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The intranasal administration of proteins using nanoparticles is a promising approach for several applications,
especially formucosal vaccines. Delivery of proteinwithin the epithelial barrier is a key point to elicit an immune
response and nano-carrier has to show no toxicity. The aim of this work was to elucidate the interactions of
cationic porous nanoparticles loaded with protein delivery for antigen delivery in the nose. We investigated
the loading, the cellular delivery and the epithelial transcytosis of proteins associated to these nanoparticles
containing an anionic lipid in their core (NPL). NPL were highly endocytosed by airway epithelial cells and
significantly improved the protein delivery into the cell. In vitro transcytosis studies showed that NPL did not
modify the in vitro epithelial permeability suggesting no toxicity of these carriers. Moreover protein and NPL
did not translocate the epithelial barrier. In vivo studies demonstrated that NPL prolonged the nasal residence
time of the protein and noNPL were found beyond the epithelial barrier in vivo, precluding a negative side effect.
All together these results establish the NPL as a bio-eliminable and optimal vaccine carrier.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years, nanoparticles have been increasingly studied for use
in vaccine applications [1–3] owing to their potential adjuvant effect
and ability to mimic viruses, characteristics related to their size, geom-
etry and physical properties [4]. Furthermore, researchers have repeat-
edly reported that the use of particulate antigens is more successful
than soluble ones in activating immune cells and affording longer
term protection [5–7].

The mucosal route of administration is promising in order to trigger
an effective immune response and protection against pathogens [8], and
offers the possibility of needle-free vaccinations [9]. Notably, the nasal
route is a convenient mucosal site for vaccine delivery since, besides
being the natural route of infection of many pathogens, it is also non-
invasive [10,11].

The translocation of nanoparticles has been extensively investigated
at the blood-brain and the intestinal barriers [12–16]. However, little is
known about transcytosis of nanoparticles in the airwaymucosa. Scarce
in vitro evaluations have been conducted in models of the airway epi-
thelial barrier to improve understanding of thepermeationmechanisms
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governing drug and nanocarrier passage through the epithelium
[17–19], but fewer in vivo studies have been published [20–23].

Paracellular transport is also considered as a potential pathway to
overcome epithelial barriers [24] and to deliver drugs to immune cells
found beneath the epithelium. The tight junction (TJ) opening can
improve the drug permeation, although it could also be the result of a
toxic effect [25]. Several in vitro models have been used to explore the
interaction of xenobiotics with the airway epithelium. Human nasal
septum epithelial cells RPMI2650 ATCC® CCL-30™were used however
these cells pile and fail to reach a complete confluence [26,27]. The
16HBE14o-human bronchial epithelial cell line are useful in the study
of paracellular drug transport, since they form a pseudo-stratified
monolayer and express TJ proteins [28–30] and have been established
as a model system to investigate drug transport across the airway
epithelium [31].

Porous nanoparticles [32] have recently been studied as vaccine
delivery vectors [33]. It is possible to load these nanoparticles with
proteins in order to deliver them into cells via endocytosis [34] and
their use as nasal delivery systems for antigens has been shown to
protectmice from acute and chronic infection against Toxoplasma gondii
[33]. However, the mechanisms by which these nanoparticles deliver
antigens within the airway mucosa and their ability to cross epithelial
barriers have yet to be fully clarified.
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In this work we aimed to better understand the interactions of these
nanoparticles with the airway epithelial cells, their ability to cross this
barrier, and to analyze the impact of the lipids within these nanoparti-
cles on the delivery and the transcytosis of antigens in epithelial cells.
In vivo studies were performed to track the antigen delivery in airway
mucosa and its biodistribution after nasal administration. Toxicity
issues are discussed.

