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Abstract

When working with nonlinear /ltering algorithms for image denoising problems, there are two crucial
aspects, namely, the choice of the thresholding parameter � and the use of a proper /lter function. Both
greatly in1uence the quality of the resulting denoised image. In this paper we propose two new /lters, which
are a piecewise quadratic and an exponential function of �, respectively, arid we show how they can be
successfully used instead of the classical Donoho and Johnstone’s Soft thresholding /lter. We exploit the
increased regularity and 1exibility of the new /lters to improve the quality of the /nal results. Moreover,
we prove that our /ltered approximation is a near-minimizer of the functional which has to be minimized to
solve the denoising problem. We also show that the quadratic /lter, due to its shape, yields good results if
we choose � as the Donoho and Johnstone universal threshold, while the exponential one is more suitable if
we use the recently proposed H-curve criterion. Encouraging results in extensive numerical experiments on
several test images con/rm the e;ectiveness of our proposal.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years nonlinear /ltering techniques have played an important role for the numerical
solution of the image denoising problem. These techniques arise as exact or approximate solutions
of the following variational problem: given a positive parameter � and a noisy image @f(x; y), de/ned
for (x; y) in some square domain I , /nd a function g∗� that minimizes, over all possible functions g
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in a given space Y , the functional

‖ @f − g‖2L2(I) + 2�‖g‖Y ; (1)

where

‖ @f − g‖L2(I) :=
(∫

I
| @f(x; y)− g(x; y)|2 dx dy

)1=2
(2)

is the L2(I)-norm which measures the root-mean square error between @f and g and ‖g‖Y is
the norm of the approximation g in a smoothness space Y . An important role in the formu-
lation of the problem is played by the positive parameter �, which determines the relative im-
portance of the smoothness of g and the quality of the approximation to the given
data @f.
Since the eGciency of solving problem (1) strongly depends on the computing rate of the two

norms ‖ @f− g‖2L2(I) and ‖g‖Y , great advantages both in terms of computational e;ort and quality of
the results can be obtained by working in function spaces Y where the norms of g can be expressed
in terms of its wavelet coeGcients. Even if there are many possible choices of the space Y , the
family of Besov spaces B�

q(Lp(I)) has been revealed to be a good framework when working in this
variational context. In fact, these spaces contain functions of di;erent smoothness as are real images;
in particular, by varying the values of the parameters �; p and q, it is possible to get the smoothness
space where the best representation of any single image can be achieved (for more details the reader
is referred to [2]).
In [6] it has been shown that, taking Y as the Besov space B11(L1(I)), the exact minimizer

of (1) is obtained by means of the so-called wavelet shrinkage, which was previously introduced
by Donoho and Johnstone [8]. Wavelet shrinkage discards the wavelet coeGcients of @f whose
absolute value is less than the shrinkage parameter � and shrinks the others by the value of �
towards zero. Hence, it can be seen as a wavelet approximation of @f, which has been /ltered with
a /lter, which turns out to be a piecewise linear function when considered as function of �. In this
work we introduce two new classes of wavelet approximation of @f, which are also /ltered versions
of the original perturbed image @f, but whose associated /lters present an increased regularity as
functions of �, since they are either a piecewise 2-degree polynomial or an exponential function of
the parameter �. The resulting wavelet approximations therefore yield a smoother transition between
maintained and discarded wavelet coeGcients, and this aspect seems to be particularly useful when
dealing with real images. Our main result consists in proving that both the above approximations are
near-minimizers of functional (1), giving at the same time an upper bound to the constant involved
in the de/nition of near-minimizer.
Moreover, since when working with thresholding algorithms the most important problem is to

