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Circular tubes compressed into the plastic range first buckle into axisymmetric wrinkling modes. Initially
the wrinkle amplitude grows with increasing load. The wrinkles gradually induce a reduction in axial
rigidity eventually leading to a limit load instability followed by collapse. The two instabilities can be sep-
arated by strain levels of a few percent. This work investigates whether a tube that develops small ampli-
tude wrinkles can be subsequently collapsed by persistent cycling. The problem is first investigated
experimentally using SAF 2507 super-duplex steel tubes with D/t of 28.5. The tubes are first compressed
to strain levels high enough for mild wrinkles to form; they are then cycled axially under stress control
about a compressive mean stress. This type of cycling usually results in material ratcheting or accumu-
lation of compressive strain; here it is accompanied by accumulation of structural damage due to the
growth of the amplitude of the initial wrinkles. The tube average strain initially grows nearly linearly
with the number of cycles, but as a critical value of wrinkle amplitude is approached, wrinkling localizes,
the rate of ratcheting grows exponentially and the tube collapses. The rate of ratcheting and the number
of cycles to failure depend on the initial compressive pre-strain and on the amplitude of the stress cycles.
However, collapse was found to occur when the accumulated average strain reaches the value at which
the tube localizes under monotonic compression. A custom shell model of the tube with initial axisym-
metric imperfections, coupled to a cyclic plasticity model, are presented and used to simulate the series of
experiments performed successfully. A sensitivity study of the formulation to the imperfections and to
key constitutive model parameters is then performed.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of plastic buckling of circular tubes and pipes with
relatively low diameter-to-thickness ratios due to axial loading has
had a life of at least fifty years and consequently can be categorized
as ‘‘classical.” Unlike elastic shell buckling in which collapse is sud-
den, catastrophic, and very imperfection sensitive, failure due to
plastic buckling involves a sequence of instabilities that can be sep-
arated by average strains of 1–5% (e.g., see experiments by Lee
(1962); Batterman (1965); Bardi and Kyriakides (2006); Kyriakides
and Corona (2007)). The behavior is summarized schematically in
the axial stress-shortening (rx � dx/L) response of a long tube
shown in Fig. 1. The tube first deforms uniformly into the plastic
range of the material (OA). At a strain level indicated by ‘‘;” on
the response the tube buckles into an axisymmetric wrinkling
mode, henceforth called wrinkling. The wrinkle amplitude is ini-
tially small but with further compression gradually grows (AB).
The growth of the wrinkles causes a corresponding reduction in
the axial rigidity of the shell and eventually at B a limit load is at-
ll rights reserved.

s).
tained (indicated by ‘‘^”). Beyond this point, deformation localizes
usually in one axisymmetric lobe while the load decreases (BC); in
other words the structure starts to collapse but the response can be
tracked under displacement controlled loading. Thus, the load
maximum is considered as the limit state of the structure. In the
case shown the onset of wrinkling and the limit state are separated
by an average strain of about 3%. For somewhat thinner shells, fol-
lowing some axisymmetric wrinkling an instability involving a
switch to a non-axisymmetric mode with 2, 3 or more circumfer-
ential waves can develop. The new buckling mode tends to lead
to its own load maximum and localization as shown in Fig. 3 of
Bardi and Kyriakides (2006) (for analytical efforts at the problem
see Gellin (1979); Bushnell (1982); Tvergaard (1983a,b); Yun and
Kyriakides (1990); Bardi et al. (2006); Kyriakides and Corona
(2007)).

The present study is concerned with the following related cyclic
loading problem. Consider a cylindrical shell that has been initially
plastically compressed to some extent and subsequently under-
goes cyclic loading either purely axial or combined with a second
constant load such as internal pressure. It is well known that cyclic
loading of a plasticized material even applying relatively small
amplitude cycles can cause strain ratcheting (e.g., see Bairstow
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Fig. 3. Critical wrinkling strains (eC) and average limit strains ð�eLÞ vs. D/t from 15
experiments from Bardi and Kyriakides (2006) and three new experiments of
D=t ffi 28:5.
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Fig. 1. Typical stress-shortening response from a compression test of an inelastic
circular cylinder. Shown are the onset of wrinkling (A) followed by axisymmetric
collapse (B) and localization (C).
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(1911); Benham (1961); Coffin (1964); Morrow (1965); Sandor
(1972); Pilo et al. (1979); Hassan and Kyriakides (1992); Hassan
et al. (1992)). The question that arises then is: how does strain rat-
cheting interact with prevalent plastic structural instabilities such
as for instance axial wrinkling.

Structural degradation under cyclic loadings has received some
attention in the literature. For example, Kyriakides and Shaw
(1987); Corona and Kyriakides (1991) and Chang and Pan (2009)
reported degradation of tubes under cyclic bending in the form
of accumulated ovalization that eventually causes collapse. Ellison
and Corona (1998); Vaze and Corona (1998) and Yin et al. (2004)
reported gradual degradation and localized collapse of beams of
various cross sections under cyclic bending. Goto et al. (1995)
and Corona (2005) reported numerical results on localization of
transverse deflection in a periodically supported column undergo-
ing symmetric displacement controlled cycling.

A cyclic loading problem of practical importance to offshore
pipelines used to transport hydrocarbons can be outlined as fol-
lows. Pipelines buried in a trench (see Fig. 2) are essentially axially
restrained. Because of this restraint a temperature change caused
by the passage of hot hydrocarbons coupled with high internal
pressure can plastically deform the pipe/tube (see Klever et al.,
1994). In some cases the compression is high enough to initiate ax-
ial wrinkling. Imperfections due to small misalignments at girth
welds, heat-affected regions around the welds, hard spots at con-
nections with other equipment etc., can all enhance the onset of
wrinkling. During a lifetime of 20–30 years, pipelines experience
Fig. 2. Schematic of a buried pipeline that develops compression due to change in
temperature and internal pressure.
several startup and shutdown cycles (of the order of hundreds).
A question arises as to whether wrinkles formed as a result of such
stress risers can grow (ratchet) from the shutdown and startup cy-
cles and if so what are the consequences.

