also

suppressed ER stress-induced cell death (Figures 3J, 3K, S2L,

and S2M), but not general apoptosis (Figures S2N and S2O).
Cell Reports 5, 654–665, N
Together, these data suggest that SIRT7

activation is a critical event of the UPR

to alleviate ER stress.

Myc Recruits SIRT7 to Repress the
Expression of Ribosomal Proteins
and to Suppress ER Stress
How does SIRT7 regulate the UPR?

The initial phase of the UPR is suppres-

sion of protein translation and increased

production of molecular chaperones to

re-establish homeostasis (Hetz, 2012;

Walter and Ron, 2011). SIRT7 deacety-

lates H3K18Ac at specific gene pro-

moters to repress transcription, and a

major class of SIRT7-target genes are

involved in protein translation and ribo-

some biogenesis (Barber et al., 2012).

Thus, SIRT7 may alleviate ER stress by

suppressing ribosome biogenesis and

protein translation. Although SIRT7 lacks

known DNA binding motifs, previous
work has shown that it is recruited to a subset of its target pro-

moters via interaction with the transcription factor ELK4 (Barber

et al., 2012). However, ELK4 was dispensable for SIRT7 pro-

moter occupancy at other target promoters, including the pro-

moters of ribosomal protein genes, leaving open the question

of how SIRT7 is recruited to such promoters.

Recently, Myc has been shown to coordinate the transcrip-

tional control of ribosomal components and serve as a master

regulator of ribosome biogenesis (Kim et al., 2000; van Riggelen

et al., 2010). Chromatin remodeling is believed to be central to

Myc function in modulating the expression of its target genes

(Knoepfler et al., 2006; van Riggelen et al., 2010). Myc binding

on target chromatin is associated with the H3K18Ac mark, a

substrate of SIRT7 (Martinato et al., 2008). We therefore

hypothesized that Myc stabilizes SIRT7 at the promoters of ribo-

somal proteins to mediate chromatin remodeling and gene

repression. To probe a potential connection between Myc and

SIRT7, we tested whether SIRT7 physically interacts with Myc

in vivo. Western blot analysis of the immunoprecipitates from
ovember 14, 2013 ª2013 The Authors 657
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Figure 3. SIRT7 Suppresses ER Stress

(A and B) Gene expression analysis by quantitative PCR (A) and western blotting (B) showing increased SIRT7 expression upon treatment of ER stress inducer

thapsigargin (TG) in WT, but not XBP1 KO, MEFs.

(C–F) Western blots (C) and quantitative PCR (D–F) showing reduced ER stress in tunicamycin-treated stable HepG2 cells overexpressing (OE) WT, but not

catalytically inactive (H187Y), SIRT7, as indicated by eIF2a phosphorylation levels and ER stress response gene expression.

(G) Western blots showing increased ER stress in SIRT7 knockdown (KD) stable HepG2 cells.

(legend continued on next page)
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Flag-tagged SIRT7-transfected cells revealed that Myc was

associated with Flag-SIRT7 (Figure 4A). Western blot analysis

of endogenous SIRT7 immunoprecipitates also revealed a

specific interaction with Myc (Figure 4B). Thus, SIRT7 physically

interacts with Myc in cells.

To investigate whether SIRT7 is stabilized at the promoters of

ribosomal proteins through its interactionwithMyc, we assessed

SIRT7 and Myc co-occupancy at these promoter regions.

Chromatin immunoprecipitation (ChIP) was performed with

SIRT7 and Myc antibodies to assess the genomic occupancy

of endogenous SIRT7 and Myc, compared to immunoglobulin

G (IgG)-negative background control. SIRT7 bound to the core

promoters of ribosomal proteins (Barber et al., 2012). Myc was

also detected at the same regions as SIRT7 on the core pro-

moters of ribosomal proteins, but not at the genomic region

6 kb upstream of the transcription start site (Figures 4C–4E; Fig-

ures S3A and S3B), consistent with the notion that Myc generally

occupies the core promoter regions of actively transcribed

genes (Lin et al., 2012). In contrast, Myc was not detected at

the promoters of NME1 and COPS2, where SIRT7 binding is

mediated through ELK4 (Figures 4F and S3C) (Barber et al.,

2012). Myc depletion using small interfering RNA (siRNA) led to

a significant reduction in SIRT7 occupancy at the promoters of

ribosomal proteins (Figures 4G, 4H, S3D, and S3E). However,

Myc depletion had no effect on SIRT7 occupancy at the pro-

moters of NME1 and COPS2 (Figures 4I and S3F). These data

suggest that Myc targets SIRT7 specifically to the promoters

of ribosomal proteins.

