
FEBS Letters 589 (2015) 165–171
journal homepage: www.FEBSLetters .org
Desulfovibrio desulfuricans isolates from the gut of a single individual:
Structural and biological lipid A characterization
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The levels of sulfate-reducing bacteria (SRB), including Desulfovibrionaceae, in the gut increase
following a fat-enriched diet. Endotoxins from gut microbiota contribute to the inflammation
process, leading to metabolic diseases. Thus, we sought to characterize the lipid A structures of
Desulfovibrionaceae lipopolysaccharides (LPS) that are associated with the microbiota inflammatory
properties. LPS variants were obtained from two SRB isolates from the gut of a single individual.
These LPS variants shared similar lipid A moieties with Enterobacterial LPS, but differed from one
another with regard to fatty-acid numbers and endotoxic activity. This first complete structural
characterization of Desulfovibrio lipid A gives new insights into previously published data on
Desulfovibrio lipid A biosynthesis. LPS microdiversity within SRBs illustrates how adaptation can
influence pro-inflammatory potential.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Imbalances in the composition of gut microbiota have been
reported to be associated with susceptibility to obesity and insulin
resistance diseases [1,2]. Despite recent progress, the specific
factors that cause or ameliorate these diseases largely remain to
be identified [3]. Recently, different studies demonstrated that
Lipopolysaccharides (LPS) from gut bacteria and their receptor on
the host cells, TLR4, participated in the production of inflammatory
cytokines and the complication of diabetic diseases [4].

Endotoxins are lipopolysaccharides (LPSs), the major compo-
nents of the external membrane of Gram-negative bacteria. Not
all LPS are toxic, but when they are, their lipophilic moiety, called
lipid A, is responsible for their major characteristic toxic and
beneficial properties [5,6]. Lipid A structure generally consists of
a diglucosamine backbone substituted with varying numbers
(usually 4–7) of ester- or amide-linked fatty acids. The number
and chain lengths of the fatty acids are related to the most toxic
effects of LPS [7]. The addition of a single fatty acid can be
responsible for virulence properties [8]. In most cases, phosphate
and/or other substituents are linked to carbons at the C-1 and
C-40 positions of the lipid A disaccharide unit [9,10].
The sulfate-reducing bacteria (SRB) are a group family of anaer-
obic microbes using sulfate as terminal electron acceptor for their
respiration and generating large quantities of hydrogen sulfide
(H2S) [11]. SRB are ubiquitous and are present in animal and
human intestines [12]. Recent studies showed a significant
increase in the Desulfovibrionaceae family in both obese human
volunteers and mice compared to lean individuals [13,14]. This
suggested that the SRB are potential endotoxin producers leading
to a low grade, but chronic inflammation, causing obesity and dia-
betes. Although partial chemical compositions of SRB LPS have
been published [15], they did not lead to the complete structural
characterization of their lipid A, and consequently, no relevant
relation between the structures and biological activities could be
reported until now.

In this study, we report the first complete description of two
SRB lipid A structures explaining their relationship to biological
activities. MALDI mass spectrometry and complementary bio-
chemical analyses allowed a complete qualitative and quantitative
analysis of the lipid A molecular species. The structures, found to
be different in the two SRB strains, will be described in relation
to their biological activities.
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2. Materials and methods

2.1. Bacterial strains

The SRB strains were isolated from the gut of a healthy human
and grown in Postgate culture medium [16] in anaerobic
conditions.

2.2. LPS extraction and purification by preparative thin layer
chromatography

Chromatography was performed on HPTLC glass silica coated
plates (Merck) and LPS extraction was performed as previously
described [17]. Briefly, samples were extracted from lyophilized
bacteria in a mixture of isobutyric acid: 1 M NH4OH in a (5:3) ratio
and were deposited in lines of 18 deposits of about 30 lg on the
HPTLC plate. After 2 h of migration, LPS molecules were detected
by non-destructive localization [17]. They were then eluted from
the scraped silica with the same mixture of solvent followed by
centrifugation, and lyophilisation of the extract. The different
lyophilized extracts were washed with ethanol in order to remove
any residual salt or solvent traces prone to quench the mass
spectra.

2.3. SDS–polyacrylamide gel analysis of LPS

Fifteen percent acrylamide gel was used, and 0.5 lg of LPS was
loaded onto the 4% starting gel. The LPS preparation, electrophore-
sis process and nitrate coloration were performed as previously
described [18,19].

