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1. Introduction

The aim of this paper is to analyze the mixed initial–boundary value problem associated with a
nonlinear flux-limited reaction–diffusion system

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= (a(u, ux)

)
x − f
(
t − τ , u(t, x)

)
u(t, x) + g

(
t, u(t, x)

)
in ]0, T [ × ]0, L[,

−a
(
u(t,0), ux(t,0)

)= β > 0 and u(t, L) = 0 on t ∈ ]0, T [,
u(0, x) = u0(x) in x ∈ ]0, L[,

(1.1)

being

a(z, ξ) := ν
|z|ξ√

z2 + ν2

c2 |ξ |2
,
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where the boundary conditions must be interpreted in a weak sense to be precised, and the functions
f and g are nonlinear with respect to u and depend on u through a coupled system of ordinary
differential equations. This problem arises in the modelization of the transport of morphogens and
the parameter τ represents a delay in the process of signaling pathway cell internalization.

The nonlinear diffusion equation

∂u

∂t
= (a(u, ux)

)
x (1.2)

was introduced in different contexts as an alternative to the linear diffusion equation with the ideas
of limiting the flux and reproducing a system with finite speed of propagation. The flux-limited type
equations were motivated previously in [21], but they were firstly deduced by P. Rosenau formally,
who proposed three alternative ways to introduce them [24]. Also, this equation was formally derived
by Brenier [14] by means of Monge–Kantorovich’s mass transport theory and named relativistic heat
equation after him. As Brenier pointed out in [14], see also [34], the relativistic heat equation (1.2)
is one among the various flux-limited diffusion equations used in the theory of radiation hydrodynam-
ics [21]. A general class of flux-limited diffusion equations and the properties of the relativistic heat
equation have been studied in a series of papers [5–10], where the well-posedness of the Cauchy, the
Neumann and the Dirichlet problem for the relativistic heat equation is proved.

The above discussion on linear diffusion versus flux-limited diffusion leads to introduce the follow-
ing change in the classical flux

F = −ν∇u, ν > 0, (1.3)

associated with the heat equation (or the Fokker–Planck equation)

ut = ν�u,

by a flux that saturates as the gradient becomes unbounded. To do that, it was proposed to link u to
the flux F through the velocity v defined by the relation F = uv. Along with (1.3) this gives

v = −ν
∇u

u
. (1.4)

According to (1.4), if | ∇u
u | ↑ ∞, so will do v. However, the inertia effects impose a macroscopic upper

bound on the allowed free speed, namely, the acoustic speed or light speed c. With this aim, Rosenau
proposed to modify (1.4) by taking

ν
∇u

u
= −v√

1 − |v|2
c2

. (1.5)

The postulate (1.5) forces v to stay in the subsonic regime (in the case c is the acoustic speed). The
sonic limit is approached only if | ∇u

u | ↑ ∞. Solving (1.5) for v, we obtain

F = uv = −u∇u√
1 + (

ν|∇u|
cu )2

.

As we have mentioned before, the motivation for studying the system (1.1) comes from the
transport of morphogens in biological systems. This is a classical problem since the pioneering
work of Turing [31], Meinhard, Wolpert [35] or Lander [20]. Lander focused the question as a
main problem in the understanding of the transport of proteins via signaling pathways: Do mor-
phogen gradients arise by diffusion? The relevance of our study is founded on the analysis of
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the Hedgehog (Hh) signaling which has been found to play multiple roles in development, home-
ostasis and disease (reviewed in [22]). In vertebrates the Hh family comprises three proteins
(Sonic, Desert and Indian), which act as secreted, intercellular factors that affect cell fate, differ-
entiation, survival, and proliferation in the developing embryo and in many organs at one time
or another. Sonic Hedgehog (Shh) signaling has also an important role in tumor formation: the
deregulation of the Shh pathway leads to the development of various tumors, including those in
skin, prostate and brain [25,26,30]. The idea is to analyze the morphogenetic patterning of the
vertebrate embryonic neural tube along the dorsoventral (D-V) axis. The transport of the mor-
phogen Shh along the D-V axis in the neural tube represents a natural privileged direction for
the description of Shh propagation. Actually, the system is symmetric with respect to this axis
and this justifies the reduction to one dimension. The discussion concerning whether the gradi-
ent formation of morphogens is produced or not by diffusion is a central and classic topic in
developmental biology. This gives a continuous feedback between mathematical modeling and bi-
ological experiments, see [20,27,35,19]. Recent results in biology provide some findings that re-
ally call into question the hypothesis of diffusion which has been so often used to model these
phenomena: 1) Concerning the cellular differentiation, the role of the quantity of morphogen re-
ceived is as least as relevant as the time of exposure. With linear diffusion models every point
(cell) of the neural tube receives instantaneously the information of the morphogen [17,27,23].
2) Morphogens are transported in aggregates of several molecules that also include other mor-
phogens or molecules. Then, the typical size of the cluster aggregates is big (of order 1/10) in
comparison with the extracellular matrix where they are moving [33]. Also their concentration
is quite dilute [16,33,17]. Therefore, Brownian motion does not seem to be the more appropri-
ate choice. 3) In some cases, such as with the Hh morphogen, it has been proved that in ab-
sence of another cell-surface protein, called Ihog, there is neither propagation nor gradient func-
tion of Hh [16]. 4) There do exist privileged ways/paths of propagation in the extracellular ma-
trix, a fact that makes the system resemble a traffic map, more than a linear diffusion system
[13,16].

In this setting, the present paper tries to give some insight on this biological problem where the
model here studied is a first step towards a complete model consisting in

∂u(t, x)

∂t
= a
(
u(t, x), u(t, x)x

)
x − f
(
t − τ , u(t, x)

)
u(t, x) + g

(
t, u(t, x)

)
,

where f stands for the concentration of transmembrane receptor in the cells, g represents the con-
centration of the complex binding the morphogen to the receptor, and where the dependence on u is
given through a coupling with a system of seven ODE’s modeling the rates of change of the concen-
trations of the proteins participating in the signaling pathway coming from the biochemical cascade
inside the cells, see [32]. In that work it was also proved that numerical evidence fully agrees with
the experiments from a quantitative as well as qualitative (propagation of fronts instead of linear
diffusion behavior) point of view, see [16,29].

In addition to the biological or physical motivations, the mathematical analysis of this equa-
tion poses several difficulties, making even more interesting its study, such as the existence and
evolution of fronts as well as the study of its finite speed of propagation, the related lack of reg-
ularity and the set-up of an appropriate functional framework to give a meaning to the differen-
tial operator and the boundary conditions. In fact, this flux-limited equation provides a behavior
more related to hyperbolic systems than to usual diffusive (Fokker–Planck) systems. To deal with
these mathematical problems we need to combine and extend the applicability of different tech-
niques stemming from parabolic and hyperbolic contexts such as Crandall–Liggett’s Theorem, Minty–
Browder’s technique, the concept of entropy solution, and the method of doubling variables due to
S. Kruzhkov.
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This paper deals with a preliminary study of (1.1) consisting in the analysis of the following system

⎧⎪⎨
⎪⎩

∂u

∂t
= (a(u, ux)

)
x in ]0, T [ × ]0, L[,

−a
(
u(t,0), ux(t,0)

)= β > 0 and u(t, L) = 0 on t ∈ ]0, T [,
u(0, x) = u0(x) in x ∈ ]0, L[,

(1.6)

where the boundary conditions must be considered in a weak sense. Our main result is

Theorem 1.1. For any initial datum 0 � u0 ∈ L∞(]0, L[), there exists a unique bounded entropy solution u of
(1.6) in Q T = ]0, T [ × ]0, L[ for every T > 0 such that u(0) = u0 .

The paper is structured as follows. In the next section we introduce all the tools needed to develop
the theory: a suitable integration by parts formula, lower semi-continuity results and a functional
calculus, in order to be able to give a sense to the differential operator. In Section 3 we discuss the
associated elliptic problem: we define what a solution is, and then we prove existence and uniqueness
of such a solution. Next, this material is used to define an accretive operator and construct a nonlinear
semigroup, which accounts for solving (1.6) in a mild sense; all this is the content of Section 4.
In Section 5 we prove that the mild solution previously constructed can be characterized in more
operative terms, as a so-called entropy solution – a concept which is also introduced in this section,
and we prove a comparison criterion which in particular entails uniqueness of entropy solutions, thus
proving Theorem 1.1.

2. Preliminaries

2.1. BV functions and integration by parts

For bounded variation function of one variable we follow [1]. Let I ⊂ R be an interval, we say that
a function u ∈ L1(I) is of bounded variation if its distributional derivative Du is a Radon measure on I
with bounded total variation |Du|(I) < +∞. We denote by BV(I) the space of all functions of bounded
variation in I . It is well know (see [1]) that given u ∈ BV(I) there exists u in the equivalence class
of u, called a good representative of u with the following properties. If Ju is the set of atoms of Du,
i.e., x ∈ Ju if and only if Du({x}) �= 0, then u is continuous in I \ Ju and has a jump discontinuity at
any point of Ju :

u(x−) := lim
y↑x

u(y) = Du
(]0, x[), u(x+) := lim

y↓x
u(y) = Du

(]0, x]) ∀x ∈ Ju,

where by simplicity we are assuming that I = ]0, L[. Consequently,

u(x+) − u(x−) = Du
({x}) ∀x ∈ Ju .

Moreover, u is differentiable at L1 a.e. point of I , and the derivative u′ is the density of Du with
respect to L1, being Ld the d-dimensional Lebesgue’s measure. For u ∈ BV(I), the measure Du de-
composes into its absolutely continuous and singular parts Du = Dacu + Dsu. Then Dacu = u′L1.
Obviously, if u ∈ BV(I) then u ∈ W 1,1(I) if and only if Dsu ≡ 0, and in this case we have Du = u′L1.
From now on, when we deal with pointwise valued BV-functions we always shall use the good rep-
resentative. Hence, in the case u ∈ W 1,1(I), we shall assume that u ∈ C(I).

Given z ∈ W 1,1(I) and u ∈ BV(I), by zDu we mean the Radon measure in I defined as

〈ϕ, zDu〉 :=
L∫
ϕzDu ∀ϕ ∈ Cc

(]0, L[).

0
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We need the following integration by parts formula, which can be proved using a suitable regulariza-
tion of u ∈ BV(I) as in the proof of Theorem C.9 in [3].

Lemma 2.1. If z ∈ W 1,1(I) and u ∈ BV(I), then

L∫
0

zDu +
L∫

0

u(x)z′(x)dx = z(L)u(L−) − z(0)u(0+).

2.2. Properties of the Lagrangian

Hereafter C denotes a generic constant, its value may change from line to line. We define

a(z, ξ) := ν|z|ξ√
z2 + ν2

c2 |ξ |2
. (2.7)

We assume a(z,0) = 0 for all z ∈ R. Then a(z, ξ) = ∂ξ F (z, ξ), being the Lagrangian

F (z, ξ) := c2

ν
|z|
√

z2 + ν2

c2
ξ2.

By the convexity of F ,

a(z, ξ)(η − ξ) � F (z, η) − F (z, ξ) for all z, ξ,η ∈R. (2.8)

Note that we have

c|z||ξ | − c2

ν
z2 � a(z, ξ)ξ � cM|ξ | for all z, ξ ∈R, |z| � M. (2.9)

Moreover, using (2.8) it is easy to see that

(
a(z, ξ) − a(z, ξ̂ )

) · (ξ − ξ̂ ) � 0 (2.10)

for any (z, ξ), (z, ξ̂ ) ∈R×R, |z| � M .
We introduce the following notation to ease the way in which our functional calculus is written:

for any function q let Jq(r) denote its primitive, i.e., Jq(r) = ∫ r
0 q(s)ds.

Assume that f :R×R→ [0,∞[ is a continuous function convex in its last variable such that

0 � f (z, ξ) � C
(
1 + |ξ |) ∀(z, ξ) ∈ R×R, |z| � M (2.11)

for some constant C � 0 which may depend on M . Given f (z, ξ), we define its recession function as

f 0(z, ξ) = lim+ t f

(
z,

ξ

t

)
.

t→0
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We assume that f 0(z, ξ) = ϕ(z)ψ0(ξ), with ϕ Lipschitz continuous, ψ0 homogeneous of degree 1.
Then, working as in [5], if for a fixed function φ ∈ Cc(]0, L[) we define the operator Rφ f : BV(]0, L[) →
R by

Rφ f (u) :=
L∫

0

φ(x) f
(
u(x), u′(x)

)
dx +

L∫
0

φ(x)ψ0
(

Du

|Du|
)∣∣Ds Jϕ(u)

∣∣, (2.12)

we have that Rφ f is lower semi-continuous with respect to the L1-convergence.
For instance, we discuss here for future usage one of the most recurrent cases: define θ(z) = c|z|,

and note that F 0(z, ξ) = θ(z)ψ0(ξ), with ψ0(ξ) = |ξ |. Therefore,

RφF (u) :=
L∫

0

φ(x)F
(
u(x), u′(x)

)
dx + c

2

L∫
0

φ(x)
∣∣Ds(u2)∣∣

is lower semi-continuous in BV(]0, L[) with respect to the L1-convergence.
We shall consider the function h :R×R →R defined by h(z, ξ) := a(z, ξ) · ξ. Note that

h(z, ξ) � 0 ∀ξ, z ∈R. (2.13)

We will make use of the following property:

h0(z, ξ) = F 0(z, ξ) ∀ξ, z ∈R. (2.14)

As for the Dirichlet problem (see [10]), in general, the data in L is not taken pointwise; we need
to introduce functionals that take into account the boundary. The following result is a particular case
of Theorem 2.4 in [10].

Theorem 2.2. Let f be verifying (2.11) and f 0(z, ξ) = ϕ(z)|ξ |, with ϕ Lipschitz continuous, let φ ∈ C([0, L])+
be given. Then, the functional F0

φ f : BV(]0, L[) →R defined by

F0
φ f (u) := Rφ f (u) + φ(L)

∣∣ Jϕ(u)(L−)
∣∣

is lower semi-continuous with respect to the L1-convergence.

2.3. Spaces of truncated functions and associated calculus

We need to consider the following truncature functions. For a < b, let Ta,b(r) := max(min(b, r),a).
As usual, we denote Tk = T−k,k . We also consider the truncature functions T l

a,b(r) := Ta,b(r)− l (l ∈R).
We denote

Tr := {Ta,b: 0 < a < b}, T + := {T l
a,b: 0 < a < b, l ∈ R, T l

a,b � 0
}
.

Given any truncature function Tk , we define

Tk(r)
+ := max

{
Tk(r),0

}
and Tk(r)

− := min
{

Tk(r),0
}= −Tk(−r)+, r ∈R.

Consider the function space

TBV+(I) := {u ∈ L1(I)+: T (u) ∈ BV(I), ∀T ∈ Tr
};
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we want to give a sense to the Radon–Nikodym derivative u′ of a function u ∈ TBV+(I). Using chain’s
rule for BV functions (see, for instance, [1]), and with a similar proof to the one given in Lemma 2.1
of [11], we obtain the following result.