evaluate an appropriate value for the shrinkage parameter �, we consider two possible choices of
the parameter �, namely, the universal threshold of Donoho and Johnstone [7,8] and the recently
proposed H-curve criterion [10]. We present extensive computations showing how each one of our
two new /lters is particularly suited for one of the two thresholding choices. More precisely, the
parabolic shape of one /lter can balance the oversmoothing of the image introduced by the use of
the Donoho and Johnstone threshold, while the more regular exponential shape of the other performs
better when dealing with the H-curve criterion.
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The paper is organized as follows: in Section 2 we brie1y recall the basic notions of wavelet
theory in the 1-D and 2-D case. In Section 3 we recall the exact solution of the variational problem
in the wavelet domain and we introduce our two new /ltered approximations. In Section 4 we show
that these approximations are near-minimizers of problem (1). The choice of the threshold parameter
is discussed in Section 5 together with the analysis of the numerical experiments on several test
images, which show the e;ectiveness of our proposal.

2. Basics on wavelet theory

An orthonormal multiresolution analysis of L2(R) is built using two basis functions: a scaling
function � and a wavelet  . This involves a nested sequence of subspaces of L2(R); {Vj}j∈Z,
satisfying : : : Vj−1 ⊂ Vj ⊂ Vj+1 : : :; the scaling function � is the solution of the two-scale equation

�(x) :=
√
2
∑
k

hk�(2x − k): (3)

The integer translates of the scaling function {�(x − k)|k ∈Z}, form an orthogonal basis for the
closure of their span V0.
For each j∈Z, the integer translates of the jth diadic dilates of �; {�j;k(x) := 2j=2�(2jx −

k); k ∈Z} form an orthonormal basis for Vj. It turns out that the wavelet space Wj=span{ j;k ; k ∈Z}
is the orthogonal complement of Vj in Vj+1, namely, Vj ⊕Wj = Vj+i, that L2(R) =⊕j∈ZWj, and the
wavelet  satis/es the two-scale equation

 (x) :=
√
2
∑
k

wk�(2x − k): (4)

The functions { j;k(x) = 2j=2 (2jx − k)}, with j; k ∈Z form an orthogonal basis of L2(R). Given a
function f∈L2(R), the wavelet expansion of f is therefore given by

f =
∑
j; k∈Z

cj;k j; k ; (5)

where cj;k :=
∫
R f(x) j;k(x) dx and the L2-norm of f is given in terms of its wavelet coeGcients,

that is

‖f ‖2L2(R) =
∑
j; k∈Z

c2j; k : (6)

The wavelet coeGcients cj;k of f can be evaluated by means of a fast algorithm involving the
sequences of the two-scale coeGcients {hk} and {wk} which are called low-pass and high-pass
/lters, respectively, and, in the compactly supported case, are /nite [5].
The one-dimensional multiresolution analysis can easily be generalized to a 2-D one for x :=

(x1; x2)∈R2, by de/ning a 2-D scaling function and the corresponding 2-D wavelets as follows:

�(x1; x2) := �(x1) · �(x2);  (1)(x1; x2) :=  (x1) · �(x2);
 (2)(x1; x2) := �(x1) ·  (x2);  (3)(x1; x2) :=  (x1) ·  (x2):

(7)
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By setting � = { (1);  (2);  (3)}, we have that the set of functions
{ j;k(x) = 2j (2jx − k)} ∈�; j∈Z; k∈Z2 (8)

forms an orthonormal basis for L2(R2). Hence, for every f∈L2(R2) we have

f =
∑

k∈Z2 ; j∈Z;  ∈�

cj;k;   j; k ; (9)

with

cj;k;  :=
∫
R2

f(x) j;k(x) dx: (10)

Moreover, also for the two-dimensional case we have

‖f ‖2L2(R2) =
∑

k∈Z2 ; j∈Z;  ∈�

c2j; k;  : (11)

Identity (11) expresses the L2-norm of f in terms of its wavelet coeGcients. This can easily be
extended to more general spaces, such as the Besov spaces B�

q(Lp(I)), where the norm ‖f ‖B�
q(Lp(I))

is equivalent to a norm of the sequence of wavelet coeGcients (for more details, see [2])