2.4. Triethylamine (TEA)-citrate microhydrolysis

We used the LPS microhydrolysis method [20] to analyze our
SRB LPS extracts, this method allows direct analysis of LPS, and
its fragments, by Matrix Assisted Laser Desorption mass spectrom-
etry (MALDI-MS) without salt removal.

2.5. Liberation of the ester-linked fatty acids [21]

Conditions for the first-step cleavage of primary ester-linked
fatty acids: Lipid A (200 lg) was suspended at 1 mg/ml in 35%
ammonium hydroxide and stirred for 5 h at 50 �C. For liberation
of the secondary ester-linked fatty acids, lipid A was suspended
in 41% methyl-amine and stirred for 5 h at 37 �C. The solutions
were dried with a stream of nitrogen, the residue were taken up
in a mixture of CHCl3/MeOH/water (3; 1.5; 0.25 v/v) followed by
TLC and analysis by MALDI-MS.

2.6. MALDI mass spectrometry (MALDI-MS)

Analyses were performed on a PerSeptive Voyager-DE STR
model time-of-flight mass spectrometer (Applied Biosystem)
(IBBMC, Université de Paris XI), in linear mode with delayed
extraction. Both negative- and positive-ion spectra were recorded.
The ion-accelerating voltage was set at 20 kV. Dihydroxybenzoic
acid (DHB) (Sigma chemical Co., St Louis) was used as a matrix.
A 1 ll aliquot of the lipid A solution (1 lg/ll) in CHCl3/CH3OH/
H2O (3; 1.5; 0.25 v:v) was deposited on the target and covered
with the same volume of the matrix dissolved at 10 mg/ml in
the same solution [17]. Different ratios of sample to DHB were
tested when necessary. Escherichia coli J5 lipid A was used as
external standard.
2.7. Gas chromatography–mass spectrometry

Fatty acids were identified by gas chromatography (GC). A Shi-
madzu (GCMS-Q P2010SE-Gas Chromatograph mass spectrometer)
GC/MS apparatus was used and a temperature gradient from
170 �C to 250 �C, 3 �C/min was employed on a Phenomenex ZB-
5MS (0.25 � 0.25 � 30 m) capillary column. Arachidonic acid
(C20), a fatty acid absent from the natural samples, was used as
an internal standard.

The a- and b-anomers of 2 acetoxy-ethyl 2-peracetyl-D-GlcN,
chemically synthesized standards, were separated on the same col-
umn with a gradient from 150 �C to 240 �C, 2 �C/min and were eluted
at 29.81 min for the a-anomer and 31.47 min for the b-anomer [27].

2.8. Cell culture

THP-1 cell were maintained in RPMI 1640 medium supple-
mented with 10% heat-inactivated (56 �C, 30 min) foetal bovine
serum (PAA laboratory) and 100 IU/ml penicillin, 100 lg/ml strep-
tomycin. Cells were incubated at 37 �C in humid air with 5% CO2.

2.9. THP-1 stimulations and cytokines detection by ELISA

For THP-1cell stimulations, 6 � 105 viable THP-1 cell in 2 ml of
culture medium were added to each well of tissue culture-treated,
flat-bottomed, non-pyrogenic, polystyrene 6-well plates (Greiner-
bio-one) and then stimulated with 5 ng/ml, 10 ng/ml, 25 ng/ml,
50 ng/ml LPS, no LPS added was the control.

THP-1 cell were cultured for 48 h and supernatants were stored
for ELISA analysis. TNF-a and IL-6 levels in cell-free supernatants
were determined by an ELISA kit (eBioscience). The OD of each well
was read by using a microplate (96-well Maxisorp Nunc) reader at
450 nm with 540 nm correction (Multiskan EX). Each experiment
was repeated at least three times.

2.10. Statistical analysis

Data groups were analyzed by 1-way analysis of variance with
Biosta TGV with repeated measures. A value of P < 0.0001 was con-
sidered to indicate a statistically significant difference.

3. Results and discussion

It was found to be very difficult to isolate SRB LPS directly by
using different classical extraction procedures [22,23]. In fact, we
observed that some unknown molecules, we named ‘‘X molecules’’,
were co-extracted with LPS, which complicated their purification
from these strains. They seemed to be strain specific as their masses
varied from 2000 to m/z 4000 Da in the different strains as shown by
MALDI-MS. Importantly, from the first SRB LPS structure published
in 1985 until now, no article has described the precise structure of
SRB LPS, we assume that the presence of these contaminating ‘‘X
molecules’’ explain the absence of any previous clear-cut analysis.