2. Materials and methods

2.1. NP+ and NPL preparation

Polysaccharidic nanoparticles (NP+) and polysaccharidic lipidated
nanoparticles (NPL) were prepared from maltodextrin (Roquette,
France) as described previously by Paillard et al. [32]. Briefly, maltodex-
trin was dissolved in water bymagnetic stirring at room temperature. A
mixture of epichlorohydrin and glycidyltrimethylammonium chloride
(GTMA, a cationic ligand; both fromSigma-Aldrich, France) in basicme-
diumwas added to the cationic polysaccharide leading to the formation
of a gel. The gelwas then neutralizedwith acetic acid and crushedwith a
high pressure homogenizer (Emulsiflex C3, Avestin, Germany). The
nanoparticles (NP+) thus obtained were purified by tangential flow
ultra-filtration (Centramate Minim II PALL, France) using a 1000 kDa
membrane (PALL, France) to remove oligosaccharides, low-molecular
weight reagents and salts. Purified NP+ were freeze dried. Lyophilized
NP+ were resuspended in a 70% (w/w) aqueous solution of an anionic
lipid (DPPG: 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol from
Lipoid, Germany) which was incorporated by the nanoparticles, thus
obtaining NPL.

2.2. Labeling of the polysaccharide part of NPL

NP+ were covalently labeled with fluorescein isothiocyanate (FITC,
Sigma-Aldrich, France) according to the following protocol: FITC was
added to NP+ (NP+/FITC mass ratio of 10), solubilized in 0.1 M
bicarbonate buffer (pH 9.5), and the solution was mixed for 6 h in the
dark at room temperature. Afterwards the NP+-FITC were purified by
tangential flow filtration and lyophilized. The NP+-FITC were then
lipidated, as described above, in order to obtain NPL-FITC.

2.3. Labeling of the lipid part of NPL

Labeling of the phospholipids encapsulated in the NPL with DiD
(1.1′-Dioctadecyl-3,3,3′,3′-Tetramethylindodicarbocyanine Perchlo-
rate, ThermoFisher Scientific, France) was performed by mixing DiD
(1 mg/ml in ethanol) for 30 min at room temperature with NPL with a
final concentration of 0.7% (w/w of DPPG) obtaining NPL-DiD. After or-
ganic solvent evaporation the formulationswere kept in the dark at 4 °C
before use, while DiD loading was confirmed by gel permeation studies
on a PD-10 Sephadex G25 desalting column (Sigma-Aldrich, France).

2.4. Protein labeling and loading into nanoparticles

The ovalbumin (OVA, Sigma-Aldrich, France) was labeled with FITC
(Fluorescein-5-isothiocyanate, ThermoFisher Scientific), TRITC
(tetramethylrhodamine-5-isothiocyanate, ThermoFisher Scientific,
France) or CF750® Succinimidyl ester (Sigma-Aldrich, France) following
the same protocol used for the NP+ labeling. The labeled protein was
purified by gel filtration on a PD-10 Sephadex column, as above. The
concentration of the labeled protein was then evaluated using the
Micro BCA Protein Assay Kit (ThermoFisher Scientific, France) following
the supplier's instructions. LabeledOVA (1mg/ml)was post-loaded into
pre-made sterile NPL (5 mg/ml) by mixing increasing amounts of OVA
obtaining 1:0.5, 1:3 and 1:5 (w/w) OVA:NPL formulations.
2.5. Characterization of the NPL

The characterization of the size and zeta potential of the NPL were
performed with a Zetasizer nanoZS (Malvern Instruments, France). For
the size analysis, NPL (5 mg/ml) were directly measured. For the zeta
potential analysis, 12 μl of NPL (5mg/ml)were diluted to a final volume
of 750 μl using distilled water and loaded into a disposable, folded
capillary cell.

2.6. Characterization of OVA:NPL formulations

The size and the zeta potential of the OVA:NPL formulations were
determined as described above. The analysis of the protein association
to the NPL was performed by native polyacrylamide gel electrophoresis
(PAGE), supplementing the formulations with electrophoresis buffer
(Tris-HCL 125 Mm (pH 6.8), 10% glycerol, 0.06% bromophenol blue)
and running the samples on a 10% acrylamide-bisacrylamide gel. A
silver nitrate staining was subsequently performed to detect the
unbound proteins and thus evaluate the amount of associated proteins.