In the present investigation rather than cycling the structure by
heat/cool cycles we will consider the following idealized problem
that aims to illustrate the interaction of material ratcheting with
wrinkling. We will test cylindrical shells with a critical wrinkling
strain eC and a limit strain �eLð> eCÞ. Fig. 3 shows a plot of measured
values of these two critical average strains as a function of D/t for a
super-duplex stainless steel (SAF 2507, from Bardi and Kyriakides
(2006)). Thus for example, for shells with D/t of approximately
28.5 that will be used in the present experiments, wrinkling initi-
ates at a strain of about 1.3% and the shell starts to collapse at an
average strain of about 4% (exact value influenced by small geo-
metric and other imperfections). The shell will be preloaded to a
compressive strain of eC < �exmon < �eL (see Fig. 4a) so that wrinkles
of small but finite amplitude appear on its surface. The shell will
then be cyclically loaded under stress (load) control using the axial
stress history shown in Fig. 4b with an amplitude of ra about a
compressive mean stress of rm. These two stress values will be
chosen such that the maximum compressive stress in the cycle
corresponds to the value at which the specimen was unloaded
from during the initial monotonic phase of the loading history. It
should be pointed out that these cycle variables determine the rate
of material ratcheting. The buried pipeline problem mentioned
above involves axial cycling in the presence of internal pressure.
Under such loadings the pipe ratchets in both the axial and hoop
directions. Investigation of such more complex loadings is left for
the future.

2. Experimental

2.1. Experimental set-up and procedures

The cylindrical specimens tested are similar to those used in the
monotonic buckling experiments of Bardi and Kyriakides (2006).
They were machined out of SAF 2507 super-duplex seamless tube
stock (2.375 in (60.3 mm) OD and 0.154 in (3.91 mm) wall). In or-
der to reduce geometric imperfections, both the internal and exter-
nal diameters of the tubes were machined trying to keep the final



Fig. 5. Geometry of specimens tested.
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Fig. 4. (a) Monotonic compression stress-shortening response showing the initial
pre-staining to eC < �exmon < �eL and the stress parameters {rm, ra} of the cycles that
follow. (b) Cyclic stress history applied in the experiments.
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surfaces parallel with minimum wall eccentricity (typical tolerance
�0.001 in–0.025 mm). The test section has an OD of approximately
2.25 in (57.2 mm), a length of 3 in (76 mm) and a wall thickness of
about 0.078 in (1.98 mm). Linear tapers connect the test section to
thicker end segments that are left at the as-received diameter (see
Fig. 5). The length of the tapers was selected through FE simula-
tions of the test set-up so as to minimize the effect of the thickness
discontinuities on the axial stress. The taper geometry chosen
shown in Fig. 5 resulted in an overall specimen length of 11 in
(280 mm). This choice of specimen geometry implies that the onset
and growth of wrinkling was approaching that expected of a long
uniform tube.

The specimens were preloaded and cycled in a 225 kip (1 MN)
servohydraulic testing machine that can be operated in displace-
ment or load control. The test set up is shown in a scaled schematic
in Fig. 6. The thicker parts of the specimen engage custom axisym-
metric grips that include Ringfeder locking assemblies and solid
brass end plugs. A custom extensometer that spans the test section
is used to measure its change in length. In some tests the early
parts of the axial strain in the test section are also monitored by
strain gages.

A scanning device is used to periodically scan the surface of the
test section during the test. The device consists of an LVDT dis-
placement transducer mounted on a linear encoder that allows
monitoring of the axial position of the transducer. The encoder is
mounted on a ring that can rotate concentrically to the test speci-
men. The angular position is decided by a polar encoder consisting
of a photodiode and a graduated black–white tape mounted on the
lower grip as shown in Fig. 6. During the cyclic experiments the
tube is scanned axially at zero load, at the end of the monotonic
part of the loading (i.e., at �exmonÞ, and subsequently during cyclic
loading every 10–15 cycles.
The initial monotonic loading was conducted at a strain rate of
approximately 2 � 10�5 s�1 while the subsequent cycles had peri-
ods of 2 min. The tests were monitored via a computer operated
data acquisition system that recorded signals from the extensom-
eter, the testing machine displacement transducer, the strain gages
and the load cell on a common time base. A second data acquisition
system was used to record the axial scans.

Results from three monotonic loading buckling experiments
and 10 cyclic experiments will be reported. All test specimens were
machined from the same mother tube with approximately the
same target OD (D) of 2.25 in (57.2 mm), wall thickness (t) of
0.078 in (1.98 mm), and a gage length (L) of 3.0 in (76 mm). Exact
values of these variables that represent the averages of measure-
ments appear in Tables 1 and 2.

2.2. Experimental results – monotonic compression

Fig. 7a shows a representative monotonic stress-shortening
response from Exp. CWR10. It exhibits a limit load instability at
dx/L = 4.13%. A limited number of axial scans were performed
corresponding to the points marked on the response with solid
bullets. Fig. 7b shows the radial displacement (w) recorded along
the test section from the four scans. The results demonstrate the
growth and eventual localization of wrinkles. The number of scans
performed was not sufficient to pinpoint the onset of bifurcation as
was done in Kyriakides et al. (2005) and Bardi and Kyriakides
(2006). Instead, predictions of the critical bifurcation stress and
strain values (rC,eC) = (102.5 ksi, 1.48%) developed using the
mechanical properties given in Table 3 are listed in Table 1. It
should be pointed out that for this tube material and D/t, in the
neighborhood of the limit load the tubes tend to switch to a non-
axisymmetric buckling mode (usually n = 2, see Bardi et al.



Fig. 6. Scaled schematic of the experimental set-up used.
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(2006)), which becomes fully developed and localized if compres-
sion is continued well past the limit load.

The results from the other two monotonic loading cases in-
cluded in the table are similar. The specimen geometry differed
slightly from one case to another and each had unique small initial
geometric imperfections. The geometric differences cause small
differences in the strains at which the wrinkles first appear while
the geometric imperfections affect the onset of the limit load insta-
bility to the extent shown in the table. The three new limit strains
have been added to the results of Bardi and Kyriakides (2006) and
are depicted with solid triangular symbols (N) in Fig. 3. They are
seen to fall in line with the rest of the data.