The specific association of SIRT7 andMyc at the promoters of

ribosomal proteins, but not at ELK4 target genes, suggests that

SIRT7 might specifically influence the expression of ribosomal

proteins via Myc. Therefore, we examined the effects of Myc

inhibition on SIRT7-mediated gene expression. As shown

previously, SIRT7 KD led to increased expression of ribosomal

proteins (Figures 4J and 4K) (Barber et al., 2012). Tunicamycin

treatment induced SIRT7 expression (Figures 3A and 3B; Figures

S2B–S2D) and suppressed the expression of ribosomal proteins

in control cells, but not in SIRT7 KD cells (Figures 4J and 4K),

indicating that ER stress triggers the transcriptional silencing of

ribosomal proteins and that this effect requires SIRT7. Strikingly,

Myc inactivation via siRNA or by a specific inhibitor, 10058-F4,

abrogated the elevated expression of ribosomal proteins, but

not NME1 in SIRT7 KD cells (Figures 4J, 4K, S3G, and S2H),

demonstrating that the observations on ribosomal proteins are

due to Myc-dependent effects of SIRT7 on gene expression.

Together, these data suggest that Myc targets SIRT7 specifically

to the promoters of ribosomal proteins for transcriptional

silencing.

The observation that ER stress represses ribosomal proteins

in a SIRT7-dependent manner suggests that upon ER stress,

the induction of SIRT7might function to suppress ribosomal pro-

tein expression and protein translation, in order to relieve ER
(H and I) Increased ER stress in SIRT7 KOMEFs. Quantitative PCR showing incre

profiling showing a reduced polysome-to-monosome ratio, an ER stress marker

(J and K) SIRT7 prevents ER stress-induced cell death. Stable SIRT7 overexpre

treated with tunicamycin (2 mg/ml for J and 1 mg/ml for K) for 24 hr. Apoptosis w

Error bars represent SEM. * p < 0.05. ** p < 0.01. *** p < 0.001. See also Figure S

Ce
stress. To test this possibility, we assessed the effects of

suppressing Myc-mediated expression of ribosomal proteins

on SIRT7-associated ER stress management. Myc inactivation

by siRNA or 10058-F4 abrogated the increased ER stress in

SIRT7 KD cells (Figures 4K and S3I). Myc inactivation also blunt-

ed the effects of SIRT7 on ER stress resistance (Figures S3J and

S3K). Together, these results indicate that SIRT7 is targeted to

the promoters of ribosomal proteins by interacting with Myc

and alleviates ER stress by countering Myc-dependent expres-

sion of these genes.

ER Stress Underlies the Development of Fatty Liver
Caused by SIRT7 Deficiency
We next determined whether ER stress underlies the develop-

ment of fatty liver in SIRT7-deficient mice. SIRT7 KO livers

showed increased ER stress, as evidenced by the induction

of e-IF2a phosphorylation and ER stress response genes, as

well as a reduction in the polysome-to-monosome ratio (Figures

5A–5C). Reintroduction of SIRT7 in the livers of SIRT7 KO mice

via AAV8-mediated gene transfer reduced ER stress (Figure 5D)

and reverted the fatty liver phenotype (Figures 2A–2E). More-

over, treatment of SIRT7 KO mice with TUDCA, a small mole-

cule chaperone that has been shown to alleviate ER stress

in vivo (Ozcan et al., 2006), partially rescued the fatty liver

phenotype (Figures 5E and 5F). Finally, liver-specific Myc

knockdown in SIRT7 KO mice via AAV8-mediated gene transfer

reduced ER stress (Figures 6A and 6B), suppressed hepatic

inflammation and lipogenesis (Figures 6C and 6D), and

reversed the fatty liver phenotype (Figures 6D and 6E). Thus,

SIRT7 prevents the development of fatty liver by suppressing

ER stress.