Lemma 2.3. For every u ∈ TBV+(I) there exists a unique measurable function v : I →R such that

(
Ta,b(u)

)′ = vχ[a<u<b] L1-a.e., ∀Ta,b ∈ Tr . (2.15)

Thanks to this result we define u′ for a function u ∈ TBV+(I) as the unique function v which
satisfies (2.15). This notation will be used throughout in the sequel. The notation ∂x will also be used
in the case of functions of several variables (say t and x), for the same purposes, whenever there is
some risk of confusion.

We denote by P the set of Lipschitz continuous function p : [0,+∞[ → R satisfying p′(s) = 0 for
s large enough, and write P+ := {p ∈P: p � 0}. We recall the following result [2, Lemma 2].

Lemma 2.4. If u ∈ TBV+(I), then p(u) ∈ BV(I) for every p ∈ P such that there exists a > 0 with p(r) = 0 for
all 0 � r � a. Moreover, with the above notation [p(u)]′ = p′(u)u′ L1-a.e.

For u ∈ TBV+(]0, L[) we will define

u(0+) := lim
n→∞ T 1

n ,n(u)(0+) and u(L−) := lim
n→∞ T 1

n ,n(u)(L−).

It is easy to see that the above limits exist.
Let S ∈ P+ and T = T a

a,b . Given u ∈ TBV+(]0, L[), Lemma 2.4 assures that S(u)T (u), J T ′ S(u),

J T S ′(u) ∈ BV(]0, L[). Moreover, D(S(u)T (u)) = D J T ′ S(u) + D J T S ′(u) and hence, if z ∈ W 1,1(]0, L[),

zD
(
T (u)S(u)

)= zD J T ′ S(u) + zD J T S ′(u).

For u ∈ TBV+(]0, L[), φ ∈ Cc(]0, L[), T = Ta,b − l ∈ T + and f as in the previous subsection –
see (2.11) – we define the functional

R(φ f , T )(u) := Rφ f
(
Ta,b(u)

)+ ∫
[u�a]

φ(x)
(

f
(
u(x),0
)− f (a,0)

)
dx

−
∫

[u�b]
φ(x)
(

f
(
u(x),0
)− f (b,0)

)
dx.

We have that R(φ f , T )(·) is lower semi-continuous in TBV+(]0, L[) with respect to the L1-conver-
gence.

Given S, T ∈ T + and u ∈ TBV+(]0, L[), we define the following Radon measures in ]0, L[,
〈
F
(
u, DT (u)

)
, φ
〉 := R(φF , T )(u),〈

F S
(
u, DT (u)

)
, φ
〉 := R(φS F , T )(u),〈

h
(
u, DT (u)

)
, φ
〉 := R(φh, T )(u),

〈
hS
(
u, DT (u)

)
, φ
〉 := R(φSh, T )(u),

for φ ∈ Cc(]0, L[). Using (2.12) and (2.14), we compute
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F
(
u, DT (u)

)s = c

2

∣∣Ds(T (u)
)2∣∣= h

(
u, DT (u)

)s
,

F S
(
u, DT (u)

)s = ∣∣Ds J Sθ

(
T (u)
)∣∣= hS

(
u, DT (u)

)s
,

h
(
u, DT (u)

)ac = h
(
u,
(
T (u)
)′)

, hS
(
u, DT (u)

)ac = S(u)h
(
u,
(
T (u)
)′)

.

3. The elliptic problem

Given v ∈ L1(]0, L[), we are interested in the following problem:

{
−(a(u, u′))′ = v in ]0, L[,
−a
(
u, u′)∣∣

x=0 = β > 0 and u(L) = 0,
(3.16)

where a is given by (2.7). We introduce the following concept of solution for problem (3.16).

Definition 3.1. Given v ∈ L1(]0, L[), we say that u � 0 is an entropy solution of (3.16) if u ∈ TBV+(]0, L[)
and a(u, u′) ∈ C([0, L]) both satisfy

v = −Da
(
u, u′) in D′(]0, L[),

−a
(
u, u′)(0) = β and a

(
u, u′)(L) = −cu(L−),

h
(
u, DT (u)

)
� a
(
u, u′)DT (u) as measures ∀T ∈ T +, (3.17)

hS
(
u, DT (u)

)
� a
(
u, u′)D J T ′ S(u) as measures ∀S ∈ P+, T ∈ T +. (3.18)

Note that (3.17) can be rewritten as h(u, DT (u))s � [a(u, u′)DT (u)]s , and thus it is equivalent to

c

2

∣∣Ds((T (u)
)2)∣∣� a

(
u, u′)Ds T (u) as measures ∀T ∈ T +.

Also we have that (3.18) can be rewritten as hS(u, DT (u))s � [a(u, u′)D J T ′ S (u)]s , and is equivalent to

∣∣Ds J Sθ

(
T (u)
)∣∣� a
(
u, u′)Ds J T ′ S(u) as measures ∀S ∈ P+, T ∈ T +.

Observe that since −a(u, u′)(0) = β , we have

u(0+) � β

c
> 0. (3.19)

We introduce now the main result of this section.

Theorem 3.2. For any 0 � f ∈ L∞(]0, L[) there exists a unique entropy solution u ∈ TBV+(]0, L[) of the
problem

{
u − (a(u, u′))′ = f in ]0, L[,
−a
(
u, u′)∣∣

x=0 = β > 0, u(L) = 0,
(3.20)

which satisfies ‖u‖∞ � M(β, c, ν,‖ f ‖∞).
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Moreover, let u, u be two entropy solutions of (3.20) associated to f , f ∈ L1(]0, L[)+ , respectively. Then,

L∫
0

(u − u)+ dx �
L∫

0

( f − f )+ dx.

Proof. Let 0 � f ∈ L∞(]0, L[). For every n ∈ N, consider an(z, ξ) := a(z, ξ) + 1
n ξ . As a consequence

of the results about pseudo-monotone operators in [15] we know that ∀n ∈ N there exists a unique
un ∈ W 1,2(]0, L[) such that un(L) = 0 and

L∫
0

un v dx +
L∫

0

a
(
un, u′

n

)
v ′ dx + 1

n

L∫
0

u′
n v ′ dx − βv(0) =

L∫
0

f v dx (3.21)

for all v ∈ W 1,2(]0, L[), v(L) = 0.
The following result can be easily obtained by multiplication by u−

n and integration over [0, L].

Lemma 3.3. The functions un are non-negative ∀n ∈N.

Now we give a bound for the sequence un at zero.

Lemma 3.4. The sequence {un(0)} is bounded. More precisely,

0 � un(0) �

⎧⎨
⎩

4βc
ν +
√

2cL
ν ‖ f ‖∞ if c >

√
ν,

4β
c +
√

2L
c ‖ f ‖∞ if c �

√
ν.

Proof. Taking v = un in (3.21), we get

L∫
0

(
u2

n + a
(
un, u′

n

)
u′

n + 1

n

(
(un)

′)2)dx = βun(0) +
L∫

0

f un dx. (3.22)

Then, dropping non-negative terms and using Young’s inequality, we get

L∫
0

u2
n dx �

L∫
0

f 2 dx + 2βun(0). (3.23)

Now we can write un|u′
n| = 1

2 |(u2
n)′|, and taking into account (2.9) we have u′

na(un, u′
n) � cun|u′

n| −
c2

ν u2
n . Then, from (3.22), we obtain

L∫ (
c

2

∣∣(u2
n

)′∣∣+ ((un)
′)2

n

)
dx �

L∫ ((
c2

ν
− 1

)
u2

n + f un

)
dx + βun(0). (3.24)
0 0
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Assuming now that c2

ν − 1 > 0, we apply Young’s inequality in the right-hand side of (3.24), which
now reads

(
c2

ν
− 1

2

) L∫
0

u2
n dx + 1

2

L∫
0

f 2 dx + βun(0).

As c >
√

ν we have c2

ν − 1
2 > 0, which allows us to bring in (3.23), thus obtaining

c

2

L∫
0

∣∣(u2
n

)′∣∣dx + 1

n

L∫
0

(
(un)

′)2 dx � c2

ν

L∫
0

f 2 dx + 2βc2

ν
un(0). (3.25)

Then, we have

c

2

∣∣u2
n(0)
∣∣= c

2

∣∣u2
n(L) − u2

n(0)
∣∣= c

2

∣∣∣∣∣
L∫

0

(
u2

n

)′
dx

∣∣∣∣∣� c2

ν

L∫
0

f 2 dx + 2βc2

ν
un(0),

from where we get that u2
n(0) − 4βc

ν un(0) − 2c
ν ‖ f ‖2

2 � 0. Hence, for all n ∈ N,

0 � un(0) � 1

2

(
4βc

ν
+
√(

4βc

ν

)2

+ 8c

ν
‖ f ‖2

2

)
� 4βc

ν
+
√

2c

ν
‖ f ‖2.

In case that c2/ν − 1 � 0, from (3.24) we obtain

c

2

L∫
0

∣∣(u2
n

)′∣∣dx + 1

n

L∫
0

(
(un)

′)2 dx �
L∫

0

f un dx + βun(0).

Then, using Young’s inequality and having in mind (3.23), we get

c

2

L∫
0

∣∣(u2
n

)′∣∣dx + 1

n

L∫
0

(
(un)

′)2 dx �
L∫

0

f 2 dx + 2βun(0). (3.26)

Thus, we have that u2
n(0) − 4

c βun(0) − 2
c

∫ L
0 f 2 � 0, from where it follows that for all n ∈ N,

0 � un(0) � 1

2

(
4β

c
+
√(

4β

c

)2

+ 8

c
‖ f ‖2

2

)
� 4β

c
+
√

2

c
‖ f ‖2. �

By (3.25), (3.26) and Lemma 3.4, we get

c

2

L∫
0

∣∣(u2
n

)′∣∣dx + 1

n

L∫
0

(
(un)

′)2 dx � C ∀n ∈N. (3.27)

Lemma 3.5. The sequence {un: n ∈N} is uniformly bounded in L∞(0, L).
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Proof. By Lemma 3.4, we know that M = max{‖ f ‖∞,max{un(0): n ∈ N}} is finite. Then, taking v =
(un − M)+ as test function in (3.21), it is easy to see that ‖un‖∞ � M and Lemma 3.5 holds. �
Lemma 3.6. The sequence {un} is uniformly bounded in TBV+(]0, L[). Furthermore, there exists a function
0 � u ∈ TBV+(]0, L[) ∩ L∞(]0, L[) such that (up to subsequence) un → u a.e. and strongly in L1(]0, L[).

Proof. By Lemma 3.5, extracting a subsequence if necessary, we may assume that un converges
weakly in L2(]0, L[) to some non-negative function u as n → +∞. Moreover, by Lemma 3.5 again,
we have that 0 � u ∈ L∞(]0, L[). On the other hand, if 0 < a < b, by the co-area formula and (3.27),
we have

L∫
0

∣∣(Ta,b(un)
)′∣∣dx =

b∫
a

|Dχ[un�t]|
(]0, L[)dt =

b∫
a

|Dχ[u2
n�t2]|
(]0, L[)dt

=
b2∫

a2

|Dχ[u2
n�s]|
(]0, L[) ds

2
√

s
� 1

2a

L∫
0

∣∣(u2
n

)′∣∣dx � C

a
.

Consequently, we may assume that un converges almost everywhere to u. Then, by the Vitali Conver-
gence Theorem, we get that un → u in L1(]0, L[), and using the above estimate on the gradients we
obtain that u ∈ TBV+(]0, L[). �

Since |a(un, u′
n)| � c|un|, by Lemma 3.5 we may assume that

a
(
un, u′

n

)
⇀ z as n → ∞, weakly∗ in L∞(]0, L[). (3.28)

By assumption we have that a(un, u′
n) = c|un|b(un, u′

n) with |b(un, u′
n)| � 1 (independent of n),

‖un‖∞ � M , and un → u a.e. as n → ∞, so we may assume that b(un, u′
n) ⇀ zb as n → ∞, weakly∗

in L∞(]0, L[), and

z = cuzb, with ‖zb‖∞ � 1. (3.29)

On the other hand, by (3.27),

1

n
u′

n → 0 in L2(]0, L[). (3.30)

Given φ ∈D(]0, L[), taking v = φ in (3.21) we obtain

L∫
0

unφ dx +
L∫

0

a
(
un, u′

n

)
φ′ dx + 1

n

L∫
0

u′
nφ

′ dx =
L∫

0

f φ dx.

Letting n → +∞, having in mind (3.28) and (3.30), we obtain

L∫
( f − u)φ dx =

L∫
z · φ′ dx,
0 0
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that is,

f − u = −Dz in D′(]0, L[) (3.31)

and (
an
(
un, u′

n

))′
⇀ Dz weakly in L2(]0, L[).

Note that by (3.31), we have z ∈ W 1,1(]0, L[) and Dz = z′ .
Working as in the proof of Lemma 4.2 of [5], we can prove the identification

z(x) = a
(
u(x), u′(x)

)
a.e. x ∈ ]0, L[. (3.32)

From (3.32) and (3.31) it follows that

f − u = −Da
(
u, u′) in D′(]0, L[).

Lemma 3.7. The flux −a(u, u′) verifies the Neumann condition at x = 0.

Proof. Let w ∈ W 1,1(]0, L[) such that w(L) = 0 and consider wk ∈ W 1,2(]0, L[) with wk(L) = 0 for all
k ∈ N, wk → ŵ pointwise and w ′

k → w ′ in L1(]0, L[). Taking in (3.21) wk as test function and letting
n → +∞, we get

L∫
0

uwk dx +
L∫

0

zw ′
k dx − βwk(0) =

L∫
0

f wk dx.

Then, letting k → +∞ we arrive to

L∫
0

uw dx +
L∫

0

zw ′ dx − βw(0) =
L∫

0

f w dx. (3.33)

Fixed w ∈ BV(]0, L[) such that w(L−) = 0, let wm ∈ W 1,1(]0, L[) with wm(L) = 0, wm(0) = w(0+),
and such that wm → w in L1(]0, L[). Taking in (3.33) wm as test functions and integrating by parts
we get

L∫
0

( f − u)wm dx =
L∫

0

zw ′
m dx − βw(0+) = −

L∫
0

z′wm dx − w(0+)
(
z(0) + β

)
,

and letting m → +∞, we obtain −z(0) = β. �
Lemma 3.8. Let S ∈P+ , T ∈ T + and φ ∈ C1([0, L]), φ � 0, with φ(0) = 0. Then

L∫
0

φF
(
u, DT (u)

)+ φ(L)
c

2

∣∣(T (u)
)2

(L−)
∣∣

�
L∫
φzDT (u) +

L∫
φF (u,0)dx − φ(L)T (u)(L−) + φ(L)

∣∣ Jθ (T (0)
)∣∣ (3.34)
0 0
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and

L∫
0

φF S
(
u, DT (u)

)+ φ(L)
∣∣ Jθ S
(
T (u)(L−)

)∣∣

�
L∫

0

φzD J T ′ S(u) +
L∫

0

φS(u)F (u,0)dx − φ(L)z(L) J T ′ S
(
u(L−)
)+ φ(L)

∣∣ Jθ S
(
T (0)
)∣∣. (3.35)

In particular,

F
(
u, DT (u)

)
� zDT (u) + F (u,0)L1 as measures in ]0, L[, (3.36)

F S
(
u, DT (u)

)
� zD
(

J T ′ S(u)
)+ S(u)F (u,0)L1 as measures in ]0, L[. (3.37)

Proof. We will only prove (3.35), the proof of (3.34) being similar. Let 0 � φ ∈ C1([0, L]) with
φ(0) = 0.