‖f ‖B�
q(Lp(I)) �


∑

j


∑

k; 

2�jp2j(p−2)|cj;k;  |p



q=p


1=q

: (12)

3. Filtered approximations in the wavelet domain

As has been pointed out in [2], a good choice for the function space Y is the Besov space
B11(L1(I)). Problem (1), then, becomes

‖ @f − g‖2L2(I) + 2�‖g‖B11(L1(I))
: (13)

We assume that the observed image @f in (13) takes the form

@f = f + �;

where f is the original deterministic signal and � the noise component, given by the i.i.d. Gaussian
Noise with mean 0 and variance �2 (denoted as N(0; �2)).
By using relation (9), we can expand @f and g in terms of their wavelet coeGcients as follows:

@f =
∑
j; k; 

@cj;k;   j; k and g=
∑
j; k; 

dj;k;   j; k ; (14)

where, to ignore all further complications, we shall not precisely specify the domains of the indices
of the sums, meaning that the suitable modi/cations have been carried out [2]. In fact, when dealing
with a /nite domain I , as is the case for images, some changes must be made to the wavelet basis
in order to obtain an orthonormal basis for L2(I). We refer to [3] for further details.
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Fig. 1. Soft thresholding /lter factor corresponding to @cj;k;  as function of �.

By replacing @f and g in (13) with their wavelet expansions (14), and by applying relation (12)
with p= q= 1 and �= 1, we get∑

j; k; 

| @cj;k;  − dj;k;  |2 + 2�
∑
j; k; 

|dj;k;  |; (15)

that is, the formulation of the variational problem in the wavelet domain.
This problem is separable; hence the minimum of this functional is obtained by minimizing each

term separately over dj;k;  , namely

| @cj;k;  − dj;k;  |2 + 2�|dj;k;  |: (16)

In [2] the authors have shown that the exact minimizer of problem (15) is given by

g∗� =
∑
j; k; 

d∗
j; k;  ;�  j; k =

∑
j; k; 

Fj;k;  (�) @cj;k;   j; k (17)

with

Fj;k;  (�) =
(| @cj;k;  | − �)+

| @cj;k;  | =



1− �

| @cj;k;  | if | @cj;k;  |¿�;

0 if | @cj;k;  |6 �:
(18)

The solution g∗� is none other than the one obtained by wavelet shrinkage, where the wavelet coeG-
cients @cj;k;  whose absolute value is greater than the threshold parameter are shrunk towards zero by
an amount of � to obtain the wavelet coeGcients d∗

j; k;  ;� of the exact minimizer g∗� (see Fig. 1). In
[10] it has been pointed out that the solution g∗� given by (17) can be seen as a /ltered version of
the original corrupted image @f, where the /lter factors Fj;k;  (�);  ∈�; j∈Z; k ∈Z2 are obtained
by evaluating for c = @cj;k;  the piecewise linear /lter function

F(c; �) =
(|c| − �)+

|c| =



1− �

|c| if |c|¿�;

0 if |c|6 �:



44 S. Bacchelli, S. Papi / Journal of Computational and Applied Mathematics 164–165 (2004) 39–52

Fig. 2. New kinds of /lter factors compared with the Soft thresholding one. (a) quadratic /lter factor; (b) an exponential
/lter factor with a= 2 and h= 4.