SIRT7 Reverts Fatty Liver Associated with Diet-Induced
Obesity
A high-fat, high-calorie diet is associated with increased ER

stress and the development of fatty liver disease (Oyadomari

et al., 2008). We next asked whether SIRT7 could be targeted

to alleviate high-fat diet-induced ER stress and the develop-

ment of fatty liver disease. We overexpressed SIRT7 specifically

in the livers of mice fed a high-fat diet via AAV8-mediated gene

transfer. Consistent with previous reports (Oyadomari et al.,

2008), high-fat diet feeding led to an increase in ER stress

markers (Figures 7A and 7B), accumulation of TG in the liver

(Figures 7C–7E), possibly because of decreased VLDL secretion

and increased lipogenesis (Figures 7A and 7F), and increased

inflammation (Figures 7A and 7D). Strikingly, SIRT7 overexpres-

sion in the livers of high-fat-diet-fed mice suppressed ER stress

(Figures 7A and 7B), VLDL secretion (Figure 7F), lipogenesis

(Figure 7A), and inflammation (Figures 7A and 7D) and rescued

the fatty liver phenotype (Figures 7C–7E). Thus, SIRT7 activation

represents an attractive approach to revert ER stress-mediated

fatty liver.
ased expression of ER stress-induced genes in SIRT7 KOMEFs (H). Polysome

indicative of translational initiation blockade (I).

ssion (OE) or knockdown (KD1 or KD2) cells used in Figures 3C and 3G were

as scored with Annexin V staining.

2.
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Figure 4. Myc Recruits SIRT7 to Repress the Expression of Ribosomal Proteins and to Suppress ER Stress

(A) Western analysis showing coIP of Flag-tagged SIRT7 and endogenous Myc in 293T cells.

(B) Western blots showing coIP of endogenous SIRT7 and Myc in Hep G2 cells.

(C–F) ChIP-qPCR (mean ± SEM) showing Myc occupancy at the RPS20 proximal promoter, but not 6 kb upstream, compared to IgG-negative control samples.

Myc occupancy at the g-tubulin and NME1 promoters was used as negative controls. All samples were normalized to input DNA.

(G) Western blots showing knockdown of Myc with siRNA in cells used in (H and I).

(H and I) Reduction of SIRT7 occupancy at the RPS20, but not the NME1, promoter in Myc knockdown cells determined by ChIP (mean ± SEM).

(legend continued on next page)

660 Cell Reports 5, 654–665, November 14, 2013 ª2013 The Authors



Figure 5. SIRT7 Prevents the Development

of Fatty Liver by Suppressing ER Stress

(A–C) Western analysis (A), quantitative PCR (B),

and polysome profiling (C) showing increased ER

stress in SIRT7 KO livers.

(D) Quantitative PCR showing decreased expres-

sion of ER stress response genes in SIRT7 KO

livers by reintroduction of SIRT7 via AAV8-medi-

ated gene transfer.

(E and F) H&E, Oil Red O staining, and F4/80

staining of liver sections (E), and quantification of

liver triglyceride (F) showing a small molecule

chaperone TUDCA partially reverses fatty liver

phenotype of SIRT7 KO mice. n = 6.

Error bars represent SEM. * p < 0.05. ** p < 0.01.

*** p < 0.001.
DISCUSSION

Our work uncovered a physiological role of SIRT7 in maintaining

hepatic metabolic homeostasis, demonstrated the feasibility of

targeting SIRT7 to restore metabolic homeostasis in animals

with metabolic disorders, and revealed a regulatory branch of

the UPR that is amenable for therapeutic targeting. The canoni-

cal UPR leads to the phosphorylation of eIF2a and the suppres-

sion of translation to alleviate ER stress (Ozcan and Tabas, 2012;

Walter and Ron, 2011). We show that SIRT7 is induced by XBP1

upon ER stress and is recruited to the promoters of ribosomal

proteins via Myc to repress gene expression and to alleviate

ER stress (Figure S4A). In SIRT7-deficient cells, failure to engage

SIRT7-mediated ER stress management results in constitu-

tive ER stress that induces activation of the canonical UPR
(J) Western analysis showing Myc inactivation by a small molecule inhibitor abrogates increased expression o

KD cells used in Figure 3G.