2.7. NPL endocytosis and in vitro protein delivery

The 16HBE14o-(16HBE) human bronchial epithelial cell line obtain-
ed from Dr. Gruenert D. C. (Colchester, Vermont, USA), was maintained
in Dulbecco's Modified Eagle Medium (DMEM, ThermoFisher Scientific,
France) supplemented with 10% heat-inactivated Fetal Calf Serum (FCS,
ThermoFisher Scientific, France), 100 U/ml Penicillin, 100 mg/ml strep-
tomycin and 1% L-glutamine at 37 °C in a humidified 5%CO₂ atmosphere.
The cells were plated at a density of 7.5 × 10⁵ cells/well in 6-well plates
and used once they reached the confluence, after two days. The cells
were treated for different times (0, 0.5, 1, 3, and 24 h) with NPL-FITC,
NPL-DiD or with free OVA-FITC or OVA-FITC formulated in NPL. The
cells were then analyzed with a BD Accuri™ C6 CFlow Sampler flow
cytometer (BD Bioscience, USA).

2.8. In vitro transcytosis of NPL and ovalbumin across the airway
epithelium

The in vitro transcytosis of NPL was investigated in a Transwell®

model of the respiratory epithelial barrier. The 16HBE cells were seeded
on Transwell® filters (3 μm porosity Transwell® filters, BD Bioscience,
France) at a density of 1 × 10⁵ cells/Transwell® (0.9 cm2). The
confluence was checked by transepithelial electrical resistance (TEER)
measurement with an epithelial Voltohmmeter (EVOM2, World
Precision Instrument, USA) equipped with an STX2 electrode. The cells
were pre-incubated for 30 min with Hank's Balanced Salt Solution
(HBSS, Life Technologies, France) at 37 °C before measuring the
permeability. A low molecular weight chitosan (Sigma-Aldrich,
France) solution in HBSS at pH 6.5 (0.05% w/v) was used as positive
control for the TJ opening and a 50 μg/ml solution of lucifer yellow
(Sigma-Aldrich, France) as control for the paracellular and transcellular
transport [35,36].

The cellmonolayerswere treatedwith 25 μg of NPL-FITC, NPL-DiD or
with OVA-TRITC:NPL formulation, using HBSS as donor and acceptor
medium. The TEER was checked after 30 min and every hour for 3 h
moving the Transwell® in a plate with fresh acceptor medium before
each measurement. The samples from the apical side and basolateral
side were collected separately and the fluorescence was measured
with a Fluoroskan Ascent™Microplate Fluorometer (Thermo Scientific,
France).

2.9. Mice

Six-to-eight week-old Swiss OF1 mice were purchased from CER
Janvier (France) and maintained under conventional conditions.
Experiments were carried out in accordance with the guideline for



Fig. 1. Representation of NPL and ovalbumin (OVA) formulation. Premade polysaccharidic positive NP+ are post-loaded with an anionic lipid to obtain NPL. The antigenic protein is
postloaded in NPL to prepare the formulation.

Table 1
Characterization of the formulations OVA:NPL. Size (Z-average), PDI (polydispersity in-
dex) and Zeta potential are measured in triplicate with a Zetasizer NanoZS.

Z-average (nm) PDI Zeta-potential (mV)

NP+ 70.39 0.233 +45.9 ± 6.86
NPL 76.07 0.211 +44.2 ± 10.15
OVA 1.976 0.477 −7.77 ± 5.60
OVA:NPL 1:0.5 w/w 2782.67 1 +25.17 ± 6.937
OVA:NPL 1:3 w/w 76.71 0.261 +33.27 ± 9.173
OVA:NPL 1:5 w/w 62.39 0.236 +33.47 ± 8.417
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animal experimentation (EU Directive 2010/63/EU) and the protocol
was approved by the local ethics committee at Tours University (CEEA
VdL).