Since real images present many di;erent characteristics and hence a /xed choice of the /lter function
and the threshold level � can produce a di;erent visual e;ect on their denoised versions, it is inter-
esting to study which /lter function better /ts the image features and the choice of the thresholding
parameter.
In this work we investigate new kinds of /lter functions whose corresponding wavelet approxi-

mations ĝ� turn out to be more 1exible than the soft thresholding one. These new /lters have been
chosen taking into account both their capability of adapting to the di;erent types of image and the
method used for the choice of the threshold level.
The two new /lter functions taken into consideration are the quadratic function

Fp(c; �) =


−�2

c2
+ 1 if |c|¿�;

0 if |c|6 �;
(19)

which is a piecewise 2-degree polynomial, and the family of exponential functions

Fe(c; �) = a−h�2=c2 ; a¿ 1 and h¿ 0; (20)

which have C∞-regularity and whose shape is modelled by acting on parameters a and h.
As previously stated, we obtain the /lter factors Fpj;k;  (�) and Fej;k;  (�), whose action is to

weigh each starting wavelet coeGcient @cj;k;  ; ( ∈�; j∈Z; k ∈Z2) appropriately, by evaluating our
new /lter functions for c = @cj;k;  .
The quadratic /lter, by de/nition, discards the same wavelet coeGcients as the soft thresholding,

but gives more weight to those that are maintained, shrinking them by a smaller amount towards zero.
On the other hand, the exponential /lter, while not completely removing any wavelet coeGcient,
still keeps track of all the high frequencies, although it gives them a rapidly decreasing weight. The
plot of both /lters, compared with the Soft thresholding one, are shown in Fig. 2. It is easy to note
that for the same value �= @� the corresponding weight is quite di;erent for the three /lter functions.

4. Near minimizers of the variational problem

As already mentioned, the well-known Soft thresholding method, when applied to the wavelet
coeGcients of the perturbed image, yields an approximation of the true image g∗� which is the exact
minimizer of the variational problem (13). Nevertheless, the authors of [2] pointed out that a near
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minimizer can always be found. In fact they proved that the wavelet approximation obtained with
the Hard thresholding method is a near minimizer of (15).
In order to investigate the behaviour of the approximations associated with the above introduced

new /lters, we give a characterization of a near minimizer.
More precisely, we call a family of functions ĝ� a near minimizer for (13) if, for a given �¿ 0,

a positive constant C not depending on � or @f exists such that

‖ @f − ĝ�‖2L2(I) + 2�‖ĝ�‖B11(L1(I))
6C min

g∈B11(L1(I))
‖ @f − g‖2L2(I) + 2�‖g‖B11(L1(I))

(21)

that is,

‖ @f − ĝ�‖2L2(I) + 2�‖ĝ�‖B11(L1(I))
6C‖ @f − g∗�‖2L2(I) + 2�‖g∗�‖B11(L1(I))

;

where g∗� is given by (17).
We are now in a position to prove our main result, namely, to prove that the wavelet approxima-

tions of @f obtained by means of /lters (19) and (20) are near minimizers for problem (13) with a
small constant C. More precisely, we have

Theorem 4.1. Let Fej;k;  be the exponential 9lter family as de9ned in (20), @f=
∑

j; k;  @cj;k;   j; k be
a noisy image perturbed with i.i.d. Gaussian noise, and � be a positive parameter. The function

ĝ� =
∑
j; k; 

d̂j; k;  ;�  j; k ;

given by

ĝ� =
∑
j; k; 

Fej;k;  (�) @cj;k;   j; k =
∑
j; k; 

a−h(�2= @c2j; k;  ) @cj;k;   j; k (22)

is a near-minimizer of the variational problem (13) with constant C = 4.

Proof. As we have already said, in the wavelet domain problem (15) is separable; hence, its mini-
mum is obtained by minimizing each term of the sum, namely,

E(dj;k;  ) = | @cj;k;  − dj;k;  |2 + 2�|dj;k;  | (23)

separately over dj;k;  .
Without loss of generality, we can assume 06dj;k;  6 @cj;k;  .
We remark that, if |dj;k;  |6 | @cj;k;  |=2 then the greatest term in (23) is | @cj;k;  −dj;k;  |2 and therefore