(K) Western analysis showing Myc inactivation via siRNA abrogates ER stress and increased expression of rib

cells used in Figure 3G.

Error bars represent SEM. * p < 0.05. *** p < 0.001. ns: p > 0.05. See also Figure S3.
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(phosphorylation of eIF2a, blockade of

polysome assembly and translational initi-

ation, and induction of ER stress response

genes), apoptosis, and inflammation and,

specifically in the liver, increased lipogen-

esis and reduced VLDL secretion (Fig-

ure S4B). Importantly, SIRT7 upregulation

alleviates ER stress and restores hepatic

metabolic homeostasis in diet-induced

obese animals, providing an avenue to

treat fatty liver disease and likely other

ER stress-associated pathologies.

Our observation that SIRT7 opposes

Myc-dependent gene regulation is

intriguing. In addition to its role in fatty liver

pathology, the dynamic balance between

SIRT7 and Myc activities could play a

pivotal role in the context of tumorigen-

esis. SIRT7 may keep the Myc oncogene

in check to prevent tumorigenesis. How-
ever, under certain conditions, Myc can also trigger apoptosis

as an evolved tumor defensemechanism (Evan et al., 1992; Sou-

cek and Evan, 2010). Our study suggests that unopposed Myc

activation in the absence of SIRT7 results in ER stress. This

may be an underlying mechanism for Myc-induced apoptosis

in cancer cells that are particularly sensitive to ER stress (Ozcan

and Tabas, 2012). Indeed, we find that SIRT7 prevents ER

stress-induced cell death in a Myc-dependent manner (Figures

S3J and S3K). These observations are consistent with previous

findings that SIRT7 can promote cancer cell survival and main-

tain oncogenic transformation (Barber et al., 2012).

Our findings regarding the role of SIRT7 in ER stress

management might also be important for aging biology. Indeed,

SIRT7 has several potential links to aging. SIRT7 KO mice

have shortened life spans and exhibit phenotypes linked to
f ribosomal proteins, but not NME1, in stable SIRT7

osomal proteins, but not NME1, in stable SIRT7 KD
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* Figure 6. SIRT7 Suppresses ER Stress and

Prevents the Development of Fatty Liver by

Repressing Myc

(A–E) Data shown are the comparison of WT,

SIRT7 KO, and SIRT7 KO mice with Myc knock-

down in livers via AAV8-mediated gene transfer.

(A) Myc expression by quantitative PCR. (B) ER

stress in the livers by western analysis. (C) Quan-

titative PCR analysis for the expression of inflam-

mation, lipogenesis, and fatty acid oxidation

genes. (D) H&E, Oil Red O staining, and F4/80

staining of liver sections. (E) Liver triglyceride

quantification. n = 5.

Error bars represent SEM. * p < 0.05. ** p < 0.01.

*** p < 0.001. ns: p > 0.05. See also Figure S4.
aging (Vakhrusheva et al., 2008). Furthermore, SIRT7 expression

decreases in some aging tissues (Vakhrusheva et al., 2008). Sup-

pression of ribosomal proteins and ER stress leads to life span

extension in yeast (Steffen et al., 2012). Thus, the interplay be-

tween SIRT7, ER stress, and protein translation may represent

an evolutionarily conserved phenomenon in aging.
EXPERIMENTAL PROCEDURES

Mice

Sirt7�/� mice were produced by the VelociGene method (Valenzuela et al.,

2003) (VelociGene allele identification number: VG321). The SIRT7 KO-target-

ing vector was constructed by replacing exons 4 to 11 with a LacZ gene

inserted in-frame after the first few base pairs of exon 4 (Figures 1A

and 1B). An Srf1-linearized targeting vector (30 mg) was electroporated into

CJ7,129SJ ES cells as described previously (Valenzuela et al., 2003). Positives

clones were identified by Taqman analysis (Valenzuela et al., 2003) and

confirmed by Southern blot analysis in which genomic DNA was digested
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with Kpn1 and the membranes were probed with

a 500 bp fragment covering exons 1–3. Chimeric

mice were generated by injection of targeted ES

clones into C57BL6/J blastocysts. Male chimeras

were mated with 129Sv females to generate F1

heterozygous mice, which were interbred to

generate homozygous KO mice, which were

screened by Southern blotting as described above

(Figure S1A).