To eliminate the background fluorescence caused by the grain-based
diet, the animalswere fedwith theAIN-93Mpurified and dedicated diet
for fluorescence optical imaging (TestDiet, United Kingdom) 7 days
before instillation, and throughout the in vivo biodistribution study. To
reduce background signal and light absorbance due to their fur, the an-
imals were treated with depilatory cream one day before instillation
and imaging process.
Fig. 2. Flow cytometry analysis of NPL endocytosis. 16HBE cellswere treated for different times (
of three independent experiments.
2.10. In vivo biodistribution studies of OVA alone or loaded in NPL after
nasal administration

Three groups of non-anesthetized mice (3 mice/group) were
designated as follows: control group (PBS), CF750® labeled ovalbumin
(OVA-CF750®), formulation OVA-CF750®:NPL ratio 1:3 (w/w). Mice
were administered with 10 μg of protein by nasal instillation, 5 μl in
each nostril. The three groups of mice were maintained in separate
boxes with water and diet ad libitum.

Longitudinal studies in individual animals were performed using the
In Vivo Imaging System IVIS® Spectrum (PerkinElmer, Waltman, USA).
Mice groups were successively imaged at 0.5, 1, 1.5, 2, 2.5, 3, 6, 24,
48 h following instillation, and one of the control mice was also imaged
with each group at each time point. Acquisitions and analyses of images
thus obtained were performed with the PerkinElmer Living Image soft-
ware (version 4.2).
2.11. In vivo biodistribution studies of OVA and OVA:NPL in nostrils

Non-anesthetized mice were given 20 μl nasal instillations of
solutions containing 8.3 μg of OVA-TRITC or the same amount of OVA-
TRITC loaded in NPL-FITC at the ratio 1:3 (w/w). As a negative control,
0, 0.5, 1, 3 and 24h)withNPL-FITC (A) orNPL-DiD (B). Results are expressed asmean±SD



Fig. 3. A: Evaluation of tight junction opening, of 16HBE cells treatedwith either chitosan (CS) or NPL. Untreated cells were comparedwith cells treatedwith NPL, CS or lucifer yellow (LY).
B: Evaluation of paracellular and transcellular permeability of LY. Cells monolayer with LY alone and in presence of CS or NPL. Results are expressed as the means ± SD of triplicate
measurements of two independent experiments. *:p b 0.05; **:p b 0.01; ***:p b 0.001.
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mice received 20 μl of PBS. The sacrifice was performed by cervical dis-
location at different time points (1 and3h). The nasal cavitieswere then
isolated and fixed in 4% paraformaldehyde (VWR International, France)
for 24 h. Afterwards the nasal cavities were decalcified for 7 days in 10%
EDTA (Sigma-Aldrich, France) and frozen in Tissue-Tek® OCT com-
pound (Sakura® Finetek, USA), after which 10 μm slices were obtained.
The nuclei were stained with Hoechst 33342 (ThermoFisher Scientific,
France). Then slices were mounted with Dako fluorescence mounting
medium (Agilent Technologies, France) and imaged with a confocal
microscope (LSM 710, Zeiss, France).

2.12. Statistical analysis

One-way ANOVA and Two-way ANOVA plus post-test were used to
determine the significance of variations between groups using
GraphPad® Prism software.

3. Results

3.1. Characterization of NPL

NP+ were made of porous cationic nanoparticles and lipids inserted
into NP+ to produce NPL (Fig. 1). The mean diameters of NP+ and NPL
were 70 and 76 nm and their polydispersity indexes were 0.23 and
0.21, respectively (Table 1). They were both highly cationic as their
zeta potentials were+45.9 and+44.2mV, respectively. Since the asso-
ciation of lipids with the NP+ did not significantly modify their size and
zeta potential, we concluded that these lipids were inserted into the
core of the nanoparticles.