Since F0
φS F is l.s.c. with respect to the L1-convergence, letting n → ∞ we obtain

L∫
0

φF S
(
u, DT (u)

)+ φ(L)
∣∣ Jθ S
(
T (u)(L−)

)∣∣

� lim inf
n→∞

L∫
0

φS(un)F
(
un, T (un)′

)
dx + φ(L)

∣∣ Jθ S
(
T (0)
)∣∣

� lim sup
n→∞

L∫
0

φS(un)F
(
un, T (un)

′)dx + φ(L)
∣∣ Jθ S
(
T (0)
)∣∣.

By the convexity (2.8) of F and using that a(un, T (un)′)T (un)′ = a(un, u′
n)T (un)′, we have

L∫
0

φS(un)F
(
un, T (un)

′)dx �
L∫

0

φS(un)a
(
un, T (un)

′)T (un)
′ dx +

L∫
0

φS(un)F (un,0)dx

=
L∫

0

φa
(
un, u′

n

)(
J T ′ S(un)

)′
dx +

L∫
0

φS(un)F (un,0)dx.

Now we take v = J T ′ S(un)φ as test function in (3.21) and we obtain

L∫
0

φa
(
un, u′

n

)(
J T ′ S(un)

)′
dx + 1

n

L∫
0

φu′
n

(
J T ′ S(un)

)′
dx

=
L∫
( f − un) J T ′ S(un)φ dx −

L∫
J T ′ S(un)a

(
un, u′

n

)
φ′ dx − 1

n

L∫
J T ′ S(un)u′

nφ
′ dx.
0 0 0



5776 F. Andreu et al. / J. Differential Equations 252 (2012) 5763–5813
Letting n → ∞ we get

lim sup
n

L∫
0

φa
(
un, u′

n

)(
J T ′ S(un)

)′
dx �

L∫
0

φ( f − u) J T ′ S(u)dx −
L∫

0

J T ′ S(u)zφ′ dx

=
L∫

0

φzD
(

J T ′ S(u)
)− φ(L)z(L) J T ′ S

(
u(L−)
)
.

Finally,

L∫
0

φF S
(
u, DT (u)

)+ φ(L)
∣∣ Jθ S
(
T (u)
)
(L−)
∣∣

�
L∫

0

φzD J T ′ S(u) + φ(L)
∣∣ Jθ S
(
T (0)
)∣∣− φ(L)z(L) J T ′ S

(
u(L−)
)+

L∫
0

φS(u)F (u,0)dx

and (3.35) holds. �
Lemma 3.9. The inequalities (3.17) and (3.18) hold.

Proof. Using (3.36) and the fact that h(u, DT (u)) is a measure concentrated in ]0, L[, it follows that

h
(
u, DT (u)

)s = F
(
u, DT (u)

)s �
(
zDT (u)

)s
.

Hence,

zDT (u) = zT (u)′L1 + (zDT (u)
)s � zT (u)′L1 + h

(
u, DT (u)

)s = h
(
u, DT (u)

)
,

and (3.17) holds.
Using (3.37) we have

zD
(

J T ′ S(u)
)= (zD

(
J T ′ S(u)

))ac + (zD
(

J T ′ S(u)
))s � z
(

J T ′ S(u)
)′ + (F S

(
u, DT (u)

))s
= z
(

J T ′ S(u)
)′LN + (hS

(
u, DT (u)

))s = hS
(
u, DT (u)

)
,

and we obtain (3.18). �
Lemma 3.10. The Dirichlet condition a(u, u′)(L) = −cu(L−) holds.

Proof. Firstly, observe that by (3.29) we have∣∣z(L)
∣∣� cu(L−).

Then, it is enough to prove the lemma in the case u(L−) > 0. In that case, again by (3.29) and having
in mind that z is continuous in [0, L], we have

z(L) = cu(L−)ξ, with |ξ | � 1. (3.38)
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Given T ∈ T + , for m > 1 we consider S := T m−1 ∈P+ . Taking singular parts in (3.35) we have

∣∣ JθT m−1

(
T (u)
)
(L−)
∣∣� −z(L) J T m−1 T ′

(
u(L−)
)+ ∣∣ JθT m−1

(
T (0)
)∣∣. (3.39)

Consider now T = Td,d′ with 0 < d � u(L−) � ‖u − ‖∞ � d′ . Using (3.38), the inequality (3.39) partic-
ularizes to

c

2
dm+1 + c

m + 1

(
um+1(L−) − dm+1)� c

2
dm+1 − c

m
ξu(L−)

(
um(L−) − dm)

and letting d → 0+ we have

c

m + 1
um+1(L−) � − c

m
u(L−)ξum(L−).

Then, since u(L−) > 0, we get m
m+1 � −ξ for all 1 < m. Therefore, since |ξ | � 1, we have ξ = −1.

Consequently, by (3.38) we finish the proof. �
Proof of uniqueness. Let u, u be entropy solutions of (3.20) associated with f , f ∈ L1(]0, L[)+ , respec-
tively.

Let ρn be a classical mollifier in ]0, L[, ψ ∈D(]0, L[) and b > a > 2ε > 0. Let us write

ξn(x, y) = ρn(x − y)ψ

(
x + y

2

)
and T = T a

a,b.

We need to consider truncature functions of the form Sε,l(r) := Tε(r − l)+ = Tl,l+ε(r) − l ∈ T + and
Sl
ε(r) := Tε(r − l)− + ε = Tl−ε,l(r) + ε − l ∈ T +, where l � 0. Observe that Sl

ε(r) = −Tε(l − r)+ + ε.

If we denote z(y) = a(u(y), ∂yu(y)) and z(x) = a(u(x), ∂xu(x)), we have

u − z′ = f and u − z′ = f in D′(]0, L[).
Then, multiplying the equation for u by T (u(y))Sε,u(x)(u(y))ξn(x, y), that for u by T (u(x))×
Su(y)
ε (u(x))ξn(x, y), integrating in both variables we obtain

L∫
0

L∫
0

[
u(y)T
(
u(y)
)− u(x)T

(
u(x)
)]

Tε

(
u(y) − u(x)

)+
ξn(x, y)dx dy

+ ε

L∫
0

L∫
0

(
u(x) − f (x)

)
T
(
u(x)
)+ ξn(x, y)dx dy

+
L∫

0

L∫
0

ξn(x, y)
(
zD y
[
T (u)Sε,u(x)(u)

]
dx + zDx

[
T (u)Su(y)

ε (u)
]

dy
)

+
L∫ L∫

T
(
u(y)
)

Sε,u(x)
(
u(y)
)
z(y) · ∂yξn(x, y)dx dy
0 0
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+
L∫

0

L∫
0

T
(
u(x)
)

Su(y)
ε

(
u(x)
)
z(x) · ∂xξn(x, y)dx dy

=
L∫

0

L∫
0

[
f (y)T
(
u(y)
)− f (x)T

(
u(x)
)]

Tε

(
u(y) − u(x)

)+
ξn dx dy. (3.40)

Let I denote all the terms at the left-hand side of the above identity, but the first one. From now
on, since u, z are always functions of y, and u, z are always functions of x, to make our expressions
shorter, we shall omit the arguments except in some cases where we find useful to remind them.

With slight modifications of the method used in the proof of uniqueness in [5] we can obtain the
following result.

Lemma 3.11. The following inequality is satisfied

1

ε
I � o(ε) −

L∫
0

( L∫
0

ξnzDxT (u)

)
dy + 1

ε

L∫
0

L∫
0

Tε(u − u)+
(
T (u)z − T (u)z

) · (∂xξn + ∂yξn)dx dy,

where o(ε) denotes an expression such that o(ε) → 0 as ε → 0.

By the above lemma, dividing (3.40) by ε and letting ε → 0 we obtain

L∫
0

L∫
0

ξn(x, y)
(
u(y)T
(
u(y)
)− u(x)T

(
u(x)
))

sign+
0

(
u(y) − u(x)

)
dx dy

+
L∫

0

L∫
0

ρn(x − y) sign+
0

(
u(y) − u(x)

)(
T
(
u(y)
)
z(y) − T

(
u(x)
)
z(x)
) · ψ ′
(

x + y

2

)
dx dy

�
L∫

0

L∫
0

ξn(x, y)
(

f (y)T
(
u(y)
)− f (x)T

(
u(x)
))

sign+
0

(
u(y) − u(x)

)
dx dy

+
L∫

0

( L∫
0

ξn(x, y)zDxT (u)

)
dy,

where

sign+
0 (r) =

{
1 if r > 0,

0 if r � 0.

Letting n → ∞, we find

L∫
ψ(x)
(
u(x)T
(
u(x)
)− u(x)T

(
u(x)
))

sign+
0

(
u(x) − u(x)

)
dx
0
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+
L∫

0

sign+
0

(
u(x) − u(x)

)(
T
(
u(x)
)
z(x) − T

(
u(x)
)
z(x)
) · ψ ′(x)dx

�
L∫

0

ψ(x)
[

f (x)T
(
u(x)
)− f (x)T

(
u(x)
)]

sign+
0

(
u(x) − u(x)

)
dx +

L∫
0

ψ(x)zDT (u).

Taking now a sequence ψm ↑ χ]0,L[ , ψm ∈D(]0, L[) in the above formula, we have

L∫
0

(
u(x)T
(
u(x)
)− u(x)T

(
u(x)
))

sign+
0

(
u(x) − u(x)

)
dx

+ lim
m→∞

L∫
0

sign+
0

(
u(x) − u(x)

)(
T
(
u(x)
)
z(x) − T

(
u(x)
)
z(x)
) · ψ ′

m(x)dx

�
L∫

0

(
f (x)T
(
u(x)
)− f (x)T

(
u(x)
))

sign+
0

(
u(x) − u(x)

)
dx +

L∫
0

zDT (u).

Now we deal with the second term in the above expression:

lim
m→∞

L∫
0

sign+
0

(
u(x) − u(x)

)(
T
(
u(x)
)
z(x) − T

(
u(x)
)
z(x)
) · ψ ′

m(x)dx

= − lim
m→∞

L∫
0

ψm(x)
{

zD
[
sign+

0 (u − u)T (u)
]− z(x)D

[
sign+

0 (u − u)T (u)
]}

+ lim
m→∞

L∫
0

ψm(x)
{

sign+
0

(
u(x) − u(x)

)
T
(
u(x)
)
z′(x) − sign+

0

(
u(x) − u(x)

)
T
(
u(x)
)
z′(x)
}

dx,

which leads to

= −
L∫

0

sign+
0

(
u(x) − u(x)

)
T
(
u(x)
)
z′(x)dx −

L∫
0

zD
[
sign+

0 (u − u)T (u)
]

+
L∫

0

sign+
0

(
u(x) − u(x)

)
T
(
u(x)
)
z′(x)dx +

L∫
0

zD
[
sign+

0 (u − u)T (u)
]

= [z(0)T
(
u(0+)
)− z(0)T

(
u(0+)
)]

sign+
0

(
u(0+) − u(0+)

)
− [z(L)T

(
u(L−)
)− z(L)T

(
u(L−)
)]

sign+
0

(
u(L−) − u(L−)

)
.

Therefore,
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L∫
0

(
u(x)T
(
u(x)
)− u(x)T

(
u(x)
))

sign+
0

(
u(x) − u(x)

)
dx

+ [z(0)T
(
u(0+)
)− z(0)T

(
u(0+)
)]

sign+
0

(
u(0+) − u(0+)

)
− [z(L)T

(
u(L−)
)− z(L)T

(
u(L−)
)]

sign+
0

(
u(L−) − u(L−)

)

�
L∫

0

[
f (x)T
(
u(x)
)− f (x)T

(
u(x)
)]

sign+
0

(
u(x) − u(x)

)
dx +

L∫
0

zDT (u).

Dividing by b > 0, and letting a → 0+ , and then b → 0+ in this order, we obtain

L∫
0

(uχ[u>0] − uχ[u>0]) sign+
0 (u − u)dx

+ [z(0) sign+
0

(
u(0+)
)− z(0) sign+

0

(
u(0+)
)]

sign+
0

(
u(0+) − u(0+)

)
− [z(L) sign+

0

(
u(L−)
)− z(L) sign+

0

(
u(L−)
)]

sign+
0

(
u(L−) − u(L−)

)

�
L∫

0

( f χ[u>0] − f χ[u>0]) sign+
0 (u − u)dx + lim

b→0

1

b

(
lim
a→0

L∫
0

zDT (u)

)
.

Now, since z(0) = z(0) = −β �= 0, and u(0+) � β
c > 0 and u(0+) � β

c > 0 by (3.19), we have that
the second term in the above expression vanishes. On the other hand, since z(L) = −cu(L−) and
z(L) = −cu(L−), the third term in the above expression is non-negative. Consequently,

L∫
0

(uχ[u>0] − uχ[u>0]) sign+
0 (u − u)dx

�
L∫

0

( f χ[u>0] − f χ[u>0]) sign+
0 (u − u)dx + lim

b→0

1

b

(
lim
a→0

L∫
0

zDT (u)

)
. (3.41)

Next we claim that

f = 0 a.e. on [u = 0] and f = 0 a.e on [u = 0]. (3.42)

Let 0 � φ ∈ D(]0, L[) and a > 0, ε > 0. Multiplying f − u = −z′ in D′(]0, L[) by T a
a,a+ε(u)φ and

integrating by parts and having in mind (3.17) and (2.13), we have

L∫
( f − u)T a

a,a+ε(u)φ dx =
L∫
φzDT a

a,a+ε(u) +
L∫

z · φ′T a
a,a+ε(u)dx �

L∫
z · φ′T a

a,a+ε(u)dx.
0 0 0 0
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Dividing by ε and letting ε → 0+ , we get

L∫
0

( f − u)χ[u>a]φ dx �
L∫

0

z · φ′χ[u>a] dx.

Hence

L∫
0

( f − u)χ[u�a]φ dx =
L∫

0

( f − u)φ dx −
L∫

0

( f − u)χ[u>a](x)φ dx

�
L∫

0

( f − u)φ dx −
L∫

0

z · φ′χ[u>a] dx =
L∫

0

z · φ′χ[u�a] dx.

Then, letting a → 0+ , since z = 0 in [u = 0], we have

L∫
0

f χ[u=0]φ dx =
L∫

0

( f − u)χ[u=0]φ dx � 0,

for all 0 � φ ∈ D(]0, L[), from where it follows that f χ[u=0] = 0 a.e. in ]0, L[. Similarly, f χ[u=0] = 0
a.e. in ]0, L[ and (3.42) holds.