All mice were housed on a 12:12 hr light:dark

cycle at 25�C. Experiments were performed using

4- to 6-month-old male littermates. Mice were

randomized into each of the groups. Samples

were processed blindly during the experiments,

and the outcome was assessment. All animal

procedures were in accordance with the animal

care committee at the University of California,

Berkeley. The high-fat diet was provided by

OpenSource Diets (D12079B). For TUDCA treat-

ment, mice received intraperitoneal injections of

500 mg/kg/day TUDCA or PBS twice daily for

20 days as described previously (Cnop et al.,

2012). VLDL-TG secretion assay was performed

as described previously (Haeusler et al., 2010).

Blood was collected from the mouse tail vein

and kept on ice until centrifugation (1,500 g,

15 min at 4�C). VLDL concentration was quanti-

fied as described using a gas-phase differential
electrical mobility analyzer (Caulfield et al., 2008). Plasma triglyceride

was measured in accordance with the manufacturer’s instruction (Wako

Diagnostics). Triglycerides were extracted from liver tissues as described

and were extracted from feces as described (Zadravec et al., 2010).

Extracted triglyceride was quantified in accordance with the manufacturer’s

instruction (Wako Diagnostics). Liver tissues were processed for H&E stain-

ing, Oil Red O staining, and F4/80 staining as described previously (Sun

et al., 2012).

For AAV-mediated gene transfer to the mouse liver, SIRT7 or Myc knock-

down target sequence was cloned into dsAAV-RSVeGFP-U6 vector. dsAAV8

was produced by triple-transfection and CsCl purification, and virus titer

was determined as previously described (Gao et al., 2006). Each mouse was

injected with 3 3 1011 genome copies of virus via tail vein.

Cell Culture, RNAi, and Viral Transduction

293T, Hepa 1-6, and Hep G2 cells were acquired from the American Type

Culture Collection. WT and SIRT7 KO MEFs were generated in accordance

with standard procedures (Greber et al., 2007). XBP-1 KO MEFs were ac-

quired from L. Glimcher (Lee et al., 2008). Cells were cultured in advanced

Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 1%



Figure 7. SIRT7 Rescues High-Fat Diet-Induced Fatty Liver

(A–F) Data shown are a comparison of livers of mice fed a chow diet, a high-fat diet, and a high-fat diet with SIRT7 reintroduced specifically in the liver via AAV8-

mediated gene transfer. (A) Quantitative PCR analyses for gene expression of ER stress, inflammation, and lipogenesis. (B) Western blotting for ER stress

markers. (C) Morphology. (D) H&E staining, Oil Red O staining, and F4/80 staining. (E) Quantification of liver triglyceride. (F) A VLDL-TG secretion assay. n = 6.

Error bars represent SEM. ** p < 0.01. *** p < 0.001.
penicillin-streptomycin (Invitrogen) and 10%FBS (Invitrogen). For ER stress in-

duction, cells were treated with tunicamycin (Sigma, 1 mg/ml) or thapsigargin

(Sigma, 0.1 mM) for 24 hr for biochemical analysis or 48 hr for cell survival anal-

ysis. Cells were treated with 0.5 mMstaurosporin for 48 hr for cell survival anal-
Ce
ysis. Cell survival was scored with trypan blue staining or Annexin V staining

(Biolegend). For Myc inactivation, cells were treated with 10058-F4 (Sigma,

2 mM) for 24 hr before analysis. Cellular NAD+ concentration was quantified

using EnzyChrom NAD/NADH Assay Kit (Bioassay System).
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SIRT7 knockdown target sequences are as follows, as previously described

(Barber et al., 2012):

S7KD1, 50-CACCTTTCTGTGAGAACGGAA-30,
S7KD2, 50-TAGCCATTTGTCCTTGAGGAA-30.