3.2. NPL endocytosis

We evaluated NPL endocytosis by airway epithelial cells using flow
cytometry. The polysaccharidic part of the NPL was covalently labeled
with FITC (NPL-FITC) while the lipidic core was labeled with the lipidic
dye DiD (NPL-DiD). Following either the polysaccharidic or the lipidic
part, the NPL endocytosis into epithelial cells increases in a similar
way, reaching a plateau after 3 h (Fig. 2A and B). The endocytosis rate
Fig. 4. Investigation of the in vitro translocation of NPL polysacchar
of NPL remained constant after 24 h. Moreover the kinetics profiles of
endocytosis of the polysaccharidic or the lipidic parts of NPL showed
the same trend for 24 h.

3.3. Evaluation of NPL transcytosis through the airway epithelial barrier

The 16HBE cells were cultured on Transwell® filters until the cells
reached confluence (TEER value in the range of 250–750 Ω × cm2). No
decrease of TEER was observed after treatment with NPL indicating an
absence of toxicity for these carriers. Chitosan (CS), that reportedly
opens the TJ by an integrin mediated mechanism [37,38], was used as
positive control (Fig. 3A).

To assess the permeability of the epithelial barrier, the transport of
lucifer yellow (LY) across the airway mucosa was evaluated (Fig. 3).
The paracellular permeation of LY reached 6% of the starting fluores-
cence after 3 h. A significantly higher permeation of LY (17.8% of initial
fluorescence after 3 h) was observed when the tight junctions were
opened using CS. TheNPL induced amore rapid permeation of LY across
the epithelial barrier (11% of initial fluorescence), but to a lesser extent
than CS after 3 h.

Prior to theNPL transcytosis test, we first verified that NPLwere able
to cross the Transwell® filter (results not shown).

NPL-FITC or NPL-DiD were tested on the Transwell® model of the
airway epithelial barrier in presence or absence of CS in order to evalu-
ate NPL transcytosis. After 3 h incubation with NPL-FITC no significant
transcytosis occurred. In addition, no fluorescence was detected in the
basal compartment of the Transwell® treated with NPL-DiD (Fig. 4B).
This confirmed that the NPL (both the polysaccharide and lipid parts)
did not cross the epithelial barrier. Furthermore, even in conditions
were tight junctions were opened, NPL transport was not increased
(Fig. 4A and B).

3.4. Characterization of the OVA:NPL formulations

Different OVA:NPL formulations were prepared at different
OVA:NPL (w/w) ratios.

Size analysis of the 1:0.5 OVA:NPL formulation by dynamic light
scattering showed an aggregated formulation with a particle size of
ide (A) and lipid part (B) across confluent 16HBE monolayers.



Fig. 5. Characterization of the ovalbumin (OVA) association to the NPL by native
polyacrylamide gel (PAGE) electrophoresis using OVA:NPL at 1:0.5, 1:3 and 1:5 (w:w)
ratios. Unbound proteins were revealed by silver nitrate staining.

Fig. 6. Analysis of protein delivery by NPL into airway epithelial cells (16HBE) by flow
cytometry. 16HBE were treated with free or formulated OVA-FITC for different time.
Trypan blue was used to determine the % of protein bound on cell surface. Results are
the mean of three independent experiments. *:p b 0.05; **:p b 0.01; ***:p b 0.001.

Fig. 7. In vitro passage of ovalbumin (OVA) free or formulated in NPL on 16HBE Transwell® m
epithelial barrier (B).
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2.7 μm and a high polydispersity index (Table 1). Moreover, compared
to the NPL alone (+44.2 mV), a decreased zeta potential was observed
for this formulation (from+44mV to+25mV). TheOVA association to
the NPL was assessed by polyacrylamide gel-electrophoresis (PAGE) in
non-denaturing conditions revealing the presence of unbound proteins
(Fig. 5).

Increasing the protein:NPL mass ratio to 1:3, we observed that the
size and zeta potential of OVA:NPL was unchanged relatively to NPL
alone (Table 1). Native-PAGE electrophoresis (Fig. 5) revealed that the
formulation of OVA:NPL atmass ratios of 1:3 and 1:5 led to the complete
association of the ovalbumin to the NPL. The 1:3 formulation fits the
optimal criteria for the study of protein delivery (similar size and zeta
potential than NPL alone, complete protein association) and was used
in the following experiments.