We obtained pure LPS and their biologically active moiety, lipid
A, by use of preparative Thin Layer Chromatography [17] followed
by the LPS microhydrolysis method [20]. The MALDI spectra
obtained for the lipid A fractions from the two strains were similar
to those of E. coli or Salmonella, with the presence of penta- to
hexa-acyl molecular species. However, MALDI-MS comparison is
never sufficient to accurately characterize lipid A structures, as
we demonstrated earlier for Yersinia lipid A [24]. This is why com-
plementary biochemical analyses followed by sequential release of
fatty acids were performed for a full structural characterization.
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3.1. Negative-ion MALDI mass spectrometry

Negative-ion MALDI mass spectra of intact SRB 1 and SRB 2 lipid
A, respectively, are presented on Figs. 1 and 2. The quality of the
spectra is similar, and two peaks were common to both spectra
(at m/z 1360.7 and 1586.8). The two negative-ion mass spectra
gave a rough idea of the degree of heterogeneity present in the
preparation.

The MALDI negative-ion mass spectrum obtained for the SRB 1
strain presented in Fig. 1 was analyzed, the spectrum displayed a
Fig. 1. Negative-ion MALDI mass spectra of SRB 1 lipid A before and after alkaline treatm
the lipid A obtained after the primary de-O-acylation step. (c) Lipid A obtained after com
major molecular species at m/z 1586.8 corresponding to a penta-
acyl lipid A. Two other molecular species of medium abundance
were observed at plus 238 (C16:0) and minus 226 [C14:0
(3-OH)]. A minor molecular species was seen at m/z 1709.7 corre-
sponding to Phosphoethanolamine (PEA) substituted penta-acyl
lipid A. The latter is presented in Fig. 1 as a substituent of the
glycosidic phosphate as found in most E. coli structures. We found
no evidence of PEA substituting the second phosphate group,
since, no peak characteristic of this position was found in the
spectra.
ents and the corresponding structures. (a) Native lipid A spectrum. (b) Spectrum of
plete de-O-acylation.



Fig. 2. Negative-ion MALDI mass spectra of SRB 2 lipid A before and after alkaline treatments and the corresponding structures. (a) Native lipid A spectrum. (b) Spectrum of
the lipid A obtained after the primary de-O-acylation step. (c) Lipid A obtained after complete de-O-acylation.
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The negative-ion MALDI mass spectra obtained for the SRB 2
strain was compared to that from SRB 1 (Fig. 2), the spectrum cor-
responding to SRB grown in the Postgate medium displayed major
hexa-acyl molecular species at m/z 1797.4, corresponding to the
classical hexa-acyl molecular species with additional peaks at plus
131u and a minor peak at plus 238u, corresponding respectively to
4-amino-4-deoxy-L-arabinopyranose (Arap4N) and C16:0. Minor
peaks appeared at minus 210u and at minus 226u, from m/z
1797.4, corresponding to penta-acyl molecular species, lacking
respectively C14:0 and C14:0 (3-OH) fatty acids.
The total fatty acid composition and configuration of GlcN were
established by GC–MS as described earlier [25,26]. The presence of
di-glucosamine was confirmed after total fatty acid liberation by
MALDI-MS. The b-1-6 linkage between the two GlcN residues
was characterized by comparison with chemically synthesized
partial lipid A molecules [27]. We found identical retention time
for the oxidised reduced lipid A with 2-acetoxy [2H] ethyl 2-acet-
amido-3,4,6-tri-O-acetyl-2-deoxy-b-D-glucopyranoside eluted at
31.47 min and well separated from the a-form eluted at
29.81 min on the Phenomenex ZB-5MS capillary column [27].
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The determination of the a-configuration of the glycosyl
phosphate present in the natural lipid A was deduced from the
stability of the phosphate group as demonstrated earlier on
a- and b-D-glucopyranose 1-phosphate standards [28].

The fatty acid localization in the di-glucosamine core in Desulf-
ovibrio desulfuricans lipid A strains was deduced from their stability
upon alkaline treatment as shown in Figs. 1 and 2.

3.2. Positive-ion MALDI mass spectrometry

The distribution of fatty acids on the two GlcN residues was
demonstrated by MALDI-MS fragmentation in the positive ion-
mode by cleavage between the two glucosamines [29]. This
showed peaks at m/z 1086 and 888 corresponding respectively to
one GlcN, one Phosphate, two C14:0 (3-OH), one C14:0 and one
C12:0, for the first molecular species and the same structure with
loss of a OC12 (198u) for the second.

The lipid A structures corresponding to the main molecular
species described for the two SRB strains deduced from all the
presented data are illustrated in Figs. 1 and 2.