E(dj;k;  )¿ | @cj;k;  |2=4; on the other hand, if |dj;k;  |¿ | @cj;k;  |=2, then the greatest term in (23) is
2�|dj;k;  | and hence E(dj;k;  )¿ 2�| @cj;k;  |=2. Therefore, for each choice of dj;k;  , a lower bound for
E(dj;k;  ) is given by min(| @cj;k;  |2=4; 2�| @cj;k;  |=2).
If we now choose dj;k;  as

d̂j; k;  = Fej;k;  (�) @cj;k;  = (a
−h�2= @c2j; k;  ) @cj;k;  ; a¿ 1 and h¿ 0; (24)

we /nd that, if |d̂j; k;  |6| @cj;k;  |=2, then E(d̂j; k;  )¿4(a
−h�2= @c2j; k;  )2| @cj;k;  |2=4, while if |d̂j; k;  |¿| @cj;k;  |=2,

then E(d̂j; k;  )¿ 4�(a−h�2= @c2j; k;  )| @cj;k;  |=2.
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In order to estimate the lowest value of the constant C which satis/es (21), we take

E(d̂j; k;  ) = min(4(a
−h�2= @c2j; k;  )2 @c2j; k;  =4; 4�(a

−h�2= @c2j; k;  )| @cj;k;  |=2)

= min((a−h�2= @c2j; k;  )2 @c2j; k;  ; 2�(a
−h�2= @c2j; k;  )| @cj;k;  |)

6 4min((a−h�2= @c2j; k;  )2 @c2j; k;  =4; 2�(a
−h�2= @c2j; k;  )| @cj;k;  |=2)

6 4min( @c2j; k;  =4; 2�| @cj;k;  |=2)

6 4
(
min
dj; k; 

E(dj;k;  )
)
= 4E(d ∗

j; k;  );

since the quantity (a−h�2= @c2j; k;  )6 1. Hence solution (22) is a near-minimizer of problem (13) with
constant C = 4.

In a similar way, we can prove the following result regarding the quadratic /lter.

Theorem 4.2. Let Fpj;k;  be the quadratic 9lter as de9ned in (19), @f=
∑

j; k;  @cj;k;   j; k be a noisy
image perturbed with i.i.d. Gaussian noise, and � be a positive parameter. The function

ĝ� =
∑
j; k; 

d̂j; k;  ;�  j; k ;

given by

ĝ� =
∑
j; k; 

Fpj;k;  (�) @cj;k;   j; k (25)

is a near minimizer of the variational problem (13) with constant C = 4.

5. The choice of the threshold level and numerical results

In this section we test the proposed new /lters on several test images. In our numerical simulations
we use interval adapted Daubechies orthonormal wavelet bases with 4 vanishing moments [3]. The
quality of the results is estimated by means of two classical parameters, the root mean square error
(RMSE) and the peak signal to noise ratio (PSNR), de/ned as follows:

RMSE =

√
‖f − ĝ�‖2L2

N
and PSNR = 20 log10

255
RMSE

;

where f is the original non-corrupted image, ĝ� is the denoised image, and N is the number of
image pixels. We consider the 256 grey level images shown in Fig. 3, with dimensions 256× 256
and 512× 512. The test images have been perturbed with i.i.d. Gaussian Noise with di;erent values
of standard deviation (� = 15; 25; 35).
The experimentation is performed using two di;erent methods for the choice of the thresholding

parameter �. Actually, both the exact minimizer (given by the Soft thresholding) and our approximate
minimizers (given by quadratic or exponential thresholding) are strongly dependent on the choice
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Fig. 3. Test images: (a) 512× 512 Lena; (b) 256× 256 Church of San Vitale.