2.3. Representative cyclic loading experimental results

Fig. 8a shows the stress–displacement response recorded for
one of the cyclic loading experiments (CWR6). This tube was com-
pressed to �exmon ¼ 2:24% and then unloaded. The maximum stress
reached during this part of the test was rxmon = 108.5 ksi (748.5
Table 1
Test specimen parameters and critical variables measured in monotonic axial compressio

Exp. No. D in (mm) t in (mm) D/t tmin � tmax in

CWR10 2.2532 0.0788 28.57 0.0782-0.079
(57.23) (2.00) (1.99-2.02)

CWR12 2.2516 0.0778 28.94 0.0772-0.078
(57.20) (1.98) (1.96-2.00)

CWR14 2.2542 0.0794 28.39 0.079-0.0798
(57.26) (2.02) (2.01-2.03)

� Bifurcation analysis, L = 3 in (76.2 mm).
MPa). Fig. 8b shows axial scans of the initial unloaded tube surface
and one following plastic deformation from monotonic compres-
sion (N = 0). By the time the compression level reached �exmon, sev-
eral wrinkles are seen to have formed in the test section. The
specimen was then cycled axially in compression under load con-
trol about a mean stress rm = 37.71 ksi (260.1 MPa) and an ampli-
tude ra = 70.82 ksi (488.4 MPa) (see Fig. 4b); in other words, the
maximum stress in each cycle corresponds to the monotonic
unloading stress rxmon. The specimen immediately starts to ratchet
axially as evidenced by the stress–displacement response in
Fig. 8a. Fig. 8c shows a plot of the peak displacement (dp

x=LÞ in each
cycle vs. the number of the cycle N. Following an initial transient
that in this case lasts a few cycles, ratcheting settles to a nearly
constant rate. In the neighborhood of cycle 150 (corresponds to
an average strain of about 3.4%) ratcheting starts to accelerate
eventually growing exponentially. The width of the stress loops
in Fig. 8a progressively increases, the peaks of the cycles become
rounder and in the last cycle recorded (N = 182), the stress is seen
to reach a peak and then to decrease before unloading commences.
n to buckling experiments.

(mm) rC
� ksi (MPa) eyC% rL ksi (MPa) �eL%

6 102.5 1.48 111.20 4.13
(707) (767)

8 103.8 1.47 114.26 4.39
(716) (788)
103.6 1.50 111.28 4.25
(715) (767)



Table 2
Geometric and material parameters of wrinkling under cyclic loading experiments.

Exp No. D in (mm) t in (mm) D/t tmax � tmin in (mm) rxmon ksi (MPa) �exmonð%Þ rm Ksi (MPa) ra ksi (MPa) NC �ef % k/R�

CWR2 2.2510 0.0784 28.71 0.0794/0.0773 105.98 2.43 43.38 62.60 480 4.79 0.281
(57.18) (1.99) (2.02/1.96) (730.9) (299.9) (431.7)

CWR3 2.2525 0.0788 28.59 0.0794/0.0783 108.40 2.29 44.25 64.15 403 4.61 0.282
(57.21) (2.00) (2.02/1.99) (747.6) (305.2) (442.4)

CWR4 2.2482 0.0761 29.54 0.0770/0.0752 107.21 2.18 36.88 70.33 340 4.76 0.281
(57.10) (1.93) (1.96/1.91) (739.4) (254.3) (485.0)

CWR5 2.2504 0.0773 29.11 0.0786/0.0760 106.41 2.30 30.57 75.84 58 4.52 0.279
(57.16) (1.96) (2.00/1.93) (733.9) (210.8) (523.0)

CWR6 2.2569 0.0805 28.01 0.0813/0.0798 108.53 2.24 37.71 70.82 182 4.45 0.287
(57.33) (2.04) (2.06/2.03) (748.5) (260.1) (488.4)

CWR7 2.2468 0.0754 29.79 0.0759/0.0745 109.69 2.34 37.71 71.98 111 4.29 0.277
(57.07) (1.92) (1.93/1.89) (756.5) (260.1) (496.4)

CWR8 2.2496 0.0768 29.29 0.0779/0.0758 110.13 3.00 39.80 70.33 130 4.97 0.279
(57.14) (1.95) (1.98/1.93) (759.5) (274.5) (485.0)

CWR9 2.2513 0.0778 28.94 0.0785/0.0773 107.07 2.61 36.74 70.33 271 5.64 0.281
(57.18) (1.98) (1.99/1.96) (738.4) (253.4) (485.0)

CWR11 2.2508 0.077 29.23 0.0779/0.0761 108.31 2.65 37.98 70.33 83 4.56 0.279
(57.17) (1.95) (1.98/1.93) (747.0) (261.9) (485.0)

CWR13 2.2529 0.0784 28.74 0.0791/0.0775 109.63 2.60 39.30 70.33 235 5.09 0.281
(57.22) (1.99) (2.00/1.97) (756.1) (271.0) (485.0)

� Calculated values.
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This is a sign that the structure is close to collapse and control was
lost for part of the cycle.

Fig. 8b shows axial scans taken initially every 30 cycles and in
the later parts of the test more often (see cycle numbers in the in-
set). Wrinkling is seen to localize at an increasing rate at one of the
ends of the test section. Indeed we know from experience that this
specimen would not be able to survive even one more load cycle, as
this most pronounced wrinkle would collapse in the manner
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Fig. 7. Typical results from a pure compression test: (a) Recorded axial stress-
shortening response. (b) Axial scans showing evolution of wrinkles in test section.
shown in Fig. 12 of Bardi and Kyriakides (2006). The test was thus
terminated after cycle 182. Fig. 9 shows a photograph of the spec-
imen after the test. Included in Fig. 8c is the amplitude of this dom-
inant wrinkle (wmax/R) vs. N. The trend of the growth of this
variable is similar to that of dp

x . Clearly the recorded ratcheting in
dp

x is partly due to accumulation of material strain and partly due
to shortening caused by the growth of the amplitude of the wrin-
kles, which can be viewed as a structural ‘‘damage”. In the early
stages of the cyclic history, material ratcheting is the main contrib-
utor while in the later parts, during the exponential growth of dp

x

and wmax, the contribution of wrinkling dominates (under com-
pression there is no reason for material ratcheting to accelerate).

The nature of dp
x � N plot in Fig. 8c is of course reminiscent of a

constant load creep curve with N replacing time. Indeed, the re-
sults exhibit the instantaneous deformation of a creep curve fol-
lowed by a primary (or transient), a secondary (or steady state)
and a tertiary regime that here ends with collapse as opposed to
rupture in creep. As in creep, the present phenomenon has two
mechanisms, material ratcheting and structural degradation in
the form of wrinkle growth. But unlike creep where strain harden-
ing and recovery are competing, here the two mechanisms cooper-
ate. The tertiary creep regime is more complex in that it can
involve additional mechanisms such as grain boundary separation,
internal formation of cracks and voids. In the present phenomenon
the wrinkle growth becomes more dominant in the tertiary regime.

In search of a simple measure of the life expectancy of a tube
cycled in this manner, we compare collapse under monotonic
and under cyclic loads. Thus the horizontal dashed line drawn in
Fig. 8c corresponds to the average of the mean strains ð�eLmonÞ at
the limit loads recorded in the three monotonic experiments.
Clearly, in this case the onset of collapse under the cyclic loading
history applied occurs very close to the average collapse strain re-
corded in the monotonic experiments. This important conclusion
will be further scrutinized in the light of additional experiments.