3.5. Kinetics of protein delivery into airway epithelial cells by NPL

The OVA delivery by NPL into airway epithelial cells was evaluated
by flow cytometry. The epithelial cells were treated for different times
(0.5, 1, 3 and 24 h) with OVA-FITC either free or formulated in the
NPL at a 1:3 mass ratio. Trypan blue was used to quench the extracellu-
lar fluorescence adsorbed on cell surface [39].

Compared to T0, a very low endocytosis was observed for OVA-FITC
after 24 h (Fig. 6). Interestingly NPL highly increased OVA association
with the cells (14.4 fold increase). Trypan blue experiment confirmed
that OVA-FITC was endocytosed and that NPL highly increased its
uptake.

3.6. In vitro transcytosis of free OVA or OVA:NPL

The transcytosis of free OVA or OVA:NPL was tested in the
Transwell®model of the airway epithelial barrier, in the presence or ab-
sence of chitosan (CS). Neither free OVA nor OVA:NPL modified the
TEER% in the absence of CS (Fig. 7A), while in the presence of CS the
TEER% decreased to 45%, indicating the TJ opening.

The fluorescence of OVA-TRITC in the basal compartment of the
Transwell® model was measured (Fig. 7B): after 3 h incubation, only
0.4% of the starting fluorescence of the OVA-TRITC was detected. No
significant differences were observed in terms of OVA transcytosis
between formulations even in the presence of CS. We concluded that
NPL did not promote OVA transcytosis and that tight junction aperture
by CS treatment was insufficient for the protein to cross the epithelial
barrier.

3.7. In vivo biodistribution of OVA and OVA:NPL after nasal administration

We evaluated the in vivo biodistribution of free OVA versus
NPL-loaded OVA for 2 days in mice using real time fluorescence optical
imaging. Mice were nasally administered with free OVA-CF750® or
OVA-CF750®:NPL; dorsal and ventral views of living animals were
taken at defined time points (Fig. 8). As can be observed ventrally, a
low fluorescence persistence of the unformulated protein is observed
in the nose and totally disappeared after 1.5 h. Similar considerations
odel. Evaluation of the tight junction opening (A) and of the protein passage across the



Fig. 8. Representative in vivo fluorescence images of OVA-CF750 biodistribution in mice.
Mice were pre-treated with PBS (CTRL) or OVA-CF750, free and formulated in NPL. The
ventral and the dorsal side of mice were imaged at different time points with In Vivo
Imaging System IVIS® Spectrum (n = 3 per group).
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have been brought dorsally. Moreover in the dorsal viewwe did not ev-
idence fluorescence diffusion in the brain. Interestingly, NPL increased
OVA residence time in the nose to at least 6 h (against 1.5 h for free
OVA). Furthermore fluorescence related to labeled OVA was found in
the feces (results not shown), suggesting its elimination.
3.8. Evaluation of NPL and OVA residence in the nose

Consistent with the in vivo distribution results of OVA showing a
discriminative time point of 1.5 h, we wanted to determine the
localization of NPL and OVA in airway mucosa 1 h and 3 h after
administration.

Mice were nasally instilled with OVA-TRITC:NPL-FITC and nose
tissue, sampled at three different depths (I, II and III; Fig. 9), was subse-
quently analyzed after nuclei staining.We observed the presence of NPL
after 1 h, but only at the mucosal level. Additionally, after confocal
analysis, NPL endocytosis in airway mucosa was observable 1 h after
administration and became more pronounced after 3 h. The NPL were
observed in all the different depths of the nasal tissue, and also at the
surface of the nose-associated lymphoid tissue (NALT) at 1 and 3 h
after the nasal instillation. However, no NPL was detectable on the
basal side of the epithelium, underlining the inability of NPL to cross
this cellular barrier in vivo. Contrary to what is observed in whole
nose biodistribution studies (Fig. 8), OVA was not detectable in these
sections (Fig. 9).
4. Discussion