On the other hand, by (3.42) we have

lim
b→0

1

b

(
lim
a→0

L∫
0

zDT (u)

)
= − lim

b→0

1

b
lim
a→0

(
z(0)T
(
u(0+)
)− z(L)T

(
u(L−)
)+

L∫
0

T (u)z′ dx

)

= − lim
b→0

1

b

(
z(0)T0,b

(
u(0+)
)− z(L)T0,b

(
u(L−)
)+

L∫
0

T0,b(u)z′ dx

)

= −z(0) sign+
0

(
u(0+)
)+ z(L) sign+

0

(
u(L−)
)−

L∫
0

χ[u>0]z′ dx

= −z(0) sign+
0

(
u(0+)
)+ z(L) sign+

0

(
u(L−)
)−

L∫
0

z′ dx

= z(0)
(
1 − sign+

0

(
u(0+)
))+ z(L)

(
sign+

0

(
u(L−)
)− 1
)= 0.

Then, from (3.41), it follows that

L∫
(uχ[u>0] − uχ[u>0]) sign+

0 (u − u)dx �
L∫
( f χ[u>0] − f χ[u>0]) sign+

0 (u − u)dx.
0 0
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Hence, using (3.42), we obtain

L∫
0

(u − u)+ dx �
L∫

0

( f − f ) sign+
0 (u − u)dx �

L∫
0

( f − f )+ dx.

This concludes the proof of the uniqueness part of Theorem 3.2. �
4. Semigroup solution

In this section we shall associate an accretive operator in L1(]0, L[) to the problem (3.16).

Definition 4.1. (u, v) ∈ Bβ if and only if 0 � u ∈ TBV+(]0, L[), v ∈ L1(]0, L[) and u is the entropy
solution of problem (3.16).

From Theorem 3.2, it follows that the operator Bβ is T -accretive in L1(]0, L[) and verifies

L∞(]0, L[)+ ⊂ R(I + λBβ) for all λ > 0. (4.43)

In order to get an L∞-estimate of the resolvent, we need to find a steady state solution, that is,
a function uβ which is an entropy solution of the problem

{
−(a(uβ, u′

β

))′ = 0 in ]0, L[,
−a
(
uβ, u′

β

)∣∣
x=0 = β > 0 and uβ(L) = 0.

(4.44)

Proposition 4.2. There is a non-increasing function uβ ∈ C1(]0, L[), with uβ � β
c , that is an entropy solution

of the stationary problem (4.44). Moreover, there exists a constant M := M(c, β, ν, L) such that

‖uβ‖∞ � M.

Proof. Integrating (4.44) over ]0, L[ we find that a(uβ, u′
β)(L) = −β . Now, if uβ has to fulfill the weak

Dirichlet condition a(uβ, u′
β)(L) = −cuβ(L−) then we must have uβ(L−) = β/c. We will follow this

prescription hereafter.
If uβ is a solution of the problem (4.44), we have

−(a(uβ, u′
β

))′ = 0 ⇐⇒ ν
uβu′

β√
u2

β + ν2

c2 (u′
β)2

= −β.

Then, assuming that u′
β < 0, we get

u′
β = − βuβ

ν
√

u2
β − (

β
c )2

.

Thus, we get that uβ satisfies the ordinary differential equation

u′
β

√
u2

β − (
β
c )2

u
= −β

ν
.

β
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By means of the change of variable v2 = u2
β − (

β
c )2, we arrive to the ODE

−β

ν
=
(

1 − 1

1 + ( v
β/c )2

)
v ′.

Then,

L∫
x

(
−β

ν

)
dy =

L∫
x

v ′(y)dy −
L∫

x

v ′(y)

1 + (
v(y)
β/c )2

dy

= v(L) − v(x) − β

c
arctan

(
v(L)

β/c

)
+ β

c
arctan

(
v(x)

β/c

)
.

Hence, we get

x = L − ν

β

√
uβ(x)2 −

(
β

c

)2

+ ν

c
arctan

[
c

β

√
uβ(x)2 −

(
β

c

)2]
. (4.45)

If x = u−1
β (y), then we can write (4.45) as

u−1
β (y) = L − ν

β

√
y2 −
(

β

c

)2

+ ν

c
arctan

[
c

β

√
y2 −
(

β

c

)2]
.

Thus,

(
u−1

β

)′
(y) = y√

y2 − (
β
c )2

(
ν

β

)(
−1 + β2

c2 y2

)
,

and consequently, since (uβ)(L−) = β
c , we obtain that

(uβ)′(L−) = lim
y↘ β

c

1

(u−1
β )′(y)

= lim
y↘ β

c

√
y2 − (

β
c )2

y

(
β

ν

)(
c2 y2

β2 − c2 y2

)
= −∞.

Finally, since uβ satisfies −(a(uβ(x), u′
β(x)))′ = 0 if x ∈ ]0, L[ and satisfies the boundary conditions

also, we have that uβ is an entropy solution of the problem (4.44). �
The following homogeneity of the operator Bβ will be important to get the L∞-estimate of the

resolvent.

Proposition 4.3. For μ > 0, λ > 0 and β > 0, we have

(I + λBβ)−1(μu) = μ(I + λB β
μ
)−1(u). (4.46)

Moreover, for β1 � β2 , u ∈ L∞(]0, L[)+ and λ > 0 such that (I + λBβ2)
−1(u) ∈ BV(]0, L[), we have

(I + λBβ1)
−1(u) � (I + λBβ2)

−1(u) a.e. x ∈ ]0, L[. (4.47)
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Proof. From the definition of the operator it is easy to see that if u ∈ D(B β
μ
), then μu ∈ D(Bβ) and

Bβ(μu) = μB β
μ
(u). Then, we have

v := (I + λBβ)−1(μu) ⇐⇒ v + λBβ(v) = μu ⇐⇒ 1

μ
v + 1

μ
λB

μ β
μ
(v) = u

⇐⇒ 1

μ
v + λB β

μ

(
v

μ

)
= u ⇐⇒ (I + λB β

μ
)−1(u) = v

μ
,

from where (4.46) follows.
Finally, let us see that (4.47) holds. Let ui := (I + λBβi )

−1(u), i = 1,2. Then, ui is an entropy
solution of the problem

{
ui − λ
(
a
(
ui, u′

i

))′ = u in ]0, L[,
−a
(
ui, u′

i

)∣∣
x=0 = βi > 0 and u(L) = 0.

Therefore, if pn are non-negative increasing functions that are an approximation of the sign+
0 function,

having in mind (2.10), since pn(u1 − u2) ∈ BV(]0, L[), we get

L∫
0

(u1 − u2)pn(u1 − u2)dx

=
L∫

0

λ
((

a
(
u1, u′

1

))′ − (a(u2, u′
2

))′)
pn(u1 − u2)dx

= −
L∫

0

λ
(
a
(
u1, u′

1

)− a
(
u2, u′

2

))
D
(

pn(u1 − u2)
)+ λ
(
a
(
u1, u′

1

)
(L−) − a

(
u2, u′

2

)
(L−)
)

× pn(u1 − u2)(L−) − λ
(
a
(
u1, u′

1

)
(0+) − a

(
u2, u′

2

)
(0+)
)

pn(u1 − u2)(0+)

� λ
(
a
(
u1, u′

1

)
(L−) − a

(
u2, u′

2

)
(L−)
)

pn(u1 − u2)(L−) + λ(β1 − β2)pn(u1 − u2)(0+)

� λ
(
a
(
u1, u′

1

)
(L−) − a

(
u2, u′

2

)
(L−)
)

pn(u1 − u2)(L−).

Then, taking limit as n → +∞ we get

L∫
0

(u1 − u2)
+ dx � λ

(
a
(
u1, u′

1

)
(L−) − a

(
u2, u′

2

)
(L−)
)

sign+
0 (u1 − u2)(L−) � 0,

since a(ui, u′
i)(L) = −cui(L−), i = 1,2. Therefore, u1 � u2, and we finish the proof. �

Proposition 4.4. For u ∈ L∞(]0, L[)+ and λ > 0, we have

0 � (I + λBβ)−1(u) � μuβ, with μ = max

{
c‖u‖∞

β
,1

}
.
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Proof. Let uβ be the entropy solution of the stationary problem (4.44) given in Proposition 4.2. Then,
(uβ,0) ∈ Bβ , from where it follows that

(I + λBβ)−1(uβ) = uβ . (4.48)

On the other hand, since uβ � β
c , if μ := max{ c‖u‖∞

β
,1}, we have 0 � u � μuβ . Hence, by Proposi-

tion 4.3 and having in mind (4.48), we get

0 � (I + λBβ)−1(u) � (I + λBβ)−1(μuβ) = μ(I + λB β
μ
)−1(uβ) � μ(I + λBβ)−1(uβ) = μuβ. �

Next we introduce the main result of this section, which paves the way for the operator Bβ to
generate an order-preserving semigroup [12].

Theorem 4.5. Bβ is T -accretive in L1(]0, L[) and verifies the range condition

D(Bβ)L1(]0,L[) = L1(]0, L[)+ ⊂ R(I + λBβ) for all λ > 0.

Proof. The T -accretivity of the operator Bβ is known, and that it verifies (4.43) also. To prove the

density of D(Bβ) in L1(]0, L[)+ , we prove that D(]0, L[)+ ⊆ D(Bβ)L1(]0,L[) . Let 0 � v ∈ D(]0, L[). By
(4.43), v ∈ R(I + 1

nBβ) for all n ∈ N. Thus, for each n ∈ N, there exists un ∈ D(B) such that (un,n(v −
un)) ∈ B. Since un = (I + 1

nBβ)−1(v), by Proposition 4.4, we get

‖un‖∞ � M := M
(
β, c, ν, L,‖v‖∞

)
. (4.49)

Let ε > 0. Since

n(v − un) = −Da
(
un, u′

n

)
in D′(]0, L[),

multiplying by v − Sε(un), with Sε := Tε,‖v‖∞ , and integrating by parts, we get

L∫
0

(
v − Sε(un)

)
n(v − un)dx

=
[ L∫

0

a
(
un, u′

n

)(
D v − D Sε(un)

)]− cun(L−)Sε(un)(L−) + β Sε(un)(0+).

Then, since

L∫
0

a
(
un, u′

n

)
D Sε(un) � 0,

having in mind (4.49), we get

L∫ (
v − Sε(un)

)
(v − un)dx � 1

n

[ L∫
a
(
un, u′

n

)
D v

]
+ 1

n
β Sε(un)(0+) � C

n
.

0 0
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Letting ε → 0+ , we get

L∫
0

(v − un)
2 dx � C

n
,

and we obtain that un → v in L2(]0, L[), as n → ∞. Moreover, we have un → v in L1(]0, L[), as
n → ∞. Therefore v ∈ D(Bβ)L1(]0,L[) and the proof of the density of D(Bβ) in L1(]0, L[)+ is complete.

To finish the proof of the theorem, we only need to show that the operator Bβ is closed in
L1(]0, L[) × L1(]0, L[). Given (un, vn) ∈ Bβ such that un → u and vn → v in L1(]0, L[), we need to
prove that (u, v) ∈ Bβ . Since (un, vn) ∈ Bβ , we have that un ∈ TBV+(]0, L[) and zn := a(un, u′

n) ∈
C([0, L]) satisfy

vn = −Dzn in D′(]0, L[), (4.50)

h
(
un, DT (un)

)
� zn DT (un) as measures ∀T ∈ T +, (4.51)

hS
(
un, DT (un)

)
� zn D J T ′ S(un) as measures ∀S ∈ P+, T ∈ T +,

−zn(0) = β and zn(L) = −cun(L−). (4.52)

Let T = Ta,b ∈ Tr . Multiplying (4.50) by T (un) and applying integration by parts (Lemma 2.1), we get

L∫
0

vn T (un)dx =
L∫

0

zn DT (un) − zn(L)T
(
un(L−)

)− βT
(
un(0+)

)
,

from where it follows that

L∫
0

zn DT (un) � b
(
β + ‖v‖1

)
� C . (4.53)

Here we used the boundary condition (4.52) to be able to disregard the term related to zn(L), as it
has the right sign.

On the other hand, by (4.51) and having in mind (2.9), we get

L∫
0

zn DT (un) � c

2

L∫
0

∣∣D([T (un)
]2)∣∣− c2

ν

L∫
0

T (un)
2 dx. (4.54)

By (4.53) and (4.54), we obtain that

L∫
0

∣∣D([T (un)
]2)∣∣� 2c

ν

L∫
0

T (un)
2 dx + 2C

c
� 2cLb2

ν
+ 2C

c
= C . (4.55)

Using the co-area formula as in the proof of Theorem 3.2, from (4.55) we deduce that

L∫ ∣∣DT (un)
∣∣� C

2a
∀n ∈ N.
0
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Then, since the total variation is semi-continuous in L1(]0, L[), we have

L∫
0

∣∣DT (u)
∣∣� lim inf

n→∞

L∫
0

∣∣DT (un)
∣∣� C

2a
.

Hence, T (u) ∈ BV(]0, L[), and consequently, u ∈ TBV+(]0, L[).
Since zn = c|un|b(un, u′

n) with |b(un, u′
n)| � 1, for all measurable subsets E ⊂ ]0, L[, we have

∫
E

|zn|dx � c

∫
E

|un|dx.

Therefore, by Dunford–Pettis’ Theorem, we can assume that

zn ⇀ z weakly in L1(]0, L[). (4.56)

Moreover, since |b(un, u′
n)| � 1, we also can assume that

b
(
un, u′

n

)
⇀ zb weakly∗ in L∞(]0, L[). (4.57)

As un → u in L1(]0, L[), from (4.56) and (4.57), we obtain that

z = cuzb. (4.58)

As vn → v in L1(]0, L[), from (4.56) and (4.50), we easily deduce that

v = −Dz in D′(]0, L[), (4.59)

and by (4.58) and (4.59), we have z ∈ W 1,1(]0, L[) ⊂ C([0, L]).

Lemma 4.6. The following equality is verified

z(x) = a
(
u(x), u′(x)

)
a.e. x ∈ ]0, L[.

Proof. We use Minty–Browder’s technique. Let 0 < a < b, let 0 � φ ∈ C1
c (]0, L[) and let g ∈ C2([0, L]).