Detailed results from a second cyclic experiment are shown in
Fig. 10 in order to illustrate the influence of some of the main
parameters of the problem on the induced ratcheting and localiza-
tion. In this case (Exp. CWR4) the specimen was preloaded to the
slightly smaller average compressive strain of �exmon ¼ 2:18% reach-
ing a corresponding stress of 107.21 ksi (739.4 MPa). The specimen
was then cycled axially with an amplitude of ra = 70.33 ksi
(485 MPa) about a mean stress of rm = 36.88 ksi (254.3 MPa) (see
Fig. 10a). The maximum stress of the cycles is again very close to
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the value reached during the monotonic compression. Although ra

is about the same as the value in the previous experiment, the
peak-to-peak stress level of the cycles is somewhat smaller.
Fig. 10b shows that the initial compression wrinkled the tube
rather uniformly, but the wrinkles had smaller amplitude than
those of CWR6 in Fig. 8b (as will be illustrated using analysis, the
amplitude of the initial wrinkles is also influenced by initial imper-
fections in the tube). This and the somewhat milder stress cycles
induce a slower rate of ratcheting as is illustrated in the recorded
stress–displacement response in Fig. 10a and in the plot of the cy-
cle peak displacement vs. the number of the cycle in Fig. 10c. The
same can be said for the rate of growth of the wrinkle amplitude as
illustrated by the wmax/R–N plot included in Fig. 10c. Following a
small initial transient, the rate of ratcheting settles to a nearly con-
stant value that is maintained for about 250 cycles. By this time the
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ment in wrinkles.
amplitude of all wrinkles has grown significantly albeit quite uni-
formly. Subsequently the rate of ratcheting starts to accelerate and
the loops traced become increasingly wider. The rate of growth of
the amplitude of the wrinkles also accelerates while simulta-
neously the deformation localized in one of the ends (see
Fig. 10c). The experiment was terminated after cycle 340. Included
in Fig. 10c is the average strain at the limit load of the monotonic
tests ð�eLmonÞ. Once more this value is seen to correspond quite well
to the cyclic displacement at which the rate of ratcheting and local-
ization are accelerating significantly.

2.4. Summary of cyclic loading experimental results

A total of 10 cyclic experiments like the two described in Sec-
tion 2.3 were performed in which the main parameters influencing
the rate of ratcheting were further evaluated. In the interest of
brevity we will mainly report and compare the rate of ratcheting
recorded as represented by the net shortening per cycle ðdp

x � NÞ
response (the stress–strain responses and the evolution of wrinkles
will be made available on our website for anyone interested). Thus
for example, in Fig. 11 we compare the ratcheting results from six
experiments, which had approximately the same average compres-
sive pre-strain of �exmon � 2:3% but with different cycle amplitudes,
ra, given in the inset. In each case rm was chosen so that the max-
imum stress of the first cycle matched the maximum stress
reached during the initial monotonic loading (see Table 2 for de-
tails). All trajectories have the characteristic shape of creep curves
differing mainly in the extent of the initial transient and that of the
steady state. As expected, the effect of ra on the rate of ratcheting,
represented by the slope of the nearly linear parts of the trajecto-
ries, is very significant. Furthermore, in all cases at some point the
rate of growth of dp

x starts to accelerate becoming exponential. All
specimens were cycled up to the point when collapse was eminent
at which time the test was terminated.
Fig. 9. Specimen CWR6 at the end of cycling showing wrinkles and localization at
one end.



Fig. 10. Results from cyclic loading experiment CWR4. (a) Axial stress-shortening
response. (b) Axial scans showing evolution of wrinkles during the cycling. (c) Peak
axial displacement in cycles vs. N and corresponding maximum radial displacement
in wrinkles.
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Included in Fig. 11 is the average strain at the limit loads of the
three monotonic loading tests �eLmon. This strain level is seen to fall
in the part of each trajectory where the rate of ratcheting is in the
accelerated rate regime albeit in some cases in the earlier parts and
in some in the latter parts of these regimes. This trend confirms the
observation made earlier that under cyclic loading the specimens
tend to collapse at average strain levels that approximately corre-
spond to that at collapse under monotonic loading. Thus, the aver-
age strain under monotonic loading seems to be the maximum
strain that the structure can undergo irrespective of how this strain
is developed (accumulated). This is a very strong result indeed as it
provides a simple means of estimating the life expectancy of such
structures under cyclic loads. This observation is reminiscent of a
similar one reported in Kyriakides and Shaw (1987) and Corona
and Kyriakides (1991) regarding the life span of Al-alloy tubes
cyclically bent plastically. This type of cycling causes accumulation
of ovalization that eventually leads to collapse. The cycled struc-
ture collapses when the accumulated ovalization reaches the value
at which it collapses buckling under monotonic bending (similar
results were reported recently by Chang and Pan (2009) for stain-
less steel tubes).

Fig. 12a shows a second set of ratcheting results from experi-
ments in which the specimens were loaded to different levels of
strain during monotonic loading while the cycle amplitude was
kept constant (ra = 70.33 ksi–485 MPa). In each case the mean
stress had to be adjusted slightly in order to match the maximum
stress of the cycle with the maximum stress level achieved during
monotonic loading (see values in figure inset). Increasing �exmon in-
creases the amplitude of the initial wrinkles as illustrated in
Fig. 12b. The dp

x � N results in Fig. 12a show that larger initial wrin-
kles tend to increase the rate of ratcheting and decrease the num-
ber of cycles to collapse. Thus Exp. CWR4 with �exmon ¼ 2:18%

collapsed after 340 cycles while CWR8 with �exmon ¼ 3:0% reached
a critical state after 130 cycles. Once more the rate of ratcheting
is seen to accelerate when the accumulated deformation ap-
proaches �eLmon.