3.3. THP1 stimulation and IL-6/TNF-a detection

To characterize and compare the endotoxin activity of the two
types of lipid A, we stimulated human monocytes (THP1) with
SRB 1 and SRB 2 LPS. We tested both IL-6 and TNF-a activities,
which were selected as good markers for acute inflammation and
compared them to those of E. coli J5 LPS (Fig. 3B and C). The latter
Fig. 3. Secreted cytokines IL-6 and TNF-a, after 48 h stimulation of human THP-1 (6 � 10
SDS–PAGE, the bands correspond to the different extracts of LPS as indicated. (B) IL-6 p
has a hexa-acyl lipid A and was also taken as a reference for its
similar migration by SDS–PAGE (Fig. 3A).

As expected from previous work performed in our laboratory
and in others [7,30] the hexa-acyl lipid A molecular species, like
the one present in SRB 2 LPS, induced higher levels of cytokines
than the others. As shown in Fig. 3B, SRB 1 LPS activated IL-6
induction at a medium level while SRB 2 LPS gave higher IL-6 pro-
duction, and as expected close to that of E. coli J5 LPS. Similar
results were observed for TNF-a production and confirmed that
SRB 1 LPS was much less active than SRB 2 and E. coli J5 LPS
(Fig. 3C).

3.4. Comparison of the current Desulfovibrio lipid A structures with the
activity of LpxM and LpxL proteins described for Desulfovibrio vulgaris
lipid A biosynthesis pathway

SRB 1 lipid A structure corresponded to what was expected
from the biosynthesis pathway recently published for the lipid A
from D. vulgaris lipid A, which lacks the LpxM enzyme [31] as
shown in Fig. 4, where are presented the organisms most closely
related to the Desulfovibrio species and the corresponding enzymes
involved in lipid A biosynthesis. According to Opiyo et al. [31], the
absence of LpxM in D. vulgaris results in the absence of a C14:0
fatty acid compared to the E. coli hexa-acyl lipid A structure. LpxH
and LpxH2 are also missing in this species, corresponding to the
glycosidic phosphate and pyro-phosphate moieties.

From our results, and with the two structural examples charac-
terized for the two strains, LpxM should be missing in SRB 1 but
5 cells) with different doses of purified LPS from two strains of SRB and E. coli J5. (A)
roduction. (C) TNF-a production. All experiments were performed in triplicate.



Fig. 4. (A) Structure of lipid A from E. coli K12. (B) Distribution of lipid A biosynthetic enzymes across bacterial genomes (modified from [31]).
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not SRB 2. Consequently, the absence of LpxM in the D. vulgaris
pathway should not be considered as a characteristic of the genus.
In addition, as shown in Fig. 4 a glycosidic phosphate and a palmi-
tate are present in the two lipid A structures. These elements result
from the activation of the LpxH and LpxP in both strains while the
corresponding genes are absent in D. vulgaris.

4. Conclusion

Since a relatively large increase of SRB was observed in the
human and mouse guts after a fat enriched diet [13,14], the
absence of the C14:0 fatty acid due to the deletion of LpxM should
have an important impact on the resulting inflammatory process
and would vary depending on the presence of hexa-acyl or
penta-acyl lipid A molecular species. The implication of these data
in diabetes and obesity based on LPS structure to activity relation-
ships is comforted by this work and that of other authors [1,4].

In addition to their own LPS inflammatory capacities, SRB are
able to alter the intestinal epithelial membrane by their capacity
to generate H2S. The dissociated cells could open the way, not only
to other LPS molecules present in the gut, but also to bacteria. This
transmembrane passage was demonstrated earlier [32].

It is interesting to note that D. desulfuricans shares the well-
known di-phospho-di-glucosamine lipid A structure characteristic
of Enterobacteriaceae with the same fatty acid distribution. The
evolution of the lipid A enzymatic pathway described by Raetz
et al. [33] is extremely well conserved in a majority of Gram-
negative bacteria. However, the evolution of the biosynthetic path-
way, as shown in [18], involved duplication or losses of different
genes dependent upon adaptation to hosts and different niches.
In this work we present data concerning a single human gut,
stressing the micro-diversity observed. The significance of our
findings are that while accumulating evidence implicates a pivotal
role for LPS-producers in obesity/diabetes, this is the first example
that different strains of the same species, in the same habitat
(isolated from a single human’s gut), can actually have a different
structure and consequently different pro-inflammatory capacities
of their lipid A. Therefore, the observation of increasing endotoxin
production in the gut microbiota of obese mice and diabetic
patients needs to be monitored at the strain level.
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