By (2.10), we have that

L∫
0

φ
[
a
(
un, u′

n

)− a
(
un, g′)]T ′

a,b(un)(un − g)′ dx � 0. (4.60)

Let us denote

Ja(x, r) :=
r∫

0

a
(
s, g′(x)

)
ds,

Ja′(x, r) :=
r∫
∂x
[
a
(
s, g′(x)

)]
ds =

r∫
∂a

∂ξ

(
s, g′(x)

)
g′′(x)ds
0 0
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and observe that

−a
(
Ta,b
(
un(x)
)
, g′(x)
)[

Ta,b(un)
]′ = −Dac[ Ja

(
x, Ta,b
(
un(x)
))]+ Ja′

(
x, Ta,b
(
un(x)
))

,

this we will substitute into (4.60). Note now that, using (4.51)

L∫
0

φ
[
zn Ds Ta,b(un) − Ds Ja

(
x, Ta,b(un)

)]
�

L∫
0

φ
[
h
(
un, DTa,b(un)

)s − Ds Ja
(
x, Ta,b(un)

)]
� 0,

where the last inequality is proved using the properties of the Lagrangian (see [4]). Then we can add
this inequality to (4.60):

0 �
L∫

0

φ
[
zn DT (un) − D Ja

(
x, Ta,b
(
un(x)
))]

+
L∫

0

φ
[

Ja′
(
x, T
(
un(x)
))− zn g′T ′

a,b(un) + g′T ′
a,b(un)a

(
un, g′)]dx.

Now, since

L∫
0

φzn
[

DTa,b(un) − g′T ′
a,b(un)
]

=
L∫

0

φzn D
[
Ta,b(un) − g

]+
L∫

0

φzn g′(1 − T ′
a,b(un)
)

dx

= −
L∫

0

vnφ
(
Ta,b(un) − g

)
dx −

L∫
0

(
Ta,b(un) − g

)
a
(
un, u′

n

)
φ′ dx +

L∫
0

φzn g′(1 − T ′
a,b(un)
)

dx

we get

lim
n→+∞

L∫
0

φzn
[

DTa,b(un) − g′T ′
a,b(un)
]

dx �
〈
zD
(
Ta,b(u) − g

)
, φ
〉+ ∥∥g′∥∥∞

L∫
0

|z|φ(1 − T ′
a,b(u)
)

dx.

On the other hand, the almost everywhere convergence of un implies that

Ja′
(
x, Ta,b
(
un(x)
))→ Ja′

(
x, Ta,b
(
u(x)
))

a.e.

and we also have (see [1, Proposition 3.13]) that

D
[

Ja
(
x, Ta,b
(
un(x)
))]

⇀ D
[

Ja
(
x, Ta,b
(
u(x)
))]

weakly as measures.

As a consequence, we have
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lim
n→+∞

L∫
0

φ
[

Ja′
(
x, Ta,b
(
un(x)
))− D Ja

(
x, Ta,b
(
un(x)
))+ g′T ′

a,b(un)a
(
un, g′)]

= 〈 Ja′
(
x, Ta,b(u)

)− D Ja
(
x, T (u)

)
, φ
〉+

L∫
0

φg′a
(
u, g′)T ′

a,b(u)dx.

Consequently we obtain

〈
zD
(
Ta,b(u) − g

)
, φ
〉+ ∥∥g′∥∥∞

L∫
0

|z|φ(1 − T ′
a,b(u)
)

dx

+
L∫

0

φa
(
u, g′)g′T ′

a,b(u)dx − 〈D[ Ja
(
x, Ta,b
(
u(x)
))]− Ja′

(
x, Ta,b
(
u(x)
))

, φ
〉
� 0

for all 0 � φ ∈ C1
c (]0, L[). This means that, as measures,

zD
(
Ta,b(u) − g

)− D
[

Ja
(
x, Ta,b
(
u(x)
))]+ Ja′

(
x, Ta,b
(
u(x)
))

+ {a(u, g′)g′T ′
a,b(u) + |z|∥∥g′∥∥∞(1 − T ′

a,b(u)
)}
L1 � 0,

and we obtain

z
(
Ta,b(u) − g

)′ − a
(
u, g′)(Ta,b(u)

)′ + a
(
u, g′)g′T ′

a,b(u) + |z|∥∥g′∥∥∞(1 − T ′
a,b(u)
)
� 0.

If x ∈ [a < u < b], this reduces to (
z − a
(
u, g′))(u − g)′ � 0,

which holds for all x ∈ Ω ∩ [a < u < b], where L1(]0, L[ \ Ω) = 0, and all g ∈ C2([0, L]). Being x ∈
Ω ∩ [a < u < b] fixed and ξ ∈R given, we find g as above such that g′(x) = ξ . Then(

z(x) − a
(
u(x), ξ
))(

u′(x) − ξ
)
� 0, ∀ξ ∈R.

By an application of Minty–Browder’s method in R, these inequalities imply that

z(x) = a
(
u(x), u′(x)

)
a.e. on [a < u < b].

Since this holds for any 0 < a < b, we obtain the identification a.e. on the points of ]0, L[ such that
u(x) �= 0. Now, by our assumptions on a and (4.58) we deduce that z(x) = a(u(x), u′(x)) = 0 a.e. on
[u = 0]. The lemma is proved. �

To finish the proof we only need to show that

c

2

∣∣Ds(T (u)2)∣∣� zDs T (u) as measures ∀T ∈ T +,∣∣Ds J Sθ

(
T (u)
)∣∣� zDs J T ′ S(u) as measures, ∀S ∈ P+, T ∈ T +,

−a
(
u, u′)(0) = β and a

(
u, u′)(L) = −cu(L−).

These proofs are similar to those in the previous section. �
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From Theorem 4.5, according to Crandall–Liggett’s Theorem (cf., e.g., [12]), for any 0 � u0 ∈
L1(]0, L[) there exists a unique mild solution u ∈ C([0, T ]; L1(]0, L[)) of the abstract Cauchy problem

u′(t) + Bβu(t) � 0, u(0) = u0.

Moreover, u(t) = Tβ(t)u0 for all t � 0, where (Tβ(t))t�0 is the semigroup in L1(]0, L[)+ generated by
Crandall–Liggett’s exponential formula, i.e.,

Tβ(t)u0 = lim
n→∞

(
I + t

n
Bβ

)−n

u0.

On the other hand, as the operator Bβ is T -accretive we have that the comparison principle also
holds for Tβ(t), i.e., if u0, u0 ∈ L1(]0, L[)+ , we have the estimate

∥∥(Tβ(t)u0 − Tβ(t)u0
)+∥∥

1 �
∥∥(u0 − u0)

+∥∥
1. (4.61)

Obviously, by Crandall–Liggett’s exponential formula, from (4.46), we get that for all u0 ∈
L1(]0, L[)+ ,

Tβ(t)(μu0) = μT β
μ
(t)(u0) for all t > 0. (4.62)

As a consequence of (4.61) and (4.62), for u ∈ L∞(]0, L[)+ , we have

0 � Tβ(t)(u) � μuβ, with μ = max

{
c‖u‖∞

β
,1

}
, ∀t � 0.

5. Existence and uniqueness of solutions of the parabolic problem

This section deals with the problem

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= (a(u, ux)

)
x in ]0, T [ × ]0, L[,

−a
(
u(t,0), ux(t,0)

)= β > 0 and u(t, L) = 0 on t ∈ ]0, T [,
u(0, x) = u0(x) in x ∈ ]0, L[.

(5.63)

To make precise our notion of solution we need to recall the following definitions given in [3]. We
set Q T = ]0, T [ × ]0, L[.

It is well known (see for instance [28]) that the dual space [L1(0, T ;BV(]0, L[))]∗ is isometric to
the space L∞(0, T ;BV(]0, L[)∗,BV(]0, L[)) of all weakly∗ measurable functions f : [0, T ] → BV(]0, L[)∗ ,
such that v( f ) ∈ L∞([0, T ]), where v( f ) denotes the supremum of the set {|〈w, f 〉|: ‖w‖BV(]0,L[) � 1}
in the vector lattice of measurable real functions. Moreover, the duality pairing is

〈w, f 〉 =
T∫

0

〈
w(t), f (t)

〉
dt,

for w ∈ L1(0, T ;BV(]0, L[)) and f ∈ L∞(0, T ;BV(]0, L[)∗,BV(]0, L[)).
By L1

w(0, T ,BV(]0, L[)) we denote the space of weakly measurable functions w : [0, T ] → BV(]0, L[)
(i.e., t ∈ [0, T ] → 〈w(t),φ〉 is measurable for every φ ∈ BV(]0, L[)∗) such that

∫ T
0 ‖w(t)‖dt < ∞.

Observe that, since BV(]0, L[) has a separable predual (see [1]), it follows easily that the map
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t ∈ [0, T ] → ‖w(t)‖ is measurable. By L1
loc,w(0, T ,BV(]0, L[)) we denote the space of weakly mea-

surable functions w : [0, T ] → BV(]0, L[) such that the map t ∈ [0, T ] → ‖w(t)‖ is in L1
loc(]0, T [).

Note that if w ∈ L1(0, T ;BV(]0, L[)) ∩ L∞(Q T ) and z ∈ L1(Q T ) is such that there exists an element
ξ ∈ [L1(0, T ;BV(]0, L[))]∗ with Dxz = ξ in D′(Q T ), we define, associated with (z, ξ), the distribution
zDx w in Q T by

〈zDx w,ϕ〉 = −〈ξ,ϕw〉 −
T∫

0

L∫
0

z(t, x)w(t, x)∂xϕ(t, x)dx dt (5.64)

for all ϕ ∈D(Q T ).
Our concept of solution for the problem (5.63) is the following.

Definition 5.1. A measurable function u : ]0, T [ × ]0, L[ → R
+ is an entropy solution of (5.63) in Q T =

]0, T [ × ]0, L[ if u ∈ C([0, T ]; L1(]0, L[)), T (u(·)) ∈ L1
loc,w(0, T ,BV(]0, L[)) for all T ∈ Tr , and z(t) :=

a(u(t), ∂xu(t)) ∈ L1(Q T ), such that:

(i) the time derivative ut of u in D′(Q T ) belongs to [L1(0, T ;BV(]0, L[))]∗ and satisfies

T∫
0

〈
ut(t),ψ(t)

〉
dt = −

T∫
0

L∫
0

u(t, x)Θ(t, x)dx dt (5.65)

for all test functions ψ ∈ L1(0, T ;BV(]0, L[)) compactly supported in time such that ψ(t) =∫ t
0 Θ(s)ds and Θ ∈ L1

w(0, T ;BV(]0, L[)) ∩ L∞(Q T );
(ii) Dxz = ut in D′(Q T ), and for any w ∈ L1(0, T ;BV(]0, L[)), the distribution zDx w defined by (5.64)

is a Radon measure in Q T and verifies, for all w ∈ L1(0, T ;BV(]0, L[)), the following integration
by parts formula

∫
Q T

zDx w + 〈ut, w〉 = β

T∫
0

w(t,0+)dt − c

T∫
0

u(t, L−)w(t, L−)dt; (5.66)

(iii) the following inequality is satisfied

∫
Q T

ηhS
(
u, DT (u)

)
dt +
∫

Q T

ηhT
(
u, D S(u)

)
dt

�
∫

Q T

J T S(u)∂tηdx dt −
∫

Q T

a(u, ∂xu) · ∂xηT (u)S(u)dx dt

for truncatures S , T ∈ T + and any η ∈ C∞(Q T ) of compact support.

In the following result we get a positive lower bound for u(t,0+).

Lemma 5.2. If u is an entropy solution of (5.63) in Q T = (0, T ) × ]0, L[, then

u(t,0+) � β

c
> 0, for almost all t ∈ ]0, T [. (5.67)
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Proof. For any n ∈ N, let vn be the function defined by zero in ]1/n, L], 1 at x = 0, and a straight line
joining both values at the rest of the points. Being 0 � φ ∈ D(]0, T [) fixed and taking w in (5.66) as
wn(t) := φ(t)vn , we get

∫
Q T

zD wn + 〈ut, wn〉 = β

T∫
0

φ(t)dt. (5.68)

By (5.65), we have

〈ut, wn〉 = −
T∫

0

φ′(t)
L∫

0

u(t, x)vn(x)dx dt,

so by the Dominate Convergence Theorem,

lim
n→∞〈ut, wn〉 = 0. (5.69)

On the other hand, given ϕ ∈D(Q T ), we have

〈zDx wn,ϕ〉 =
T∫

0

φ(t)

L∫
0

z(t, x)ϕ(t, x)v ′
n(x)dx dt.

Hence,

∫
Q T

z(t, x)Dx wn(t, x) = −
T∫

0

nφ(t)

1
n∫

0

z(t, x)dx dt. (5.70)

Now, by (5.68), (5.69) and (5.70), we get

β

T∫
0

φ(t)dt = − lim
n→∞

T∫
0

φ(t)n

1
n∫

0

z(t, x)dx dt.

Then, since |z(t, x)| � cu(t, x), by Fatou’s Lemma we obtain that

β

T∫
0

φ(t)dt � c

T∫
0

φ(t)

[
lim

n→∞n

1
n∫

0

u(t, x)dx

]
dt = c

T∫
0

φ(t)u(t,0+)dt

from where it follows (5.67). �
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Remark 5.3. Let u be a bounded entropy solution of (5.63) in Q T . In the proof of the next result we
need the following time regularization. For that, given φ ∈D(]0, T [) and w ∈ L1

loc(0, T ;BV(]0, L[)), we
define (φw)τ , as the Dunford integral (see [18])

(φw)τ (t) := 1

τ

t∫
t−τ

φ(s)w(s)ds ∈ BV
(]0, L[)∗∗

,

that is

〈
(φw)τ (t),η

〉= 1

τ

t∫
t−τ

〈
φ(s)w(s),η

〉
ds ∀η ∈ BV

(]0, L[)∗.
In [2] it is shown that (φw)τ ∈ C([0, T ];BV(]0, L[)). If u is an entropy solution of (5.63) and p ∈ T + ,
it is easy to see that

∣∣Dx
(
φp(u)
)τ

(t)
∣∣(]0, L[)� 1

τ

t∫
t−τ

∣∣Dx
(
φ(s)p
(
u(s)
))∣∣(]0, L[)ds.

Then, by the lower semi-continuity of the total variation with respect to the L1-convergence, we have

∣∣Dx
(
φ(t)p
(
u(t)
))∣∣(]0, L[)� lim inf

τ→0

∣∣Dx
(
φp(u)
)τ

(t)
∣∣(]0, L[)

� lim sup
τ→0

1

τ

t∫
t−τ

∣∣Dx
(
φ(s)p
(
u(s)
))∣∣(]0, L[)ds.

Since the map t �→ |Dx(φ(t)p(u(t)))|(]0, L[) belongs to L1
loc([0, T ]), we have that almost every t ∈

[0, T ] is a Lebesgue point of this map. So, for almost all t ∈ [0, T ], we have

1

τ

t∫
t−τ

∣∣Dx
(
φ(s)p
(
u(s)
))∣∣(]0, L[)ds τ→0−−−→ ∣∣Dx

(
φ(t)p
(
u(t)
))∣∣(]0, L[),

and consequently,

∣∣Dx
(
φp(u)
)τ

(t)
∣∣(]0, L[) τ→0−−−→ ∣∣Dx

(
φ(t)p
(
u(t)
))∣∣(]0, L[) a.e. t.

Respect to the existence and uniqueness of bounded entropy solutions we have the following
result.