As pointed out earlier, each tube has unique, small initial geo-
metric imperfections that influence the onset of collapse both un-
der monotonic and cyclic loadings. The test specimens were first
bored and rimmed on the inside and the outer surface, including
the linear tapers, was turned last in an NC lathe. The two step pro-
cess ends up with very round inner and outer surfaces but minor
misalignments in the two setups can result in a small amount of
wall eccentricity and misalignment of the axes of the two surfaces.
These imperfections were measured manually and their extent man-
ifests in the thickness variations reported in Table 2. Fig. 13 shows
the repercussions of variation of imperfections on the rate of ratchet-
ing. Chosen are results from tubes with extreme differences in their
imperfections. Fig. 13a shows ratcheting results from three experi-
ments that were compressed to the same average strain of
�exmon ¼ 2:6% and then cycled with the same cyclic stress parameters.
Two of the specimens, CWR9 and CWR13, have similar ratcheting re-
sponses and a life span of 271 and 235 cycles, respectively. Both of
these tubes sustained average strains that are somewhat higher than
the 4.25% levels of the monotonic loading tests. The third, CWR11,
ratcheted at a much faster rate and lasted only 83 cycles and an aver-
age strain that is very close to the level of the monotonic tests that is
drawn in the plot with a dashed line. The cause of this difference can
be seen in Fig. 13b which shows axial profiles of the wrinkles devel-
oped in each tube from the 2.6% shortening induced by monotonic
loading. First, the wrinkle profiles are distinctly different in the three
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cases, and second their amplitudes differ. CWR9 has the smallest
amplitude, CWR13 somewhat larger while the amplitude of
CWR11 is essentially double that of CWR9. The cause of this differ-
ence is a somewhat larger eccentricity and inner/outer surface axis
misalignment recorded for CWR11.

3. Analysis

3.1. Formulation

The problem of plastic buckling of long circular cylinders under
axial compression was fully addressed by Bardi et al. (2006) using
an extension of the shell formulation of Yun and Kyriakides (1990).
Here we will adopt the same basic formulation, couple it to a cyclic
plasticity constitutive model, and use them to analyze the buckling
of cylinders under cyclic loads. Because of the challenges placed on
the constitutive framework adopted, in this first attempt at the
problem strictly axisymmetric buckling will be investigated as this
is the dominant mode of buckling for buried offshore pipelines,
which typically have D/t values less than 25. Thus we consider a
thin-walled circular cylindrical shell with mid-surface radius R,
wall thickness t and length 2L with small initial axisymmetric
imperfections. Sanders’ (1963) shell kinematics based on the
assumptions of small strains and moderately small rotations are
adopted which for axisymmetric deformation reduce to

eo
xx ¼ u;x þ

1
2

w;2x ; eo
hh ¼

w
R
; jxx ¼ �w;xx: ð1aÞ

The strains at any point on the shell are given by:

eab ¼ eo
ab þ zjab

�� .
ðAaAbÞ1=2

; where A1 ffi 1; A2 ffi 1þ z
R
: ð1bÞ

For an imperfect structure with imperfection �wðxÞ the strains
become
eab ¼ eabðu;wþ �wÞ � eabð0; �wÞ: ð1cÞ
Equilibrium will be satisfied through the Principle of Virtual
Work (PVW), which in the present setting can be expressed as
follows:

2pR
Z L

0
Nxxdeo

xx þ Nhhdeo
hh þMxxdjxx

� �
dx ¼ dW ð2aÞ

where dW is the virtual external work. The membrane and bending
moment intensities are given by

Nab ¼
Z t=2

�t=2

A1A2

ðAaAbÞ1=2 rab dz;

Mab ¼
Z t=2

�t=2

A1A2

ðAaAbÞ1=2 rabzdz; ða;bÞ not summed: ð2bÞ

The evolution of wrinkling during cycling and the development
of the anticipated localized collapse are considered by introducing
the following initial imperfection to the tube

�w ¼ t xo þx1 cos
px
Nk

� �h i
cos

px
k

� �
; ð3Þ

where 2k is the wavelength of the axisymmetric buckling mode
evaluated as discussed in Kyriakides et al. (2005). The end at
x = Nk is radially free and symmetry about the specimen mid-span
(x = 0) is assumed. Thus, the length of the domain considered is
L = Nk while imperfection (3) introduces an amplitude bias towards
x = 0. (This is a scheme meant to represent the behavior of a long
tube adopted in Bardi and Kyriakides (2006) and found to be effec-
tive in reproducing monotonic loading experimental results.)

The problem domain is discretized by adopting the following
admissible expansions for the displacements:

w ¼ a0 þ
XNw

n¼1

an cos
npx
Nk

� �
and u ¼ b0xþ

XNu

n¼1

bn sin
npx
Nk

� �
: ð4Þ
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Thus, b0 = dx/Nk is the average axial strain and in (2a)
dW = PNkdb0 for load controlled loading and dW = 0 for displace-
ment controlled loading. Substituting (4) into (2a), the PVW
becomes

2pR
Z Nk

0
Nxxeo

xx;iþNhheo
hh;iþMxxjxx;i

h i
dxdqi ¼W ;idqi; i¼1;2; . . . ;NwþNuþ2

ð5Þ

ð�Þ;i�
@ð�Þ
@qi

and q¼ ½a0;a1; . . . ;aNw ;b0;b1; . . .bNu 	
T :

In view of the arbitrariness of dqi, the following algebraic equa-
tions represent equilibrium:

Giðq
 þ _qÞ ¼ 2pR
Z Nk

0
Nxxeo

xx;i þ Nhheo
hh;i þMxxjxx;i

n o
dx�W;i ¼ 0;

i ¼ 1;2; :::::;Nw þ Nu þ 2: ð6Þ

In the incremental solution procedure followed, q* represents
the previous converged solution and _q is the increment of q re-
quired for the current solution. Similarly Nab ¼ Nabo þ _Nab . . . etc.
The instantaneous constitutive equations are given by:

_Nxx

_Nhh

_Mxx

_Mhh

8>>><
>>>:

9>>>=
>>>;
¼
Z t=2

�t=2

A zA
zA z2A

� �
dz

_eo
xx

_eo
hh

_jxx

_jhh

8>>><
>>>:

9>>>=
>>>;
; ð7Þ

A ¼
A2=A1C11; C12

C12; A1=A2C22

� �

where [Cab] a,b = 1,2 come from the inverse of the constitutive matrix
(20). In the cases discussed here N = 7, Nu = Nw = 11, while 49 Gauss
integration points were used in the axial direction and 5 through
the thickness (numbers established from convergence studies).