Table 1
Soft thresholding and quadratic /lter are compared: in both cases the universal choice �u for the threshold has been
considered

Soft thresholding Quadratic /lter

�u RMSE PSNR RMSE PSNR

Lena 512× 512
� = 15 74.92 12.34 26.29 10.47 27.72
� = 25 124.88 15.46 24.34 13.20 25.71
� = 35 174.83 17.87 23.08 15.23 24.47

San Vitale 256× 256
� = 15 70.64 21.52 21.47 18.52 22.77
� = 25 117.74 26.67 19.60 23.35 20.76
� = 35 164.83 30.23 18.52 26.29 19.73

of �. We have, therefore, considered two of the possible approaches known in the literature and,
for each parameter choice, we have compared the results obtained using our new /lters with those
given by the soft thresholding method.
As /rst choice for the thresholding parameter, we consider the universal threshold proposed by

Donoho and Johnstone [8] and given by �u = �
√
2 lnN , where N is the original number of wavelet

coeGcients and �2 the variance of the noise. Even if this value seems to be a good choice for the
denoising of several 1-D signals [8], when working with images characterized by sharp edges, it
can lead to oversmoothing, if the Soft thresholding technique is used. On the other hand, if we use
this threshold with the quadratic /lter, which gives more importance to the kept coeGcients, we
obtain better results, since the undersmoothing produced by this new /lter “balances” the possible
oversmoothing coming from the use of the Donoho and Johnstone threshold. In Table 1 we show
the numerical results obtained using the universal threshold and both the classical Soft Thresholding
linear /lter function and the new quadratic one. It is evident that, when dealing with this choice
of threshold, the new quadratic /lter outperforms the Soft thresholding both in terms of PSNR and
visual quality, as shown by Figs. 5(c,d) and 6(c,d).
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Fig. 4. (a) Parametric plot of the H-curve; (b) curvature of the H-curve as function of �.

Next, we consider the H-curve criterion which has been shown to be a promising technique for
the evaluation of a “good” thresholding parameter in [10]. This method arises from a deterministic
approach to the denoising problem and takes into account not only the approximation error, but also
the norm of the recovered image. A convenient way to do this is to plot, in the logarithmic scale,
the norm of the /ltered solution versus the norm of the corresponding residual, obtaining a curve
parametrized by �. This curve is a concave Hook-shaped curve, with a well localized maximum
of the curvature absolute value. The H-curve method consists in choosing the threshold parameter
� corresponding to this maximum. This technique, created in a wavelet context where the exact
solution was the one obtained by applying the Soft thresholding /lter, can easily be generalized by
considering our new /lter functions.
As the C∞-regularity of the exponential /lter family allows us to analyze the shape of the curvature

of the H-curve very easily, we consider this /lter. Let &(�) and '(�) be de/ned as

&(�) := ‖ @f − ĝ�‖2L2(I) and '(�) := ‖ĝ�‖B11(L1(I))
; (26)

where ĝ� is the /ltered approximation de/ned by relation (22). If we set

&̂(�) = log &(�); '̂(�) = log '(�); (27)

the plot of '̂(�) versus &̂(�) is shown in Fig. 4(a). By substituting @f and ĝ� with their wavelet
expansions and using relations (11) and (12) we have

&(�) =
∑
j; k; 

[(1− Fej;k;  (�)) @cj;k;  ]2 (28)

and

'(�) =
∑
j; k; 

|Fej;k;  (�) @cj;k;  |; (29)

where Fej;k;  are the exponential /lter factors de/ned in relation (20).
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As the computation of the curvature of the parametric curve (&̂(�); '̂(�)) involves the /rst and the
second derivatives of &̂(�) and '̂(�), we exploit the C∞-regularity of the exponential /lter functions
to compute the analytical expression of this curvature as a function of �. In fact, we have

&′(�) :=
d&(�)
d�

=−2
∑
j; k; 

(1− Fej;k;  (�))
dFej;k;  (�)

d�
@c2j; k;  ; (30)

'′(�) :=
d'(�)
d�

=
∑
j; k; 

dFej;k;  (�)
d�

| @cj;k;  |: (31)

By recalling relation (20), we can rewrite relations (30) and (31) as follows:

&′(�) = 4h� ln (a)


∑

j; k; 