Theorem 5.4. For any initial datum 0 � u0 ∈ L∞(]0, L[) there exists a unique bounded entropy solution u of
(5.63) in Q T = ]0, T [×]0, L[ for every T > 0 such that u(0) = u0 . Moreover, if u(t), u(t) are bounded entropy
solutions of (5.63) in Q T = ]0, T [ × ]0, L[ corresponding to initial data u0 , u0 ∈ L∞(]0, L[)+ , respectively,
then ∥∥(u(t) − u(t)

)+∥∥
1 �
∥∥(u0 − u0)

+∥∥
1 for all t � 0.

In particular, we have uniqueness of bounded entropy solutions of (5.63).
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Proof. The comparison principle. Let b > a > 2ε > 0, T (r) := Ta,b(r)−a. We need to consider truncature
functions of the form Sε,l(r) := Tε(r − l)+ = Tl,l+ε(r)− l ∈ T + , and Sl

ε(r) := Tε(r − l)− +ε = Tl−ε,l(r)+
ε − l ∈ T +, where l � 0. Observe that Sl

ε(r) = −Tε(l − r)+ + ε. Let us denote

J+
T ,ε,l(r) =

r∫
0

T (s)Tε(s − l)+ ds,

J−
T ,ε,l(r) =

r∫
0

T (s)Tε(s − l)− ds = −
r∫

0

T (s)Tε(l − s)+ ds.

Then, J T Sε,l (r) = J+
T ,ε,l(r) and J T Sl

ε
(r) = J−

T ,ε,l(r) + ε J T (r).
Let u, u be two entropy solutions of (5.63) corresponding to the initial conditions u0, u0 ∈

(L1(]0, L[))+ , respectively. Then, if z(t) := a(u(t), ∂xu(t)), z(t) := a(u(t), ∂xu(t)), and l1, l2 > ε , we have

−
T∫

0

L∫
0

J+
T ,ε,l1

(
u(t)
)
∂tη(t)dx dt

+
T∫

0

L∫
0

η(t)
[
hT
(
u(t), Dx Sε,l1

(
u(t)
))+ hSε,l1

(
u(t), DxT

(
u(t)
))]

dt

+
T∫

0

L∫
0

z(t)∂xη(t)T
(
u(t)
)

Sε,l1

(
u(t)
)

dx dt � 0 (5.71)

and

−
T∫

0

L∫
0

J−
T ,ε,l2

(
u(t)
)
∂tηdx dt − ε

T∫
0

L∫
0

J T
(
u(t)
)
∂tη(t)dx dt

+
T∫

0

L∫
0

η(t)
[
hT
(
u(t), Dx Sl2

ε

(
u(t)
))+ h

S
l2
ε

(
u(t), DxT

(
u(t)
))]

dt

+
T∫

0

L∫
0

z(t)∂xη(t)T
(
u(t)
)

Sl2
ε

(
u(t)
)

dx dt � 0, (5.72)

for all η ∈ C∞(Q T ), with η � 0, η(t, x) = φ(t)ρ(x), being φ ∈D(]0, T [), ρ ∈D(]0, L[).
We choose two different pairs of variables (t, x), (s, y) and consider u, z as functions in (t, x), u, z

in (s, y). Let 0 � φ ∈D(]0, T [), ψ ∈D(]0, L[), ρm and ρ̃n be sequences of mollifier in R. Define

ηm,n(t, x, s, y) := ρm(x − y)ρ̃n(t − s)φ

(
t + s

2

)
ψ

(
x + y

2

)
.

For (s, y) fixed, if we take in (5.71) l1 = u(s, y), we get
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−
T∫

0

L∫
0

J+
T ,ε,u(s,y)

(
u(t, x)
)
∂tηm,n dx dt

+
T∫

0

L∫
0

ηm,n
[
hT
(
u(t, x), Dx Sε,u(s,y)

(
u(t, x)
))+ hSε,u(s,y)

(
u(t, x), DxT

(
u(t, x)
))]

dt

+
T∫

0

L∫
0

z(t, x)∂xηm,nT
(
u(t, x)
)

Sε,u(s,y)

(
u(t, x)
)

dx dt � 0. (5.73)

Similarly, for (t, x) fixed, if we take in (5.72) l2 = u(t, x) we get

−
T∫

0

L∫
0

J−
T ,ε,u(t,x)

(
u(s, y)
)
∂sηm,n dy ds − ε

T∫
0

L∫
0

J T
(
u(s, y)
)
∂sηm,n dy ds

+
T∫

0

L∫
0

ηm,n
[
hT
(
u(s, y), D y Su(t,x)

ε

(
u(s, y)
))+ h

Su(t,x)
ε

(
u(s, y), D y T

(
u(s, y)
))]

ds

+
T∫

0

L∫
0

z(s, y)∂yηm,n T
(
u(s, y)
)

Su(t,x)
ε

(
u(s, y)
)

dy ds � 0. (5.74)

We integrate (5.73) in (s, y), (5.74) in (t, x), and add the two inequalities. Using that a > 2ε , and
since ∫

Q T ×Q T

ηm,nhSε,u(s,y)

(
u(t, x), DxT

(
u(t, x)
))

ds dt dy � 0

and ∫
Q T ×Q T

ηm,nh
Su(t,x)
ε

(
u(s, y), D y T

(
u(s, y)
))

ds dt dx � 0,

we get

−
∫

Q T ×Q T

(
J+

T ,ε,u(s,y)

(
u(t, x)
)
∂tηm,n + J−

T ,ε,u(t,x)

(
u(s, y)
)
∂sηm,n
)

ds dt dy dx

− ε

∫
Q T ×Q T

J T
(
u(s, y)
)
∂sηm,n ds dt dy dx +

∫
Q T ×Q T

ηm,nhT
(
u(t, x), Dx Sε,u(s,y)

(
u(t, x)
))

ds dt dy

+
∫

Q T ×Q T

ηm,nhT
(
u(s, y), D y Su(t,x)

ε

(
u(s, y)
))

ds dt dx

−
∫

Q ×Q

z(s, y)∂xηm,n T
(
u(s, y)
)

Su(t,x)
ε

(
u(s, y)
)

ds dt dy dx
T T
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−
∫

Q T ×Q T

z(t, x)∂yηm,n T
(
u(t, x)
)

Sε,u(s,y)

(
u(t, x)
)

ds dt dy dx

+
∫

Q T ×Q T

T +
ε

(
u(t, x) − u(s, y)

)[
T
(
u(t, x)
)
z(t, x) − T

(
u(s, y)
)
z(s, y)
]

× (∂xηm,n + ∂yηm,n)ds dt dy dx

+ ε

∫
Q T ×Q T

T
(
u(s, y)
)
z(s, y)(∂xηm,n + ∂yηm,n)ds dt dy dx � 0. (5.75)

Let I2 be the sum of the third up to the sixth terms of the above inequality. From now on, since u, z
are always functions of (t, x), and u, z are always functions of (s, y), to make our expression shorter,
we shall omit the arguments except when they appear as sub-index and in some additional cases
where we find it useful to remind them. We also omit the differentials of the integrals.

Working as in the proof of uniqueness of Theorem 3 in [4], we obtain that 1
ε I2 � ‖φ‖∞‖ψ‖∞o(ε).

Hence, by (5.75), it follows that

−
∫

Q T ×Q T

(
J+

T ,ε,u(u)∂tηm,n + J−
T ,ε,u(u)∂sηm,n

)

+
∫

Q T ×Q T

T +
ε (u − u)

[
T (u)z − T (u)z

]
(∂xηm,n + ∂yηm,n) + ε

∫
Q T ×Q T

T (u)z(∂xηm,n + ∂yηm,n)

� εo(ε) + ε

∫
Q T ×Q T

J T (u)∂sηm,n.

Then, dividing by ε and letting ε → 0 we get

−
∫

Q T ×Q T

(
J+

T ,sign,u(u)∂tηm,n + J−
T ,sign,u(u)∂sηm,n

)

+
∫

Q T ×Q T

sign+
0 (u − u)

[
T (u)z − T (u)z

]
(∂xηm,n + ∂yηm,n) +

∫
Q T ×Q T

T (u)z(∂xηm,n + ∂yηm,n)

�
∫

Q T ×Q T

J T (u)∂sηm,n

where

J+
T ,sign,l(r) =

r∫
0

T
(
r′) sign+

0

(
r′ − l
)

dr′, l ∈R, r � 0,

and

J−
T ,sign,l(r) =

r∫
T
(
r′) sign−

0

(
r′ − l
)

dr′, l ∈R, r � 0.
0
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Now, letting m → ∞, we obtain

−
T∫

0

T∫
0

L∫
0

(
J+

T ,sign,u(s,x)

(
u(t, x)
)
∂tχn + J−

T ,sign,u(t,x)

(
u(s, x)
)
∂sχn
)

+
T∫

0

T∫
0

L∫
0

sign+
0

(
u(t, x) − u(s, x)

)[
T
(
u(t, x)
)
z(t, x) − T

(
u(s, x)
)
z(s, x)
]
∂xχn

+
T∫

0

T∫
0

L∫
0

T
(
u(s, x)
)
z(s, x)∂xχn

�
T∫

0

T∫
0

L∫
0

J T
(
u(s, x)
)
∂sχn

where χn(t, s, x) := ρ̃n(t − s)φ( t+s
2 )ψ(x). We set ψ = ψk ∈D(]0, L[) ↑ χ]0,L[ in the last expression and

taking limit as k → +∞, we have

−
T∫

0

T∫
0

L∫
0

(
J+

T ,sign,u(s,x)

(
u(t, x)
)
∂tκn(t, s) + J−

T ,sign,u(t,x)

(
u(s, x)
)
∂sκn(t, s)

)

+ lim
k→+∞

T∫
0

T∫
0

L∫
0

κn(t, s) sign+
0

(
u(t, x) − u(s, x)

)
T
(
u(t, x)
)
z(t, x)∂xψk(x)

− lim
k→+∞

T∫
0

T∫
0

L∫
0

κn(t, s) sign+
0

(
u(t, x) − u(s, x)

)
T
(
u(s, x)
)
z(s, x)∂xψk(x)

+ lim
k→+∞

T∫
0

T∫
0

L∫
0

κn(t, s)T
(
u(s, x)z(s, x)

)
∂xψk(x)

�
T∫

0

T∫
0

L∫
0

J T
(
u(s, x)
)
∂sκn(t, s), (5.76)

where κn(t, s) := ρ̃n(t − s)φ( t+s
2 ).

Let us study the second and the third term of the above expression. Let

Ik :=
T∫

0

T∫
0

L∫
0

κn(t, s) sign+
0

(
u(t, x) − u(s, x)

)
T
(
u(t, x)
)
z(t, x)∂xψk(x)

=
T∫ T∫ L∫

κn(t, s) sign+
0

(
u(t, x) − u(s, x)

)
T
(
u(t, x)
)
z(t, x)∂x

(
ψk(x) − 1

)
.

0 0 0
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Let Hn(s, r) := κn(r, s) sign+
0 (u(r) − u(s))T (u(r)). For τ > 0, we define the function (κn(s))τ , as the

Dunford integral (see Remark 5.3)

(
κn(s)
)τ

(t) := 1

τ

t+τ∫
t

Hn(s, r)dr.

Then,

Ik = lim
τ→0

T∫
0

T∫
0

L∫
0

(
κn(s)
)τ

(t)z(t, x)∂x
[
ψk(x) − 1

]
dx dt ds

= − lim
τ→0

T∫
0

T∫
0

L∫
0

[
ψk(x) − 1

]
z(t, x)Dx

((
κn(s)
)τ

(t)
)

ds dt

− lim
τ→0

T∫
0

〈
ut,
(
κn(s)
)τ (

ψk(x) − 1
)〉

ds + c lim
τ→0

T∫
0

T∫
0

u(t, L−)
(
κn(s)
)τ

(t)(L−)dt ds

− β lim
τ→0

T∫
0

T∫
0

(
κn(s)
)τ

(t)(0+)dt ds = I1
k + I2

k + I3
k + I4

k .

Notice that

I3
k = c

T∫
0

T∫
0

u(t, L−)κn(t, s) sign+
0

(
u(t, L−) − u(s, L−)

)
T
(
u(t, L−)

)
dt ds

and

I4
k = −β

T∫
0

T∫
0

κn(t, s) sign+
0

(
u(t,0+) − u(s,0+)

)
T
(
u(t,0+)

)
dt ds.

By Remark 5.3, we get∣∣Dx
((

κn(s)
)τ

(t)
)∣∣(]0, L[) τ→0−−−→ ∣∣Dx

(
κn(t, s) sign+

0

(
u(t) − u(s)

)
T
(
u(t)
))∣∣(]0, L[). (5.77)

Using (5.77), we get

∣∣I1
k

∣∣� c‖u‖L∞(Q T )

T∫
0

T∫
0

L∫
0

(
1 − ψk(x)

)∣∣Dx
(
κn(t, s) sign+

0

(
u(t) − u(s)

)
T
(
u(t)
))∣∣dt ds,

which implies limk→∞ I1
k = 0. Let us deal with I2

k . We have

I2
k = lim

τ→0

T∫ T∫ L∫
u(t, x)

Hn(s, t + τ ) − Hn(s, t)

τ

(
ψk(x) − 1

)
dx dt ds.
0 0 0
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Let

q(τ ) := sign+
0

(
τ − u(s, x)

)
T (τ ), Q (r) :=

r∫
0

q(τ )dτ .