3.2. Constitutive model

The elastoplastic cyclic behavior of SAF2507 super-duplex steel
is modeled using the two-surface nonlinear kinematic hardening
model of Dafalias and Popov (1975, 1976) with the modifications
put forward in Hassan et al. (1992); Hassan and Kyriakides
(1994a,b). Furthermore, this stainless steel is essentially cyclically
stable and is modeled as such. The numerical implementation of
the model follows along the lines of the subroutine of Kyriakides
and Corona (1995). The strain increments are decomposed into
elastic and plastic parts as follows:

de ¼ dee þ dep: ð8Þ

The elastic deformation is isotropic with elastic modulus E and
Poisson’s ratio m, thus

dee ¼ 1
E
½ð1þ mÞdr� mtrðdrÞI	: ð9Þ

The plastic strain increment is evaluated from the flow rule,
which can be expressed as

dep ¼ 1
H

@f
@r
� dr

	 

@f
@r

ð10Þ

where H is the current plastic modulus.
In the uniaxial setting, represented in Fig. 14 by bcde, the plastic

modulus of point d depends on the stress variables d and din. Both
are distances measured from the bound XY, which is the tangent to
the stress-plastic strain response at a large value of strain (point e
in this case). d is the distance of point d from the bound and din is
the distance of the last elastic state, point c, from the same line. The
plastic modulus H is related to these variables as follows:

Hðd; dinÞ ¼ Ep
o þ h

d
din � d

	 

; ð11aÞ

where Ep
o is the modulus of the bound and h will be taken as

h ¼ a
1þ bðdin=2rbÞc

ð11bÞ

(a, b and c are material constants). A second bounding line, X0Y0, is
drawn parallel to XY as shown in the figure.

In the multiaxial setting the yield surface (YS) bc is represented
as follows:

f ðr� aÞ ¼ 3
2
ðs� aÞ � ðs� aÞ

� �1=2

¼ ro ð12Þ

where r is the stress tensor, a is the center of the yield surface in
stress space and s and a are the respective deviatoric tensors. ro

is the size of the yield surface assumed to remain constant. B0C be-
comes a bounding surface (BS) that encloses the YS and is defined by

Fð�r� bÞ ¼ 3
2
ð�s� bÞ � ð�s� bÞ

� �1=2

¼ rb: ð13aÞ

Here rb is the size of the BS, �r is the congruent point on the BS
to r on the YS, b is the center of the BS, and �s and b are, respec-
tively, their deviators. The two surfaces are geometrically similar
and, as a result, points P and P are congruent when they have
the same normals as shown in Fig. 15. Thus, the two points are re-
lated through:

ð�r� bÞ ¼ rb

ro
ðr� aÞ: ð13bÞ

The scalar d is generalized as follows (see Fig. 15):

d ¼ ½ð�r� rÞ � ð�r� rÞ	1=2
: ð14Þ

The YS translates in stress space according to a chosen harden-
ing rule that in general is defined by

da ¼ dlm; m � m ¼ 1: ð15aÞ

In the present calculations the stress version of the Armstrong–
Frederick hardening rule (1966) as implemented in Hassan et al.
(1992) and Hassan and Kyriakides (1994b) is adopted so

m ¼ ½ð1� kÞðr� aÞ � ka	
jð1� kÞðr� aÞ � kaj : ð15bÞ

The amount of translation dl is chosen by satisfying the consis-
tency condition
Fig. 14. Uniaxial stress–strain parameters for the Dafalias–Popov model.
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@f
@r
� da ¼ @f

@r
� dr: ð15cÞ

The translation of the BS is coupled to that of the YS as follows:

db ¼ da� dMm; ð16aÞ

where

m ¼ ð�r� rÞ
j�r� rj and dM ¼ 1� Ep

b

H

	 

dr � n
m:n

	 

ð16bÞ

here n is the unit normal to the YS at the current stress point (see
Fig. 15) and Ep

b is evaluated from

Ep
b ¼ Ep

o þ Cr½ðb:bÞ1=2 � b:n	: ð17Þ

This modification introduced by Hassan and Kyriakides
(1994a,b) allows relaxation or downward shift of the bounds found
to be necessary in the prediction of uniaxial ratcheting. When the
two surfaces come into contact the BS becomes the active surface
and the YS moves so as to remain tangential to it.

Finally the tubes tested exhibit some initial plastic anisotropy
(see Kyriakides et al. (2005) and Bardi et al. (2006)) and conse-
quently the yield function becomes:

f ¼ ðrx�axÞ2� 1þ 1
S2

h

� 1
S2

r

 !
ðrx�axÞðrh�ahÞþ

1
S2

h

ðrh�ahÞ2
" #1=2

¼ro:

ð18Þ

Here Sr ¼ ror=ro; Sh ¼ roh=ro and {ror,roh, ro} are the yield
stresses in the radial, circumferential and axial directions. The
bounding surface is also modified in a similar manner becoming

F¼ ð�rx�bxÞ
2� 1þ 1

S2
h

� 1
S2

r

 !
ð�rx�bxÞð�rh�bhÞþ

1
S2

h

ð�rh�bhÞ
2

" #1=2

¼rb:

ð19Þ
Table 3
Constitutive model parameters.

Loading E Msi (GPa) Ep
o ksi (GPa) ro ksi (MPa) rb

Monot. 28.2 600 62.0 97
(195) (4.14) (428) (6

Cyclic 28.2 600 47.5 11
(195) (4.14) (328) (7

Sh ¼ 1:15; Sr ¼ 0:85
The instantaneous strain increments are then given by

dex

deh

� �
¼ 1

E
1þQð2r̂x�fr̂hÞ2 �mþQð2r̂x� fr̂hÞð2gr̂h�fr̂xÞ

�mþQð2r̂x� fr̂hÞð2gr̂h�fr̂xÞ 1þQð2gr̂h� fr̂xÞ2

" #

�
drx

drh

� �
ð20Þ

where

g ¼ 1
S2

h

; f ¼ 1þ 1
S2

h

� 1
S2

r

 !
; Q ¼ 1

4r2
o

E
H
; r̂x ¼ rx � ax; r̂h

¼ rh � ah:
3.3. Numerical results

The axisymmetric shell formulation and the nonlinear kine-
matic hardening constitutive model outlined are now used to sim-
ulate several of the cyclic experiments presented. We start with a
simulation of CWR6 using the geometric parameters listed in Table
2. The tubes are plastically anisotropic with {Sr,Sh} values given be-
low Table 3. Consequently, the critical wrinkle half wavelength
was evaluated as in Kyriakides et al. (2005) to be k = 0.287R. The
imperfection amplitudes {xo,x1} were chosen for optimal perfor-
mance of the model, which in this case were found to be
{0.09%,0.09%} (for imperfection sensitivity study see Section 3.4).
This tube was pre-compressed to �exmon ¼ 2:24%. The constitutive
model parameters used for this part of the loading history come
from the initial monotonic stress-strain response of the material
and are listed under Monot. in Table 3. The parameters used for
the stress-controlled cycling come from the stable hysteresis and
appear in the same table under Cyclic. We note that for monotonic
loading a single parameter fit for h in (11b) sufficed, whereas the
more elaborate version had to be adopted for fitting the hysteresis.

It is worth pointing out that several of the cyclic fit parameters
can influence the rate of ratcheting as well as the rate of growth of
the wrinkles, and again these variables were selected for optimal
performance of the model. The extent of the influence of the key
parameters on the results will be illustrated in the parametric
study that follows.