The nasal route of administration has been investigated in recent
years as an effective mucosal site suitable for non-invasive vaccine de-
livery, and able to induce both systemic and mucosal immunity. Many
studies have shown that nasal administration of particulate antigens
(Ag) is more immunogenic compared with soluble ones [8]. For in-
stance, it has been demonstrated that administering the whole,
inactivated influenza viruswasmore immunogenic than administration
of split, subunit or virosome vaccines [5]. We obtained similar results
more than a decade ago when we demonstrated that maltodextrin
nanoparticles, covered by a lipid bi-layer and loaded with HBs Ag and
beta-galactosidase, were able to induce strong mucosal as well as sys-
temic antibody and cytotoxic T cell responses, while free Ag was poorly
immunogenic [40]. Recently, we demonstrated that nanoparticles load-
ed with Toxoplasma gondii Ag after intranasal administration were able
to induce strongTH1 and TH17 responses, andwere able to protectmice
against an orally administered lethal challenge with wild parasite [33].
Furthermore, we also demonstrated that these nanoparticles were
highly endocytosed via the clathrin pathway and highly exocytosed
via a cholesterol-dependent pathway, delivering Ag within the cytosol
of airway epithelial cells [34,41]. These results might explain the
increased immunogenicity observed [33].

In this study, we further investigated the role of these supramolecu-
lar nanoparticles, made of a polysaccharide matrix loaded with
phospholipids in their core (NPL), as potential vaccine delivery systems
in airway mucosa, and the different constituents of these NPL (Fig. 1)
were tracked to assess their fate after endocytosis in the mucosa.

We first confirmed that the lipid loading into the NP+ did not vary
the characteristics of size and zeta potential of the particles, suggesting
the complete lipid incorporation into the maltodextrin structure
(Table 1). As reported by Kroubi et al., the matrix saturation occurs at
70% of lipid loading (w/w); at higher percentages of lipid, irreversible
aggregation of NPL was noted [42].

Due to the supramolecular structure of these nanoparticles made of
polysaccharide and lipids we decided to follow the endocytosis of all
their components in the cells in an effort to better define their role in
protein delivery.

Interestingly, we observed similar uptake kinetics for both NPL
components: polysaccharide and lipid (Fig. 2). This result suggests
that the lipids are not released from the nanoparticles in the cells during
their endocytosis. This is in contrast to liposomal preparations whose
phospholipids were found to be converted to cellular phospholipid
after lysosomal degradation [43], while our results indicate a high
stability of the lipid (DPPG) inside the NPL.



Fig. 9. Confocal microscopy analysis of frozen section of nasal mice tissue after different time points. Nasal biodistribution of the OVA-TRITC:NPL-FITC in three representative depth of the
mice nose are reported, from the anterior segment (I) to the posterior segment (III). Enlargements of the regions in thewhite frames are reported. Nuclei were stained with Hoechst, NPL
are labeled with FITC and OVA with TRITC. Scale bars 50 μm (A–J) and 10 μm (A′–J′). In vivo NPL endocytosis was confirmed and no NPL transcytosis was observed.
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We thought it is essential to track the fate of these nanoparticles
after nasal administration to fully understand how they deliver antigens
inmucosa and potentially cross themucosal barriers, both to learn their
mechanism of action and investigate potential toxicity issues. We ob-
served that NPL do not open the TJ and do not cross the airway epithelial
barrier in vitro or in vivo (Figs. 4 and 9). Interestingly, in contrast towhat
is described for other particles [44], we were able to discount any nose-
to-brain delivery of these nanoparticles as they were found not to cross
the epithelial cells in vitro or in vivo.Nose-brain passage of nanoparticles
and their potential toxicity would prevent further studies for vaccine
applications [45].