Since q is non-decreasing, Q (r) − Q (r) � q(r)(r − r). Then, changing variables, since Hn(s, t) =
q(u(t))κn(t, s),

I2
k = lim

τ→0

T∫
0

T∫
0

L∫
0

(
1 − ψk(x)

)u(t, x) − u(t − τ , x)

τ
Hn(s, t)dx dt ds

� lim
τ→0

T∫
0

T∫
0

L∫
0

(
1 − ψk(x)

)
κn(t, s)

Q (u(t, x)) − Q (u(t − τ , x))

τ
dx dt ds

= lim
τ→0

T∫
0

T∫
0

L∫
0

(
1 − ψk(x)

)
Q
(
u(t, x)
)κn(t, s) − κn(t + τ , s)

τ
dx dt ds

= −
T∫

0

T∫
0

L∫
0

(
1 − ψk(x)

)
Q
(
u(t, x)
)
∂tκn(t, s)dx dt ds, (5.78)

from where it follows that limk→∞ I2
k � 0. Taking into account the above facts, we get

lim
k→∞

Ik � −β

T∫
0

T∫
0

κn(t, s) sign+
0

(
u(t,0+) − u(s,0+)

)
T
(
u(t,0+)

)
dt ds

+ c

T∫
0

T∫
0

u(t, L−)κn(t, s) sign+
0

(
u(t, L−) − u(s, L−)

)
T
(
u(t, L−)

)
dt ds. (5.79)

Working similarly, we obtain

− lim
k→∞

T∫
0

T∫
0

L∫
0

κn(t, s) sign+
0

(
u(t, x) − u(s, x)

)
T
(
u(s, x)
)
z(s, x)∂xψk(x)

� β

T∫
0

T∫
0

κn(t, s) sign+
0

(
u(t,0+) − u(s,0+)

)
T
(
u(s,0+)

)
dt ds

− c

T∫
0

T∫
0

u(s, L−)κn(t, s) sign+
0

(
u(t, L−) − u(s, L−)

)
T
(
u(s, L−)

)
dt ds. (5.80)

Analogously,
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lim
k→+∞

T∫
0

T∫
0

L∫
0

κn(t, s)T
(
u(s, x)
)
z(s, x)∂xψk(x)

� c

T∫
0

T∫
0

u(s, L−)κn(t, s)T
(
u(s, L−)

)
dt ds − β

T∫
0

T∫
0

κn(t, s)T
(
u(s,0+)

)
dt ds. (5.81)

From (5.76), by (5.79), (5.80) and (5.81), we have

−
T∫

0

T∫
0

L∫
0

(
J+

T ,sign,u(s,x)

(
u(t, x)
)
∂tκn(t, s) + J−

T ,sign,u(t,x)

(
u(s, x)
)
∂sκn(t, s)

)
dt ds dx

+ c

T∫
0

T∫
0

u(t, L−)κn(t, s) sign+
0

(
u(t, L−) − u(s, L−)

)
T
(
u(t, L−)

)
dt ds

− c

T∫
0

T∫
0

u(s, L−)κn(t, s) sign+
0

(
u(t, L−) − u(s, L−)

)
T
(
u(s, L−)

)
dt ds

− β

T∫
0

T∫
0

κn(t, s) sign+
0

(
u(t,0+) − u(s,0+)

)
T
(
u(t,0+)

)
dt ds

+ β

T∫
0

T∫
0

κn(t, s) sign+
0

(
u(t,0+) − u(s,0+)

)
T
(
u(s,0+)

)
dt ds

+ c

T∫
0

T∫
0

u(s, L−)κn(t, s)T
(
u(s, L−)

)
dt ds − β

T∫
0

T∫
0

κn(t, s)T
(
u(s,0+)

)
dt ds

�
T∫

0

T∫
0

L∫
0

J T
(
u(s, x)
)
∂sκn(t, s)dt ds dx. (5.82)

By Lemma 5.2, we have

u(t,0+) � β

c
> 0, u(s,0+) � β

c
> 0 for almost every t, s > 0. (5.83)

Letting a → 0, dividing by b and letting b → 0 in (5.82), we obtain

−
T∫

0

T∫
0

L∫
0

(
u(t, x) − u(s, x)

)+(
∂tκn(t, s) + ∂sκn(t, s)

)
dt ds dx

+ c

T∫ T∫
u(t, L−)κn(t, s) sign+

0

(
u(t, L−) − u(s, L−)

)
sign+

0

(
u(t, L−)

)
dt ds
0 0
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− c

T∫
0

T∫
0

u(s, L−)κn(t, s) sign+
0

(
u(t, L−) − u(s, L−)

)
sign+

0

(
u(s, L−)

)
dt ds

− β

T∫
0

T∫
0

κn(t, s) sign+
0

(
u(t,0+) − u(s,0+)

)[
sign0
(
u(t,0+)

)− sign0
(
u(s,0+)

)]
dt ds

+ c

T∫
0

T∫
0

u(s, L−)κn(t, s) sign+
0

(
u(s, L−)

)
dt ds − β

T∫
0

T∫
0

κn(t, s)dt ds

�
T∫

0

T∫
0

L∫
0

u(s, x)∂sκn(t, s)dt ds dx.

Having in mind (5.83), the fourth term of the above expression vanishes. Moreover, the sum of the
second and third terms is non-negative. On the other hand, since us = Dx(z) in the sense given in (ii)
of Definition 5.1,

T∫
0

T∫
0

L∫
0

u(s, x)∂sκn(t, s)dx dt ds = −
T∫

0

〈
us, κn(·, t)

〉
dt

= c

T∫
0

T∫
0

u(s, L−)κn(t, s)dt ds − β

T∫
0

T∫
0

κn(t, s)dt ds.

Therefore,

−
T∫

0

T∫
0

L∫
0

(
u(t, x) − u(s, x)

)+(
∂tκn(t, s) + ∂sκn(t, s)

)
dt ds dx � 0.

Letting n → ∞,

−
T∫

0

L∫
0

(
u(t, x) − u(t, x)

)+
φ′(t)dx dt � 0.

Since this is true for all 0 � φ ∈D(]0, T [), we have

d

dt

L∫
0

(
u(t, x) − u(t, x)

)+
dx � 0.

Hence

L∫
0

(
u(t, x) − u(t, x)

)+
dx �

L∫
0

(
u0(x) − u0(x)

)+
dx for all t � 0,

which finishes the uniqueness part.
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Existence of bounded entropy solution. Given 0 � u0 ∈ L1(]0, L[), let u(t) = Tβ(t)u0, being (Tβ(t))t�0
the semigroup in L1(]0, L[)+ generated by the accretive operator Bβ . Then, according to the general
theory of nonlinear semigroups [12], we have that u(t) is a mild solution of the abstract Cauchy
problem

u′(t) + Bβu(t) � 0, u(0) = u0.

Let us prove that, assuming 0 � u0 ∈ L∞(]0, L[), then u is a bounded entropy solution of (5.63)
in Q T . We divide the proof of existence in several steps.

Step 1. Approximation with Crandall–Liggett’s scheme. Let T > 0, K � 1, �t = T
K , tn = n�t , n = 0, . . . , K .

We define inductively un+1, n = 0, . . . , K − 1, to be the unique entropy solution of

⎧⎨
⎩

un+1 − un

�t
− (a(un+1,

(
un+1)′))′ = 0 in ]0, L[,

−a
(
un+1(0),

(
un+1)′(0)

)= β > 0 and un+1(L−) = 0,

(5.84)

where u0 = u0.
If we define

uK (t) := u0χ[0,t1](t) +
K−1∑
n=1

unχ]tn,tn+1](t),

by Crandall–Liggett’s Theorem, we get that uK converges uniformly to u ∈ C([0, T ], L1(]0, L[)), as
K → ∞.

We also define

ξ K (t) :=
K−1∑
n=0

un+1 − un

�t
χ]tn,tn+1](t)

and

zK (t) := a
(
u1,
(
u1)′)χ[0,t1](t) +

K−1∑
n=1

a
(
un+1,
(
un+1)′)χ]tn,tn+1](t).

Since un+1 is the entropy solution of (5.84), we have

ξ K (t) = DxzK (t) in D′(]0, L[), ∀t ∈ ]0, T ], (5.85)

zK (t)(L) = −cuK (t + �t)(L−), ∀t ∈ ]0, T − �t], −zK (t)(0) = β, ∀t ∈ [0, T ] (5.86)

and for all S ∈P+ , T ∈ T + , we have ∀t ∈ ]0, T − �t]

h
(
uK (t + �t), DxT

(
uK (t + �t)

))
� zK (t)DxT

(
uK (t + �t)

)
as measures,

hS
(
uK (t + �t), DxT

(
uK (t + �t)

))
� zK (t)Dx J T ′ S

(
uK (t + �t)

)
as measures. (5.87)

Note that (5.87) is equivalent to

c ∣∣Ds
x

((
T
(
uK (t + �t)

))2)∣∣� zK (t)Ds
xT
(
uK (t + �t)

)
as measures.
2
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Since a(un+1, (un+1)′)DxT (un+1) � h(un+1, DxT (un+1)) as measures in ]0, L[, using (2.9) we can
write

h
(
un+1, DxT

(
un+1))= a

(
un+1,
(
un+1)′)(T (un+1))′L1 + c

2

∣∣Ds
x

[(
T
(
un+1))2]∣∣

� c

2

∣∣((T (un+1))2)′∣∣L1 − c2

ν

(
T
(
un+1))2L1 + c

2

∣∣Ds
x

[(
T
(
un+1))2]∣∣

= c

2

∣∣Dx
[(

T
(
un+1))2]∣∣− c2

ν

(
T
(
un+1))2L1,

from where we get the following inequality as measures

zK (t)DxT
(
uK (t + �t)

)
� c

2

∣∣Dx
[(

T
(
uK (t + �t)

))2]∣∣− c2

ν

(
T
(
uK (t + �t)

))2
. (5.88)

Lemma 5.5. There exists M := M(β, c, ν, L,‖u0‖∞) such that

∥∥uK (t)
∥∥∞ � M ∀K ∈N and ∀t ∈ [0, T ]. (5.89)

Consequently, ‖u(t)‖∞ � M ∀t ∈ [0, T ].

Proof. Since

(I + �tBβ)−1(un)= un+1, for n = 0, . . . , K − 1,

by Proposition 4.4, if μ := max{ c‖u0‖∞
β

,1}, we have

0 � u1 = (I + �tBβ)−1(u0) � μuβ .

Then, repeating this process, we obtain

0 � un+1 = (I + �tBβ)−1(un)� (I + �tBβ)−1(μuβ)

= μ(I + �tB β
μ
)−1(uβ) � μ(I + �tBβ)−1(uβ) = μuβ,

and the proof concludes. �
Step 2. By (5.89), ‖zK (t)‖∞ � C for all K ∈ N and a.e. t ∈ [0, T ]. Then we may assume that zK ⇀ z ∈
L∞(Q T ) weakly∗ . Moreover, since zK (t) = cuK (t + �t)b(uK (t + �t), ∂xuK (t + �t)) ∀t ∈ ]0, T − �t],
with ‖b(uK (t + �t), ∂xuK (t + �t))‖∞ � 1 and uK converges uniformly to u in C([0, T ], L1(]0, L[)), we
may also assume that b(uK (t + �t), ∂xuK (t + �t)) ⇀ zb(t) ∈ L∞(Q T ) weakly∗ and

z(t) = cu(t)zb(t) for almost all t ∈ [0, T ]. (5.90)

Given w ∈ BV(]0, L[), from (5.85) and (5.89), it follows that for each t ∈ ]0, T ]
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∣∣∣∣∣
L∫

0

ξ K (t, x)w(x)dx

∣∣∣∣∣=
∣∣∣∣∣−

L∫
0

zK (t)D w + zK (L)w(L) + βw(0+)

∣∣∣∣∣
� C‖w‖BV(]0,L[) + ∣∣zK (L)w(L)

∣∣
�
(
C + cμ‖uβ‖∞

)‖w‖BV(]0,L[),

where the continuous injection of BV(]0, L[) into L∞(]0, L[) was used. Thus, ‖ξ K (t)‖BV(]0,L[)∗ � C ,
∀K ∈ N and t ∈ ]0, T ]. Consequently, {ξ K } is a bounded sequence in L∞(0, T ;BV(]0, L[)∗). Now, since
L∞(0, T ;BV(]0, L[)∗) is a vector subspace of the dual space (L1(0, T ;BV(]0, L[)))∗ , we can find a sub-
net ξα of ξ K such that

ξα ⇀ ξ ∈ (L1(0, T ;BV
(]0, L[)))∗ weakly∗.

Working as in the proof of Theorem 5.5 of [4], Step 2, we can prove that (5.65) holds and ut = Dxz
in D′(Q T ).

Step 3. Next, we prove that ut = Dxz in the sense given in (ii) of Definition 5.1. To do this, let us first
observe that we can prove, as in the proof of Theorem 5.5 of [4], Step 4, that the distribution zD w in
Q T defined by (5.64) is a Radon measure in Q T for all w ∈ L1(0, T ;BV(]0, L[)), and also that

〈zDx w,ϕ〉 = lim
α

T∫
0

L∫
0

zα(t, x)Dx w(t, x)ϕx(t, x)dx dt.

From where it follows, combining with (5.86) and integrating by parts,

∫
Q T

zDx w = lim
α

T∫
0

L∫
0

zα(t)Dx w(t)dt = − lim
α

T∫
0

L∫
0

w(t, x)Dxzα(t, x)dx dt

+ lim
α

[ T∫
0

zα(t, L)w(t, L−)dt −
T∫

0

zα(0)w(t,0+)dt

]

= lim
α

[
−〈ξα, w

〉− c

T∫
0

uα(t + �t)(L−)w(t, L−)dt + β

T∫
0

w(t,0+)dt

]

= −〈ut, w〉 − c

T∫
0

u(t)(L−)w(t, L−)dt + β

T∫
0

w(t,0+)dt,

and (5.66) holds.

Step 4. Let T = Ta,b be any cut-off function, let j be the primitive of T . Let 0 � φ ∈ D(]0, T [). Multi-
plying (5.84) by T (un+1)φ(t), t ∈ (tn, tn+1], integrating in (tn, tn+1] × ]0, L[ and adding from n = 0 to
n = K − 1, we have

K−1∑
n=0

tn+1∫
t

φ(t)

L∫
un+1 − un

�t
T
(
un+1)dx dt +

T∫
φ(t)

L∫
zK (t)Dx

(
T
(
uK (t + �t)

))
dt
n 0 0 0
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=
K−1∑
n=0

tn+1∫
tn

(
βφ(t)T

(
un+1(0+)

)− cφ(t)un+1(L−)T
(
un+1(L−)

))
dt. (5.91)

Since φ has compact support in time in (0, T ), for K large enough, performing like in (5.78), we have

−
K−1∑
n=0

tn+1∫
tn

φ(t)

L∫
0

un+1 − un

�t
T
(
un+1)dx dt �

T∫
0

L∫
0

j
(
uK (t)
)φ(t) − φ(t − �t)

�t
dx dt.

Hence, from (5.91) it follows that

T∫
0

L∫
0

zK (t)φ(t)DxT
(
uK (t + �t)

)
dt

�
T∫

0

L∫
0

j
(
uK (t)
)φ(t) − φ(t − �t)

�t
dx dt +

T∫
0

βφ(t)T
(
uK (t + �t,0+)

)
dt. (5.92)

Given ε > 0, if we take into (5.92) any test 0 � φ ∈ D(]0, T [) such that φ(t) = 1 for t ∈ ]ε, T − ε[,
having in mind (5.89), we get

T −ε∫
ε

L∫
0

zK (t)DxT
(
uK (t + �t)

)
dt

�
T∫

0

L∫
0

j
(
uK (t)
)φ(t) − φ(t − �t)

�t
dx dt +

T∫
0

βT
(
uK (t + �t,0+)

)
dt � C .

This implies that {zK (t)Dx(T (uK (t + �t)))} is a bounded sequence in L1
loc,w(0, T ,M(]0, L[)), where

M(]0, L[) denotes the space of bounded Radon measures in ]0, L[.
On the other hand, by (5.88)

T −ε∫
ε

L∫
0

zK (t)DxT
(
uK (t + �t)

)
dt

� c

2

T −ε∫
ε

L∫
0

∣∣Dx
[(

T
(
uK (t + �t)

))2]∣∣dt −
T −ε∫
ε

L∫
0

c2

ν

(
T
(
uK (t + �t)

))2
dt.