The calculated stress-shortening response is shown in Fig. 16a.
Following the initial preloading the model was cycled axially using
the cycle variables {ra,rm} of the experiments. A total of 183 cycles
were applied. The characteristics of the calculated response are
very similar to those of the corresponding experimental one in
Fig. 8a. Fig. 16b shows a plot of the calculated peak displacement
in each cycle ðdp

x=LÞ vs. N along with the corresponding experimen-
tal results. Following an initial transient, the rate of ratcheting of dx

becomes nearly constant. The rate of ratcheting accelerates around
cycle 150 and grows exponentially during the last few cycles very
much like in the experiment. Fig. 17a shows plots of the radial dis-
placement along the full domain of 2L = 14k for various cycle
counts (x = 0 represents the plane of symmetry). The amplitudes
of the wrinkles are seen to grow with N with the growth of the cen-
tral wrinkles being more pronounced. Indeed in cycle 183 defor-
mation is seen to have localized around the central wrinkle. The
ksi (MPa) aMsi (GPa) b c k Cr

.9 12.5 0 0 0.1 60
75) (86.2)
4 300 36 3 0.1 60
86) (2069)



Fig. 16. (a) Calculated axial stress-shortening response for CWR6 and (b) compar-
ison of measured and calculated peak axial displacement per cycle vs. N.
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growth of the wrinkles and their localization are also illustrated in
Fig. 17b where 3-D renderings of the configuration just before cy-
cling commences ð�exmon ¼ 2:24%Þ, one after cycle 150 and a third
one after cycle 184 at which the net axial shortening is approxi-
mately 6.6% are shown. (Compare Fig. 17a and b with similar ones
for monotonic compression shown in Figs. 7 and 8 of Bardi et al.
(2006)). The place and nature of the localization are of course dif-
ferent from those of the experiment because of the idealized geom-
etry, imperfection, boundary conditions and axisymmetric nature
of the solution adopted. However, overall the model is seen to be
w
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Fig. 17. (a) Calculated radial displacement axial profiles after different number of cycl
configurations at the onset of cycling, after 150 and 184 cycles.
able to reproduce the interaction between material ratcheting
and wrinkle growth very well.

A second set of results from a simulation of CWR4 is shown in
Fig. 18. In this case the critical wrinkle half-wavelength is slightly
different (k = 0.281R) but the same imperfection and constitutive
model parameters are adopted (Table 3). Overall the simulation
reproduces the experimental results shown earlier in Fig. 10 very
well. The calculated stress–displacement response in Fig. 18a
tracks the experimental one very well and the rate of ratcheting
of dp

x is seen in Fig. 18b to match the experimental rate very closely.
In view of this success the same imperfection and material

parameters were used to simulate all six of the experiments in
Fig. 11 that were pre-compressed to �exmon � 2:3%. The results from
four of the simulations (CWR2, 4, 6 and 7) are summarized in
Fig. 19 in the form of dp

x � N ratcheting plots. Despite the very dif-
ferent rates of ratcheting recorded in these experiments the
numerical results match the experimental ones very well from
the beginning to the end. We suggest that this success over a broad
range of stress cycle parameters is caused by similar initial imper-
fections in the four specimens and simultaneously validates the
veracity of the model.

The same imperfection amplitudes were also used to calculate
the compressive response under monotonic compression. The re-
sponse is characterized by a limit load instability in the neighbor-
hood of which deformation localizes as shown in Figs. 6–8 of Bardi
et al. (2006). The limit load occurred at dx=L � �eLmon ¼ 4:48%. This
value compares with the three experimental values listed in Table
1 that have an average of 4.25%. This average and the prediction are
drawn as horizontal lines in Fig. 19. Clearly both fall in the parts of
the dp

x � N ratcheting plots where the exponential growth is taking
place. This confirms the experimental observation that collapse un-
der monotonic and cyclic loads happens at very similar values of
average strain if the tube imperfections are similar.

By contrast, using the same imperfection parameters the corre-
sponding ratcheting results for experiment CWR5 were under-pre-
dicted and for CWR3 over-predicted. The most plausible cause of
this is small differences between the initial imperfections in these
two tubes with those of the other four cases in the group. For a suc-
cessful reproduction of the experimental rate of ratcheting the
imperfection amplitudes {xo,x1} for CWR5 had to be both in-
creased to 0.34% whereas for CWR3 they had to be decreased to
0.06% (these results are shown in Fig. 20). This illustrates once
more that small initial imperfections can have a significant effect
on this type of ratcheting.
N = 0 N =150 N = 184

es showing the growth and localization of wrinkles for CWR6. (b) Tube deformed



Fig. 18. (a) Calculated axial stress-shortening response for CWR4 and (b) compar-
ison of measured and calculated peak axial displacement per cycle vs. N.
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The set of experiments in which the initial compressive strain
�exmon was varied were also simulated with the same imperfection
and constitutive model parameters. The resultant dp

x � N ratcheting
results are compared to the experimental ones in Fig. 21. Although
the match between the experimental and predicted results is not
perfect in all cases, the overall performance is still very good. Once
again, these results indicate that the tubes tend to collapse when a
critical amount of deformation or wrinkle amplitude is reached. In
the results presented part of the wrinkle growth is introduced by
monotonic compression. When this is relatively small then the
number of cycles required to reach the critical value is larger,
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Fig. 19. Comparison of measured and calculated peak displacements per cycle vs. N
from four experiments with approximately the same initial pre-straining.
and when it is larger then the critical deformation is reached in
fewer stress cycles.

3.4. Sensitivity of ratcheting on problem parameters

The imperfection amplitudes and two of the constitutive model
parameters adopted in the simulations discussed in Section 3.3
(see Table 3) were selected for optimal performance of the model
in predicting the ratcheting and onset of collapse of most of the
experiments performed. We will now treat this set of parameters
as the base case and demonstrate the effect of individual parame-
ters on the rate of ratcheting by varying them.

3.4.1. Imperfection parameters
Fig. 22a shows dp

x � N ratcheting results for CWR6 for various
values of the main imperfection variable xo. Here this variable
was assigned different values while all other parameters were kept
at the basic case levels. This variable affects the rate of ratcheting
during most of the loading history. Thus, as xo increases from
0.05% to 0.09% to 0.2% the rate of ratcheting is seen to increase with
the value 0.09% producing the best agreement with the experimen-
tal results. Drawn in the same plot with a dashed line are results
for a tube with no imperfections (i.e., xo = x1 = 0). In this case
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Fig. 21. Comparison of measured and calculated peak displacement per cycle vs. N
from three experiments with different initial pre-straining and the same stress
cycle amplitude.
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(a) Variation of xo and (b) variation of x1.
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the tube does not wrinkle or collapse and the accumulation of
deformation is purely due to material ratcheting.