However, in some circumstances, the epithelial barrier could
become damaged leading to TJ opening [46,47]. Chitosan, a cationic
polysaccharide polymer, opens TJ in vitro and in vivo, thus enhancing
the passage of drugs unable to traverse the epithelial barrier by
transcytosis by instead favoring paracellular passage [48]. We demon-
strated that when the TJ were opened by the action of CS (Figs. 4 and
7), neitherOVA (MW=43.000Da) norNPL crossed the cellsmonolayer
suggesting that opening the TJ aperture facilitates paracellular passage
only for low molecular weight drugs. Furthermore cytotoxicity and
genotoxicity studies were also performed on these cells and it was
shown that even at high doses these NPL were not toxic [49].

The NPL can be loaded with a large amount of different proteins and
the formulation is effective to induce humoral, cellular and mucosal re-
sponses when administered via the nasal route [33]. However, the un-
derlying mechanisms of antigen delivery or antigen translocation by
the NPL are not fully understood. Ovalbumin is a well-known vaccine
model antigen, currently used as a template for nanoparticulate vac-
cines [3,50]. The formulated protein is efficiently delivered into airway
epithelial cells (Fig. 6). Notably, we found that the formulation of OVA
in NPL increased the protein delivery into cells 14 fold. We then studied
the protein fate and its possibility to traverse the airway epithelial
barrier. In vitro we did not observe any transcytosis of the free or
formulated OVA (Fig. 7). We thus concluded that protein (in this case
ovalbumin) is not transported across the epithelial barrier by
transcytosis and that NPL do not facilitate nor induce this mechanism.

To study the permeability of the in vitro epithelial barrier model,
since NPL and OVA cannot cross it, we used lucifer yellow as a low mo-
lecular weight molecule. Lucifer yellow crossed the epithelial barrier
in vitro, without modifying the TEER%, via paracellular transport and
pinocytosis allowing potential transcytosis [35,36,51], and its passage
was increased by the TJ opening (Fig. 3). Its transfer across the epitheli-
um was also enhanced by the NPL. We suggest that this increase could
be directly linked to the increased intracellular traffic due to NPL
endocytosis in a non-specific manner (Fig. 3) as no interaction between
LY and NPL was observed (data not shown).

Finally, in vivo studies were necessary to understand the real fate of
the NPL and the encapsulated protein within nasal mucosa.

Biodistribution studies performed by in vivo imaging allowed us to
follow the protein distribution.We observed that after 1.5 h the protein
administered alone had totally disappeared from the nasal area (Fig. 8),
while nanoparticle formulated protein was still present after 6 h. This
result suggests that NPL stay in the nose and potentially protect protein
from degradation as had already been observed in vitro [34]. At this
stage we considered two complementary possibilities emanating from
this result: either the longer residence time of NPL/protein was due to
adsorption at the surface of the mucosa, or OVA delivery within cells
was more efficient when formulated in NPL. Confocal microscopy
studies clearly showed that NPL were found in mucosa cells of the
nose (Fig. 9). Interestingly, we still observed after 3 h the NPL in airway
mucosa cells and no NPL was observed in the tissues underneath
confirming the in vitro results. Free OVA, due to its fast degradation,
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was observed only in minute amounts and poorly detectable on the
nose tissue slices.
5. Conclusion

We studied the dynamics of nanoparticle and protein interaction
with the nasalmucosa. Taken together, our results provide a framework
of thewholemechanism for the bio-distribution of nanoparticle protein
formulations. After nasal administration the NPL are endocytosed by
airway epithelial cells and deliver the protein into the cells. We suggest
that the in vivo increased residence time of OVA in airway cells might be
due to an increased cellular protein uptake from OVA:NPL compared to
free OVA, due at least in part to the partial protection of the protein from
degradation afforded by its encapsulation within the NPL. The NPL are
probably subsequently exocytosed and, following the mucociliary
movement, are endocytosed by other/deeper cells in the nasal epitheli-
um. During these processes, the NPL continue to deliver part of the en-
capsulated protein but do not cross the epithelial barrier. Contrary to
what has been observed with other nanoparticles, NPL did not cross
the mucosal barrier. Considering the previously demonstrated ability
of NPL formulations to stimulate the immune system, and our findings
that they do not cross airway epithelial barriers, these carriers are thus
extremely interesting candidates for nasal vaccine delivery.
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