Hence

T −ε∫
ε

L∫ ∣∣Dx
[(

T
(
uK (t + �t)

))2]∣∣dt � 2C

c
+ 2cLT b2

ν
= C,
0
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where by the co-area formula it follows that

T −ε∫
ε

L∫
0

∣∣DxT
(
uK (t + �t)

)∣∣dt � C . (5.93)

Moreover, by Lemma 5 of [2], the map t �→ ‖T (uK (t))‖BV(]0,L[) is measurable, then by Fatou’s Lemma
and (5.93), it follows that

T −ε∫
ε

lim inf
K→∞

L∫
0

∣∣DxT
(
uK (t + �t)

)∣∣dt � lim inf
K→∞

T −ε∫
ε

L∫
0

∣∣DxT
(
uK (t + �t)

)∣∣dt � C . (5.94)

Now, since the total variation is lower semi-continuous in L1(]0, L[), we have

L∫
0

∣∣DxT
(
u(t)
)∣∣� lim inf

K→∞

L∫
0

∣∣DxT
(
uK (t)
)∣∣,

thus we deduce that T (u(t)) ∈ BV(]0, L[) for almost all t ∈ (0, T ) and consequently u(t) ∈ TBV+(]0, L[).
Then, by (5.94), and applying again Lemma 5 of [2], we obtain that

T
(
u(·)) ∈ L1

loc,w

(
0, T ,BV

(]0, L[)). (5.95)

Step 5. Identification of the field. Let us now prove that

z(t) = a
(
u(t), ∂xu(t)

)
a.e. t ∈ ]0, T [. (5.96)

Let 0 � φ ∈ D(Q T ) and g ∈ C2([0, L]). Assume that φ = η(t)ρ(x) with η ∈ D(]0, T [) and ρ ∈
D(]0, L[). Let 0 < a < b, and T = Ta,b . Let j denote the primitive of T . Recall that

Ja(x, r) =
r∫

0

a
(
s, g′(x)

)
ds and Ja′(x, r) =

r∫
0

∂x
[
a
(
s, g′(x)

)]
ds.

For simplicity, we write

D2 Ja
(
x, T
(
uK (t + �t)

)) := Dx
[

Ja
(
x, T
(
uK (t + �t)

))]− Ja′
(
x, T
(
uK (t + �t)

))
.

Working as in the proof of Step 6 of Theorem 3 in [4] we find out that

[
D2 Ja
(
x, T
(
uK (t + �t)

))]ac = a
(
uK (t + �t), g′)∂x

[
T
(
uK (t + �t)

)]
. (5.97)

Using (5.97), (2.10) and (5.84), we obtain
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T∫
0

L∫
0

φzK (t)Dx
(
T
(
uK (t + �t)

)− g
)

dt

−
T∫

0

L∫
0

φ
[

D2 Ja
(
x, T
(
uK (t + �t)

))− a
(
uK (t + �t), g′)g′]dt

=
T∫

0

L∫
0

φ
[
zK (t)DxT

(
uK (t + �t)

)− zK (t)g′ + a
(
uK (t + �t), g′)g′]dt

−
T∫

0

L∫
0

φ
{[

D2 Ja
(
x, T
(
uK (t + �t)

))]ac + [D2 Ja
(
x, T
(
uK (t + �t)

))]s}
dt

=
T∫

0

L∫
0

φ
(
a
(
uK (t + �t), g′)− zK (t)

)(
g′ − ∂xT

(
uK (t + �t)

))
dt

+
T∫

0

L∫
0

φ
[
zK (t)Ds

xT
(
uK (t + �t)

)− [D2 Ja
(
x, T
(
uK (t + �t)

))]s]
dt

�
T∫

0

L∫
0

φ
[
zK (t)Ds

xT
(
uK (t + �t)

)− [D2 Ja
(
x, T
(
uK (t + �t)

))]s]
dt

�
T∫

0

L∫
0

φ

[
c

2

∣∣Ds
x

(
T
(
uK (t + �t)

)2)∣∣− [D2 Ja
(
x, T
(
uK (t + �t)

))]s]
dt.

Again working as in the proof of Step 6 of Theorem 3 in [4], we get

T∫
0

L∫
0

φ

[
c

2

∣∣Ds
x

(
T
(
uK (t + �t)

)2)∣∣− [D2 Ja
(
x, T
(
uK (t + �t)

))]s]
dt � 0.

Therefore, we obtain

T∫
0

L∫
0

φzK (t)Dx
(
T
(
uK (t + �t)

)− g
)

dt

−
T∫

0

L∫
0

φ
[

D2 Ja
(
x, T
(
uK (t + �t)

))− a
(
uK (t + �t), g′)g′]dt � 0. (5.98)

Now we shall bound from above the first term. By (5.85) and for �t small enough, performing like in
(5.78), we get
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T∫
0

L∫
0

φ(t, x)T
(
uK (t + �t)

)
DxzK (t)dt =

T∫
0

L∫
0

φ(t, x)T
(
uK (t + �t)

)
ξ K (t)dx dt

�
T∫

0

L∫
0

φ(t − �t, x) − φ(t, x)

�t
j
(
uK (t)
)

dt dx.

Then, integrating by parts, we have

T∫
0

L∫
0

φ(t)zK (t)Dx
(
T
(
uK (t + �t)

)− g
)

dt

� −
T∫

0

L∫
0

φ(t − �t) − φ(t)

�t
j
(
uK (t)
)

dt dx

+
T∫

0

L∫
0

φ(t)gξ K (t)dt dx −
T∫

0

L∫
0

∂xφ(t)zK (t)
[
T
(
uK (t + �t)

)− g
]

dt dx.

Thanks to this inequality we arrive from (5.98) to

−
T∫

0

L∫
0

φ(t − �t) − φ(t)

�t
j
(
uK (t)
)

dt dx +
T∫

0

L∫
0

φ(t)gξ K (t)dt dx

−
T∫

0

L∫
0

∂xφ(t)zK (t)
[
T
(
uK (t + �t)

)− g
]

dt dx

−
T∫

0

L∫
0

φ(t)
[

D2 Ja
(
x, T
(
uK (t + �t)

))− a
(
uK (t + �t), g′)g′]dt � 0. (5.99)

Letting K → ∞ in (5.99) and having in mind that

D2 Ja
(
x, T
(
uK (t + �t)

))
⇀ D2 Ja

(
x, T
(
u(t)
))

weakly as measures

we obtain

T∫
0

L∫
0

∂tφ(t) j
(
u(t)
)

dt + 〈ut, φg〉 −
T∫

0

L∫
0

[
T
(
u(t)
)− g
]
z(t)∂xφ(t)dx dt

+
T∫ L∫

φ(t)
[−D2 Ja

(
x, T
(
u(t)
))+ a
(
u(t), g′)g′]dt � 0. (5.100)
0 0
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By (5.66),

〈ut, φg〉 = −
T∫

0

L∫
0

z(t)g∂xφ(t)dt dx −
T∫

0

L∫
0

z(t)g′φ(t)dt dx

and we can rearrange (5.100) in the following way

T∫
0

L∫
0

∂tφ(t) j
(
u(t)
)

dt dx −
T∫

0

L∫
0

z(t)g′φ(t)dt dx −
T∫

0

L∫
0

T
(
u(t)
)
z(t)∂xφ(t)dx dt

+
T∫

0

L∫
0

φ(t)
[−D2 Ja

(
x, T
(
u(t)
))+ a
(
u(t), g′)g′]dt � 0. (5.101)

Now, for τ small enough and using again the trick in (5.78), we have

T∫
0

L∫
0

∂tφ(t, x) j
(
u(t, x)
)

dx dt = lim
τ→0

T∫
0

L∫
0

η(t − τ ) − η(t)

−τ
j
(
u(t, x)
)
ρ(x)dx dt

� lim
τ→0

T∫
0

L∫
0

u(t, x)ρ(x)
d

dt

(
ηT (u)
)τ

(t, x)dx dt,

where we used again the notion of Dunford integral (see Remark 5.3). Using (5.65), we have

T∫
0

L∫
0

u(t)ρ
d

dt

(
ηT (u)
)τ

(t)dx dt = −〈ut,ρ
(
ηT (u)
)τ

(·)〉

= − lim
α

〈
ξα,ρ
(
ηT (u)
)τ

(·)〉= − lim
α

T∫
0

〈
Dxzα(t),ρ

1

τ

t∫
t−τ

η(s)T
(
u(s)
)

ds

〉
dt

= lim
α

T∫
0

L∫
0

zα(t)Dx

(
ρ

1

τ

t∫
t−τ

η(s)T
(
u(s)
)

ds

)
dt = lim

α

T∫
0

L∫
0

∂xρzα(t)

t∫
t−τ

1

τ
η(s)T
(
u(s)
)

ds dx dt

+ lim
α

T∫
0

L∫
0

ρzα(t)Dx
[(

ηT (u)
)τ

(t)
]

dt =
T∫

0

1

τ

t∫
t−τ

η(s)

L∫
0

T
(
u(s)
)
z(t)∂xρ dx ds dt

+ lim
α

T∫ L∫
ρzα(t)∂x

[(
ηT (u)
)τ

(t)
]

dx dt + lim
α

T∫ L∫
ρzα(t)Ds

x

[(
ηT (u)
)τ

(t)
]

dt
0 0 0 0
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�
T∫

0

1

τ

t∫
t−τ

η(s)

L∫
0

T
(
u(s)
)
z(t)∂xρ dx ds dt +

T∫
0

1

τ

t∫
t−τ

η(s)

L∫
0

ρz(t)∂x
(
T
(
u(s)
))

dx ds dt

+
T∫

0

1

τ

t∫
t−τ

η(s)

L∫
0

cMρ
∣∣Ds

x

[
T
(
u(s)
)]∣∣ds dt.

Taking limits when τ → 0, having in mind (5.89), we obtain

T∫
0

L∫
0

∂tφ(t) j
(
u(t)
)

dx dt �
T∫

0

η(t)

L∫
0

T
(
u(t)
)
z(t)∂xρ dx dt +

T∫
0

η(t)

L∫
0

ρz(t)∂xT
(
u(t)
)

dx dt

+ cM

T∫
0

η(t)

L∫
0

ρ
∣∣Ds

x

[
T
(
u(t)
)]∣∣dt.

From (5.101), all gathered together reads

0 � −
T∫

0

L∫
0

φ(t)z(t)g′ dx dt +
T∫

0

η(t)

L∫
0

ρz(t)∂x
(
T
(
u(t)
))

dx dt + cM

T∫
0

η(t)

L∫
0

ρ
∣∣Ds

xT
(
u(t)
)∣∣dt

+
T∫

0

L∫
0

φ
[−D2 Ja

(
x, T
(
u(t)
))+ a
(
u(t), g′)g′]dt.

Using that D2 Ja(x, T (u(t))) = a(u(t), g′)∂x(T (u(t))) + [D2 Ja(x, T (u(t)))]s , this is written as

0 � cM

T∫
0

η(t)

L∫
0

ρ
∣∣Ds

xT
(
u(t)
)∣∣dt −

T∫
0

L∫
0

φ
[

D2 Ja
(
x, T
(
u(t)
))]s

dt

+
T∫

0

L∫
0

[
g′ − ∂x
(
T
(
u(t)
))][

a
(
u(t), g′)− z(t)

]
φ dx dt.

As measures,

cM
∣∣Ds

xT
(
u(t)
)∣∣− [D2 Ja

(
x, T
(
u(t)
))]s + [g′ − ∂x

(
T
(
u(t)
))][

a
(
u(t), g′)− z(t)

]
L2 � 0.

Taking the absolutely continuous part and particularizing to points x ∈ [a < u(t) < b], this reduces to

[
g′ − ∂xu(t)

][
a
(
u(t), g′)− z(t)

]
� 0,

an inequality which holds for all (t, x) ∈ S ∩ [a < u < b], where S ⊆ ]0, T [ × ]0, L[ is such that
L2(]0, T [ × ]0, L[ \ S) = 0, and all g ∈ C2([0, L]). Being (t, x) ∈ S ∩ [a < u < b] fixed and ξ ∈ R given,
we can find a function g as above such that g′(x) = ξ . Then

(
z(t, x) − a

(
u(t), ξ
))(

∂xu(t, x) − ξ
)
� 0, ∀ξ ∈R and ∀(t, x) ∈ S ∩ [a < u < b].
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By an application of Minty–Browder’s method in R, these inequalities imply that

z(x) = a
(
u(t, x), ∂xu(t, x)

)
a.e. on Q T ∩ [a < u < b].

Since this holds for any 0 < a < b, we obtain (5.96) a.e. on the points of Q T such that u(t, x) �= 0.
Now, by our assumptions on a and (5.90) we deduce that z(x) = a(u(x), u′(x)) = 0 a.e. on [u = 0]. We
have proved (5.96).

Step 6. The entropy inequality. Given S ∈ P+, T ∈ T + and φ ∈ D(Q T ), working as in the proof of (5.92)
we can get

T∫
0

L∫
0

φzK (t)Dx
(
T
(
uK (t + �t)

)
S
(
uK (t + �t)

))
dt

�
T∫

0

L∫
0

J T S
(
uK (t)
)φ(t) − φ(t − �t)

�t
dx dt

−
T∫

0

L∫
0

zK (t)∂xφT
(
uK (t + �t)

)
S
(
uK (t + �t)

)
dx dt (5.102)

and the fact that {zK (t)Dx(T (uK (t + �t))S(uK (t + �t)))} is a bounded sequence in L1
loc(0, T ;

M(]0, L[)). From here, as in the proof of Theorem 4.5 of [6], we can get that the sequences
{zK (t)Dx J T ′ S(uK (t + �t))} and {zK (t)Dx J S ′T (uK (t + �t))} are bounded in L1

loc(0, T ;M(]0, L[)). This
allows us to define, up to subsequence, the objects μS

T ,μT
S ∈M(Q T ) by means of

〈
φ,μT

S

〉= lim
K

T∫
0

L∫
0

φzK (t)Dx J T ′ S
(
uK (t + �t)

)
dt, ∀φ ∈ Cc(Q T ),

〈
φ,μS

T

〉= lim
K

T∫
0

L∫
0

φzK (t)Dx J S ′T
(
uK (t + �t)

)
dt, ∀φ ∈ Cc(Q T ).

Then, passing to the limit in (5.102), we obtain

〈
φ,μT

S

〉+ 〈φ,μS
T

〉

�
T∫

0

L∫
0

J T S
(
u(t)
)
∂tφ(t)dx dt −

T∫
0

L∫
0

z(t)∂xφT
(
u(t)
)

S
(
u(t)
)

dx dt, ∀φ ∈ D(Q T ). (5.103)

Working as in proof of Lemma 4.11 in [6], we can get the following result.

Lemma 5.6. For S ∈P+ , T ∈ T + , we have that μT
S � hS(u, DT (u)).

By the above lemma and (5.103) we obtain the entropy inequality
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T∫
0

L∫
0

φhS
(
u, DT (u)

)
dt +

T∫
0

L∫
0

φhT
(
u, D S(u)

)
dt

�
T∫

0

L∫
0

J T S(u)φ′ dx dt −
T∫

0

L∫
0

a(u, ∂xu) · ∂xφT (u)S(u)dx dt

for truncatures S ∈P+ , T ∈ T + and any smooth function φ of compact support. �
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