Fig. 22b shows similar dp
x � N ratcheting results for different val-

ues of the second imperfection parameter, x1, with xo kept at the
base value. This variable has relatively small effect on the rate of
ratcheting during the part of the history when the wrinkle ampli-
tude is growing at a nearly constant rate. The results clearly show
however that this parameter influences significantly the onset of
localization; so as x1 increases the tube localizes in a fewer num-
ber of cycles. The value of 0.09% produces the best agreement with
the experimental results.

In Section 2 it was pointed out that the machined tubular spec-
imens used in the experiments had small thickness variations that
had some influence on the ratcheting results. In the way of assess-
ing the effect of thickness variations on the rate of ratcheting of our
axisymmetric model, the following linearly varying thickness
imperfection was introduced to the model:

tðxÞ ¼ to½1� sð1� 2x=LÞ	; s ¼ Dt
to

ð21Þ

where to is the average thickness and Dt is the amplitude of the var-
iation. Ratcheting calculations were then performed for the loading
parameters of CWR6 using three values of s and the base case prob-
lem parameters in Table 3. The results are summarized in the form
of dp

x � N ratcheting plots in Fig. 23. Although the thickness varia-
tions in the test specimens were not axisymmetric, their amplitudes
were typically of the order of 1% of the mean thickness. The results
show that for axisymmetric variations of this amplitude this type of
imperfection affects mainly the onset of collapse. At much larger
amplitudes (e.g., 2.5%) the rate of ratcheting in the steady state part
of the simulation is also affected somewhat.
F
ra
3.4.2. Constitutive model parameters
We now consider two parameters of the constitutive model, Cr

and rb, that influence material ratcheting and localization of wrin-
kles. As pointed out in Hassan et al. (1992), when the bound is
fixed results in a progressively slower rate of ratcheting as shown
in Fig. 24 for Cr = 0. Indeed this can eventually lead to shakedown.
One way of correcting this performance of the model is to allow the
bound to shift downwards, or relax. This is achieved by the intro-
duction of the second term in Eq. (17) with Cr (relaxation coefficient)
governing the rate of relaxation (see Hassan and Kyriakides,
1994a,b). The results in Fig. 24 demonstrate that as Cr increases
the rate of ratcheting increases. The value of 60 was found to best
reproduce the rate of ratcheting in this material.

The size of the bounding surface, rb, is another variable that af-
fects the rate of ratcheting. Reducing rb decreases the plastic mod-
ulus during a stress cycle, increases the final plastic strain, which in
turn results in an increase in the rate of ratcheting. The effect of
this parameter on the rate of ratcheting is illustrated in Fig. 25
where dp

x � N ratcheting plots for three values of rb are compared
to the experimental results of CWR6 with all other parameters kept
at their base case values. The optimum value adopted in the simu-
lations was rb = 114 ksi (786 MPa).

4. Conclusions

Plastic buckling of circular tubes is characterized by a sequence
of instabilities that eventually lead to localized collapse. The tube
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first develops axisymmetric wrinkles, which are initially benign.
Under further compression the amplitude of the wrinkles grows,
progressively reducing the axial rigidity of the structure and even-
tually leading to a limit load instability. At this point, with the load
dropping, the deformation localizes forming a single bulge that
eventually becomes a fold. The onset of wrinkling and the onset
of localization can be separated by strain levels of a few percent
(separation depends on D/t and material hardening). In this work,
we investigated whether a tube that develops small amplitude
wrinkles can be collapsed by persistent cycling. To this end, tubular
specimens were first compressed to strain levels high enough for
mild wrinkles to form; they were then cycled axially under stress
control about a compressive mean stress. In a solid, this type of cy-
cling results in material ratcheting. In the present setting, material
ratcheting was accompanied by progressive growth of the ampli-
tude of the preexisting wrinkles. The amplitude of the wrinkles
covering the test section initially grew uniformly with the number
of cycles. This, coupled with the material ratcheting, caused the
shortening to grow nearly linearly with the number of cycles ap-
plied. When the wrinkles reached a critical amplitude their rate
of growth accelerated while simultaneously deformation started
to localize, usually at one site. The growth of localization acceler-
ated, with each cycle becoming exponential and resulting in local-
ized collapse of the tube that resembles that seen under monotonic
compression. The net shortening-N trajectories traced resemble
creep curves with N replaced time. In other words, the trajectories
exhibit an initial transient, an extended linear regime and a fast
growing one that terminates in collapse. The two mechanisms be-
hind this behavior are material ratcheting and structural degrada-
tion in the form of wrinkle growth. Unlike creep the two
mechanisms cooperate, with the wrinkle growth being the one
responsible for collapse. The following observations can be made
from the experiments:

(a) Collapse under cyclic loading was found to occur when the
net shortening or average strain in the tube reached a level
that corresponds to the average strain at the load maximum
under monotonic loading. This provides a practical way of
estimating the life expectancy of a wrinkled tube that is
experiencing cyclic loading.

(b) The number of cycles to collapse is governed first by the
level of the initial pre-strain, and second by the mean stress
and amplitude of the load cycles.

(c) As is the case for monotonic loading, initial geometric imper-
fections can reduce the average strain at failure and the cor-
responding number of cycles.
The experiments were simulated numerically using nonlinear
axisymmetric shell kinematics coupled with the two-surface plas-
ticity model of Dafalias and Popov (1975, 1976) along with modi-
fications of this model recommended for ratcheting applications by
Hassan et al. (1992); and Hassan and Kyriakides (1992, 1994a,b).
The shell domain analyzed was assigned small initial axisymmetric
imperfections with a small bias in order to facilitate localization.
The amplitudes of these imperfections were chosen for optimal
performance of the model in predicting the rate of ratcheting and
the onset of localization. The plasticity model was calibrated to
measured stress-strain data of SAF2507 super-duplex stainless
steel. Two parameters that were found to influence the calculated
rate of ratcheting were also selected for best overall performance
of the model.

The numerical model was found to reproduce the material rat-
cheting, the evolution of wrinkles and their eventual localization
very well over the whole range of problem parameters tested.
The model also captured the sensitivity to initial geometric imper-
fections seen in the experiments. Furthermore, it confirmed that
collapse under cyclic loadings materializes when the wrinkles
reach a critical level, and that the average strain at collapse corre-
sponds to that at the onset of collapse under monotonic loading.
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