(a−h�2= @c2j; k;  − a−2h�
2= @c2j; k;  )


 ; (32)

'′(�) =−2h� ln (a)
∑
j; k; 

a−h�2= @c2j; k;  | @cj;k;  |
@c2j; k;  

: (33)

We therefore obtain

&′′(�) :=
d&′(�)
d�

= 4h ln (a)

×

∑

j;k; 

4h�2 ln (a)a−2h�
2= @c2j;k; −2h�2 ln (a)a−h�2= @c2j;k; +@c2j;k; a

−h�2= @c2j;k; − @c2j; k;  a−2h�
2= @c2j; k;  

@c2j;k; 



(34)

Table 2
Soft thresholding and the exponential /lter with a = 2 and h = 4 are compared: in both cases the H-curve threshold �H
has been considered

Soft thresholding Exponential /lter

�H RMSE PSNR �H RMSE PSNR

Lena 512× 512
� = 15 17.88 7.71 30.38 19.66 7.32 30.83
� = 25 26.5 11.71 26.75 30.28 10.71 27.52
� = 35 34.5 16.13 23.97 42.09 13.88 25.28

San Vitale 256× 256
� = 15 26.30 13.12 25.76 26.99 12.74 26.02
� = 25 33.51 16.14 23.96 36.20 15.91 24.09
� = 35 39.08 19.76 22.21 46.55 19.06 22.52
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Fig. 5. Test on image Lena 512 × 512: (a) original noncorrupted image; (b) noisy image � = 25; (c) denoised image
using DB4 soft thresholding and the universal threshold; (d) denoised image using DB4, quadratic /lter and the universal
threshold; (e) denoised image using DB4, soft thresholding and the H-curve threshold; (f) denoised image using DB4,
exponential /lter and the H-curve threshold.

and

'′′(�) :=
d'′(�)
d�

= 2h ln (a)


∑

j; k; 

a−h�2= @c2j; k;  (2h�2 ln(a)− @c2j; k;  )| @cj;k;  |
@c4j; k;  


 : (35)
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Fig. 6. Test on image San Vitale 256×256: (a) original noncorrupted image; (b) noisy image �=15; (c) denoised image
using DB4 Soft thresholding and the universal threshold; (d) denoised image using DB4, quadratic /lter and the universal
threshold; (e) denoised image using DB4, soft thresholding and the H-curve threshold; (f) denoised image using DB4,
exponential /lter and the H-curve threshold.

By remembering that

'̂′(�) =
d'̂(�)
d�

=
'′(�)
'(�)

; &̂′(�) =
d&̂(�)
d�

=
&′(�)
&(�)
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and

'̂′′(�) =
d
d�

'′(�)
'(�)

=
'′′'− ('′)2

'2
;

&̂′′(�) =
d
d�

&′(�)
&(�)

=
&′′&− (&′)2

&2
;

and recalling the expression of the algebraic curvature given by

K(�) =
&̂′'̂′′ − &̂′′'̂′

[(&̂′)2 + ('̂′)2]3=2
; (36)

we obtain the analytic expression of our curvature function. Although it presents a quite intricate
structure, it can easily be implemented in Matlab language. Moreover, even if it is diGcult to study
the signum of the curvature function, due to its complexity, it can be experimentally veri/ed that
the H-curve is concave and that its curvature has a well localized minimum as shown in Fig. 4(b).
As the H-curve criterion consists in choosing the parameter � which corresponds to this minimum,

in our numerical experiments we found this value by means of the well-known Golden Section
algorithm [10].
In Table 2 we again compare the numerical results obtained using the H-curve threshold value

for both the classical Soft thresholding linear /lter and the exponential /lter (20) with a=2; h=4.
Also these experiments highlighted a better performance of the new /lter with respect to the Soft
Thresholding both in terms of PSNR and visual quality as shown by Figs. 5(e, f ) and 6(e, f ).

6. Uncited references
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