Myc knockdown target sequences are as follows, as previously described

(Caulfield et al., 2008):

Myc KD (human), 50- GGACTATCCTGCTGCCAAG -30,
Myc KD (mouse), 50- CCCAAGGTAGTGATCCTCAAA-30.

Double-stranded siRNAs were purchased from Thermo Scientific and

were transfected into cells via RNAiMax (Invitrogen) in accordance with the

manufacturer’s instruction.

For lentiviral packaging, 293T cells were cotransfected with packaging

vectors (pCMV-dR8.2 dvpr and pCMV-VSV-G) and the pSiCoR-SIRT7

knockdown or empty construct. For retroviral packaging, 293T cells were

cotransfected with packaging vectors (pVPack-VSV-G, pVPack-GP) and

pBABE-SIRT7, pBABE-SIRT7 H187Y, or empty construct. Viral supernatant

was harvested after 48 hr. For transduction, cells were incubated with virus-

containing supernatant in the presence of 8 mg/ml polybrene. After 48 hr,

infected cells were selected with puromycin (1 mg/ml).

Coimmunoprecipitations

Coimmunoprecipitations (coIPs) were performed as previously described

(Qiu et al., 2010) with Flag-resin (Sigma) or Protein A/G beads (Santa Cruz)

for SIRT7 IP. Elution was performed with either Flag peptide (Sigma) or

100 mM Glycine solution (pH 3) for SIRT7 IP. Antibodies are provided in

Table S1.

ChIP and mRNA Analysis

Cells were prepared for ChIP as previously described (Dahl and Collas, 2007),

with the exception that DNA was washed and eluted using a PCR purification

kit (QIAGEN) rather than by phenol-chloroform extraction. RNA was isolated

from cells or tissue using Trizol reagent (Invitrogen) and purified using the

RNeasy Mini Kit (QIAGEN). cDNA was generated using the qScript cDNA

SuperMix (Quanta Biosciences). Gene expression was determined by real-

time PCR using Eva quantitative PCR (qPCR) SuperMix Kit (BioChain Institute)

on an ABI StepOnePlus system. All data were normalized to ActB or GAPDH

expression. Antibodies and PCR primer details are provided in Tables S1,

S2, and S3.

Polysomal Profiling

MEFs or liver tissues were collected for polysomal profiling as described (Zid

et al., 2009). Briefly, ten million MEF cells or 0.1 g of liver were harvested and

homogenized on ice in 400 ml of solublization buffer (300 mM NaCl, 50 mM

Tris-HCl [pH 8.0], 10 mM MgCl2, 1 mM EGTA, 200 mg/ml heparin, 1 mM

DTT, 400 U/ml RNAsin plus (Promega), 1X complete, Mini Protease Inhibitor

Cocktail (Roche), 0.2 mg/ml cycloheximide, 1% Triton X-100, and 0.1%

aodium deoxycholate). Additional solubilization buffer was added for a total

of 1ml. Cell lysate was placed back on ice for 10 min before centrifuging at

16,000 g for 15 min at 4�C. The supernatant was applied to the top of a

10%–50% continuous sucrose gradient in high salt resolving buffer

(140 mM NaCl, 25 mM Tris-HCl [pH 8.0], and 10 mM MgCl2) and centrifuged

in a Beckman SW41Ti rotor (Beckman Coulter) at 180,000 g for 90 min at 4�C.
Gradients were fractionated with continuous monitoring of absorbance at

254 nm.

Statistical Analysis

The number of mice chosen for each experiment is based on the principle that

the minimal number of mice is used to have sufficient statistical power and

is comparable to published literature for the same assays performed. No

animals were excluded from the analyses. Student’s t test was used for

data analysis. Error bars represent SE. In all corresponding figures, * repre-

sents p < 0.05. ** represents p < 0.01. and *** represents p < 0.001. ns

represents p > 0.05.
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